
XL

Fortran

Advanced

Edition

for

Mac

OS

X

Language

Reference

Version

8.1

SC09-7863-00

���

XL

Fortran

Advanced

Edition

for

Mac

OS

X

Language

Reference

Version

8.1

SC09-7863-00

���

Note!

Before

using

this

information

and

the

product

it

supports,

be

sure

to

read

the

general

information

under

“Notices”

on

page

615.

First

Edition

(December

2003)

This

edition

applies

to

IBM

XL

Fortran

Advanced

Edition

Version

8.1

for

Mac

OS

X

(Program

5724–G13)

and

to

all

subsequent

releases

and

modifications

until

otherwise

indicated

in

new

editions.

Make

sure

you

are

using

the

correct

edition

for

the

level

of

the

product.

IBM

welcomes

your

comments.

You

can

send

your

comments

electronically

to

the

network

ID

listed

below.

Be

sure

to

include

your

entire

network

address

if

you

wish

a

reply.

compinfo@ca.ibm.com

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

International

Business

Machines

Corporation

1990,

2003.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

The

XL

Fortran

Language

.

.

.

.

.

. 1

XL

Fortran

for

Mac

OS

X

.

.

.

.

.

.

. 3

Language

Standards

.

.

.

.

.

.

.

.

.

.

.

. 4

Fortran

95

.

.

.

.

.

.

.

.

.

.

.

.

.

. 4

Fortran

90

.

.

.

.

.

.

.

.

.

.

.

.

.

. 4

Fortran

2003

Draft

Standard

.

.

.

.

.

.

.

. 4

Other

Standards

and

Standards

Documents

.

.

. 4

Typographical

Conventions

.

.

.

.

.

.

.

.

. 5

How

to

Read

Syntax

Diagrams

.

.

.

.

.

.

.

. 5

Sample

Syntax

Diagram

.

.

.

.

.

.

.

.

. 7

Using

Examples

.

.

.

.

.

.

.

.

.

.

.

.

. 7

Fundamentals

of

the

XL

Fortran

Language

.

.

.

.

.

.

.

.

.

.

.

.

.

. 9

Characters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 9

Names

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 10

Statements

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 11

Statement

Keywords

.

.

.

.

.

.

.

.

.

. 11

Statement

Labels

.

.

.

.

.

.

.

.

.

.

.

. 11

Lines

and

Source

Formats

.

.

.

.

.

.

.

.

. 11

Fixed

Source

Form

.

.

.

.

.

.

.

.

.

.

. 12

Free

Source

Form

.

.

.

.

.

.

.

.

.

.

. 15

IBM

Free

Source

Form

.

.

.

.

.

.

.

.

.

. 17

Conditional

Compilation

.

.

.

.

.

.

.

.

. 17

Order

of

Statements

and

Execution

Sequence

.

.

. 19

Data

Types

and

Data

Objects

.

.

.

.

. 21

Data

Types

.

.

.

.

.

.

.

.

.

.

.

.

.

. 21

Type

Parameters

and

Specifiers

.

.

.

.

.

.

. 21

Data

Objects

.

.

.

.

.

.

.

.

.

.

.

.

.

. 21

Constants

.

.

.

.

.

.

.

.

.

.

.

.

.

. 22

Automatic

Objects

.

.

.

.

.

.

.

.

.

.

. 22

Intrinsic

Types

.

.

.

.

.

.

.

.

.

.

.

.

. 22

Integer

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 22

Real

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 24

Complex

.

.

.

.

.

.

.

.

.

.

.

.

.

. 26

Logical

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 28

Character

.

.

.

.

.

.

.

.

.

.

.

.

.

. 29

BYTE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 32

Derived

Types

.

.

.

.

.

.

.

.

.

.

.

.

. 33

Input/Output

.

.

.

.

.

.

.

.

.

.

.

. 37

Determining

Type

for

Derived

Types

.

.

.

.

. 38

Record

Structures

.

.

.

.

.

.

.

.

.

.

. 45

Union

and

Map

.

.

.

.

.

.

.

.

.

.

.

. 48

Typeless

Literal

Constants

.

.

.

.

.

.

.

.

. 52

Hexadecimal

Constants

.

.

.

.

.

.

.

.

. 52

Octal

Constants

.

.

.

.

.

.

.

.

.

.

.

. 53

Binary

Constants

.

.

.

.

.

.

.

.

.

.

. 53

Hollerith

Constants

.

.

.

.

.

.

.

.

.

.

. 54

Using

Typeless

Constants

.

.

.

.

.

.

.

.

. 54

How

Type

Is

Determined

.

.

.

.

.

.

.

.

.

. 57

Definition

Status

of

Variables

.

.

.

.

.

.

.

. 57

Events

Causing

Definition

.

.

.

.

.

.

.

. 58

Events

Causing

Undefinition

.

.

.

.

.

.

. 60

Allocation

Status

.

.

.

.

.

.

.

.

.

.

.

. 61

Storage

Classes

for

Variables

.

.

.

.

.

.

.

.

. 62

Fundamental

Storage

Classes

.

.

.

.

.

.

. 62

Secondary

Storage

Classes

.

.

.

.

.

.

.

. 63

Storage

Class

Assignment

.

.

.

.

.

.

.

. 63

Array

Concepts

.

.

.

.

.

.

.

.

.

.

. 65

Arrays

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 65

Bounds

of

a

Dimension

.

.

.

.

.

.

.

.

. 65

Extent

of

a

Dimension

.

.

.

.

.

.

.

.

.

. 66

Rank,

Shape,

and

Size

of

an

Array

.

.

.

.

.

. 66

Array

Declarators

.

.

.

.

.

.

.

.

.

.

.

. 67

Explicit-Shape

Arrays

.

.

.

.

.

.

.

.

.

.

. 68

Examples

of

Explicit-Shape

Arrays

.

.

.

.

.

. 68

Automatic

Arrays

.

.

.

.

.

.

.

.

.

.

. 68

Adjustable

Arrays

.

.

.

.

.

.

.

.

.

.

. 69

Pointee

Arrays

.

.

.

.

.

.

.

.

.

.

.

. 69

Assumed-Shape

Arrays

.

.

.

.

.

.

.

.

.

. 69

Examples

of

Assumed-Shape

Arrays

.

.

.

.

. 70

Deferred-Shape

Arrays

.

.

.

.

.

.

.

.

.

. 70

Allocatable

Arrays

.

.

.

.

.

.

.

.

.

.

. 71

Array

Pointers

.

.

.

.

.

.

.

.

.

.

.

. 72

Assumed-Size

Arrays

.

.

.

.

.

.

.

.

.

.

. 72

Examples

of

Assumed-Size

Arrays

.

.

.

.

.

. 74

Array

Elements

.

.

.

.

.

.

.

.

.

.

.

.

. 74

Notes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 75

Array

Element

Order

.

.

.

.

.

.

.

.

.

. 75

Array

Sections

.

.

.

.

.

.

.

.

.

.

.

.

. 75

Subscript

Triplets

.

.

.

.

.

.

.

.

.

.

. 77

Vector

Subscripts

.

.

.

.

.

.

.

.

.

.

. 78

Array

Sections

and

Substring

Ranges

.

.

.

.

. 79

Array

Sections

and

Structure

Components

.

.

. 79

Rank

and

Shape

of

Array

Sections

.

.

.

.

.

. 81

Array

Constructors

.

.

.

.

.

.

.

.

.

.

.

. 81

Implied-DO

List

for

an

Array

Constructor

.

.

. 82

Expressions

Involving

Arrays

.

.

.

.

.

.

.

. 83

Expressions

and

Assignment

.

.

.

.

. 85

Introduction

to

Expressions

and

Assignment

.

.

. 85

Primary

.

.

.

.

.

.

.

.

.

.

.

.

.

. 86

Constant

Expressions

.

.

.

.

.

.

.

.

.

.

. 86

Examples

of

Constant

Expressions

.

.

.

.

.

. 87

Initialization

Expressions

.

.

.

.

.

.

.

.

.

. 87

Examples

of

Initialization

Expressions

.

.

.

. 88

Specification

Expressions

.

.

.

.

.

.

.

.

.

. 88

Examples

of

Specification

Expressions

.

.

.

. 89

Operators

and

Expressions

.

.

.

.

.

.

.

.

. 90

General

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 90

Arithmetic

.

.

.

.

.

.

.

.

.

.

.

.

.

. 90

Character

.

.

.

.

.

.

.

.

.

.

.

.

.

. 93

Relational

.

.

.

.

.

.

.

.

.

.

.

.

.

. 93

Logical

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 95

Primary

.

.

.

.

.

.

.

.

.

.

.

.

.

. 97

Extended

Intrinsic

and

Defined

Operations

.

.

.

. 97

©

Copyright

IBM

Corp.

1990,

2003

iii

How

Expressions

Are

Evaluated

.

.

.

.

.

.

. 98

Precedence

of

Operators

.

.

.

.

.

.

.

.

. 98

Using

BYTE

Data

Objects

.

.

.

.

.

.

.

. 101

Intrinsic

Assignment

.

.

.

.

.

.

.

.

.

.

. 101

Arithmetic

Conversion

.

.

.

.

.

.

.

.

. 103

WHERE

Construct

.

.

.

.

.

.

.

.

.

.

.

. 104

Interpreting

Masked

Array

Assignments

.

.

. 106

FORALL

Construct

.

.

.

.

.

.

.

.

.

.

. 110

Interpreting

the

FORALL

Construct

.

.

.

.

. 112

Pointer

Assignment

.

.

.

.

.

.

.

.

.

.

. 113

Examples

of

Pointer

Assignment

.

.

.

.

.

. 114

Integer

Pointer

Assignment

.

.

.

.

.

.

.

. 115

Control

Structures

.

.

.

.

.

.

.

.

. 117

Statement

Blocks

.

.

.

.

.

.

.

.

.

.

.

. 117

IF

Construct

.

.

.

.

.

.

.

.

.

.

.

.

.

. 117

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 119

CASE

Construct

.

.

.

.

.

.

.

.

.

.

.

. 119

Examples

.

.

.

.

.

.

.

.

.

.

.

.

.

. 121

DO

Construct

.

.

.

.

.

.

.

.

.

.

.

.

. 121

The

Terminal

Statement

.

.

.

.

.

.

.

.

. 122

DO

WHILE

Construct

.

.

.

.

.

.

.

.

.

. 125

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 125

Branching

.

.

.

.

.

.

.

.

.

.

.

.

.

. 126

Program

Units

and

Procedures

.

.

.

. 127

Scope

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 127

The

Scope

of

a

Name

.

.

.

.

.

.

.

.

.

. 128

Association

.

.

.

.

.

.

.

.

.

.

.

.

.

. 131

Host

Association

.

.

.

.

.

.

.

.

.

.

. 131

Use

Association

.

.

.

.

.

.

.

.

.

.

. 132

Pointer

Association

.

.

.

.

.

.

.

.

.

. 133

Integer

Pointer

Association

.

.

.

.

.

.

.

. 134

Program

Units,

Procedures,

and

Subprograms

.

. 134

Internal

Procedures

.

.

.

.

.

.

.

.

.

. 135

Interface

Concepts

.

.

.

.

.

.

.

.

.

.

. 136

Interface

Blocks

.

.

.

.

.

.

.

.

.

.

.

.

. 138

Example

of

an

Interface

.

.

.

.

.

.

.

.

. 140

Generic

Interface

Blocks

.

.

.

.

.

.

.

.

.

. 141

Unambiguous

Generic

Procedure

References

141

Extending

Intrinsic

Procedures

with

Generic

Interface

Blocks

.

.

.

.

.

.

.

.

.

.

.

. 142

Defined

Operators

.

.

.

.

.

.

.

.

.

.

. 143

Defined

Assignment

.

.

.

.

.

.

.

.

.

. 144

Main

Program

.

.

.

.

.

.

.

.

.

.

.

.

. 145

Modules

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 146

Example

of

a

Module

.

.

.

.

.

.

.

.

.

. 148

Block

Data

Program

Unit

.

.

.

.

.

.

.

.

. 149

Example

of

a

Block

Data

Program

Unit

.

.

.

. 150

Function

and

Subroutine

Subprograms

.

.

.

.

. 150

Procedure

References

.

.

.

.

.

.

.

.

.

. 151

Intrinsic

Procedures

.

.

.

.

.

.

.

.

.

.

. 152

Conflicts

Between

Intrinsic

Procedure

Names

and

Other

Names

.

.

.

.

.

.

.

.

.

.

. 153

Arguments

.

.

.

.

.

.

.

.

.

.

.

.

.

. 153

Actual

Argument

Specification

.

.

.

.

.

. 153

Argument

Association

.

.

.

.

.

.

.

.

.

. 156

%VAL

and

%REF

.

.

.

.

.

.

.

.

.

.

. 157

Intent

of

Dummy

Arguments

.

.

.

.

.

.

. 158

Optional

Dummy

Arguments

.

.

.

.

.

.

. 159

Restrictions

on

Optional

Dummy

Arguments

Not

Present

.

.

.

.

.

.

.

.

.

.

.

.

. 159

Length

of

Character

Arguments

.

.

.

.

.

. 160

Variables

as

Dummy

Arguments

.

.

.

.

.

. 160

Allocatable

Objects

as

Dummy

Arguments

.

. 162

Pointers

as

Dummy

Arguments

.

.

.

.

.

. 163

Procedures

as

Dummy

Arguments

.

.

.

.

. 163

Asterisks

as

Dummy

Arguments

.

.

.

.

.

. 164

Resolution

of

Procedure

References

.

.

.

.

. 164

Rules

for

Resolving

Procedure

References

to

Names

.

.

.

.

.

.

.

.

.

.

.

.

.

. 165

Resolving

Procedure

References

to

Generic

Names

.

.

.

.

.

.

.

.

.

.

.

.

.

. 166

Recursion

.

.

.

.

.

.

.

.

.

.

.

.

.

. 166

Pure

Procedures

.

.

.

.

.

.

.

.

.

.

.

. 167

Examples

.

.

.

.

.

.

.

.

.

.

.

.

.

. 169

Elemental

Procedures

.

.

.

.

.

.

.

.

.

.

. 169

Examples

.

.

.

.

.

.

.

.

.

.

.

.

.

. 171

Understanding

XL

Fortran

Input/Output

.

.

.

.

.

.

.

.

.

.

.

. 173

Records

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 173

Formatted

Records

.

.

.

.

.

.

.

.

.

. 173

Unformatted

Records

.

.

.

.

.

.

.

.

.

. 173

Endfile

Records

.

.

.

.

.

.

.

.

.

.

.

. 173

Files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 174

Definition

of

an

External

File

.

.

.

.

.

.

. 174

File

Access

Methods

.

.

.

.

.

.

.

.

.

. 174

Units

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 176

Connection

of

a

Unit

.

.

.

.

.

.

.

.

.

. 176

Data

Transfer

Statements

.

.

.

.

.

.

.

.

. 178

Advancing

and

Nonadvancing

Input/Output

178

File

Position

Before

and

After

Data

Transfer

.

. 179

Conditions

and

IOSTAT

Values

.

.

.

.

.

.

. 181

End-Of-Record

Conditions

.

.

.

.

.

.

.

. 181

End-Of-File

Conditions

.

.

.

.

.

.

.

.

. 181

Error

Conditions

.

.

.

.

.

.

.

.

.

.

. 182

Input/Output

Formatting

.

.

.

.

.

.

. 187

Format-Directed

Formatting

.

.

.

.

.

.

.

. 187

Data

Edit

Descriptors

.

.

.

.

.

.

.

.

.

. 187

Control

Edit

Descriptors

.

.

.

.

.

.

.

.

. 188

Character

String

Edit

Descriptors

.

.

.

.

.

. 189

Editing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 189

Complex

Editing

.

.

.

.

.

.

.

.

.

.

. 191

Data

Edit

Descriptors

.

.

.

.

.

.

.

.

.

.

. 191

A

(Character)

Editing

.

.

.

.

.

.

.

.

.

. 191

B

(Binary)

Editing

.

.

.

.

.

.

.

.

.

.

. 191

E,

D,

and

Q

(Extended

Precision)

Editing

.

.

. 193

EN

Editing

.

.

.

.

.

.

.

.

.

.

.

.

. 195

ES

Editing

.

.

.

.

.

.

.

.

.

.

.

.

. 196

F

(Real

without

Exponent)

Editing

.

.

.

.

. 197

G

(General)

Editing

.

.

.

.

.

.

.

.

.

. 198

I

(Integer)

Editing

.

.

.

.

.

.

.

.

.

.

. 200

L

(Logical)

Editing

.

.

.

.

.

.

.

.

.

.

. 201

O

(Octal)

Editing

.

.

.

.

.

.

.

.

.

.

. 201

Q

(Character

Count)

Editing

.

.

.

.

.

.

. 203

Z

(Hexadecimal)

Editing

.

.

.

.

.

.

.

. 204

Control

Edit

Descriptors

.

.

.

.

.

.

.

.

.

. 205

/

(Slash)

Editing

.

.

.

.

.

.

.

.

.

.

. 205

iv

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

:

(Colon)

Editing

.

.

.

.

.

.

.

.

.

.

. 206

$

(Dollar)

Editing

.

.

.

.

.

.

.

.

.

.

. 206

Apostrophe/Double

Quotation

Mark

Editing

(Character-String

Edit

Descriptor)

.

.

.

.

. 207

BN

(Blank

Null)

and

BZ

(Blank

Zero)

Editing

207

H

Editing

.

.

.

.

.

.

.

.

.

.

.

.

. 208

P

(Scale

Factor)

Editing

.

.

.

.

.

.

.

.

. 209

S,

SP,

and

SS

(Sign

Control)

Editing

.

.

.

.

. 209

T,

TL,

TR,

and

X

(Positional)

Editing

.

.

.

. 210

Interaction

between

Input/Output

Lists

and

Format

Specifications

.

.

.

.

.

.

.

.

.

.

. 211

List-Directed

Formatting

.

.

.

.

.

.

.

.

.

. 212

List-Directed

Input

.

.

.

.

.

.

.

.

.

. 212

List-Directed

Output

.

.

.

.

.

.

.

.

.

. 213

Namelist

Formatting

.

.

.

.

.

.

.

.

.

.

. 215

Namelist

Input

Data

.

.

.

.

.

.

.

.

.

. 215

Namelist

Output

Data

.

.

.

.

.

.

.

.

. 220

Statements

and

Attributes

.

.

.

.

.

. 223

Attributes

.

.

.

.

.

.

.

.

.

.

.

.

.

. 226

ALLOCATABLE

.

.

.

.

.

.

.

.

.

.

.

. 226

ALLOCATE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 227

ASSIGN

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 229

AUTOMATIC

.

.

.

.

.

.

.

.

.

.

.

.

. 230

BACKSPACE

.

.

.

.

.

.

.

.

.

.

.

.

. 232

BLOCK

DATA

.

.

.

.

.

.

.

.

.

.

.

.

. 233

BYTE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 234

CALL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 237

CASE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 238

CHARACTER

.

.

.

.

.

.

.

.

.

.

.

.

. 240

CLOSE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 245

COMMON

.

.

.

.

.

.

.

.

.

.

.

.

.

. 247

COMPLEX

.

.

.

.

.

.

.

.

.

.

.

.

.

. 250

CONTAINS

.

.

.

.

.

.

.

.

.

.

.

.

.

. 254

CONTINUE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 255

CYCLE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 255

DATA

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 256

DEALLOCATE

.

.

.

.

.

.

.

.

.

.

.

.

. 260

Derived

Type

.

.

.

.

.

.

.

.

.

.

.

.

. 261

DIMENSION

.

.

.

.

.

.

.

.

.

.

.

.

. 262

DO

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 263

DO

WHILE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 265

DOUBLE

COMPLEX

.

.

.

.

.

.

.

.

.

.

. 266

DOUBLE

PRECISION

.

.

.

.

.

.

.

.

.

. 269

ELSE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 273

ELSE

IF

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 273

ELSEWHERE

.

.

.

.

.

.

.

.

.

.

.

.

. 274

END

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 276

END

(Construct)

.

.

.

.

.

.

.

.

.

.

.

. 277

END

INTERFACE

.

.

.

.

.

.

.

.

.

.

.

. 279

END

TYPE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 280

ENDFILE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 281

ENTRY

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 283

EQUIVALENCE

.

.

.

.

.

.

.

.

.

.

.

. 285

EXIT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 287

EXTERNAL

.

.

.

.

.

.

.

.

.

.

.

.

.

. 288

FORALL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 289

FORALL

(Construct)

.

.

.

.

.

.

.

.

.

.

. 292

FORMAT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 293

FUNCTION

.

.

.

.

.

.

.

.

.

.

.

.

.

. 298

GO

TO

(Assigned)

.

.

.

.

.

.

.

.

.

.

.

. 301

GO

TO

(Computed)

.

.

.

.

.

.

.

.

.

.

. 302

GO

TO

(Unconditional)

.

.

.

.

.

.

.

.

.

. 303

IF

(Arithmetic)

.

.

.

.

.

.

.

.

.

.

.

.

. 304

IF

(Block)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 304

IF

(Logical)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 305

IMPLICIT

.

.

.

.

.

.

.

.

.

.

.

.

.

. 306

INQUIRE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 308

INTEGER

.

.

.

.

.

.

.

.

.

.

.

.

.

. 314

INTENT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 318

INTERFACE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 320

INTRINSIC

.

.

.

.

.

.

.

.

.

.

.

.

.

. 322

LOGICAL

.

.

.

.

.

.

.

.

.

.

.

.

.

. 323

MODULE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 328

MODULE

PROCEDURE

.

.

.

.

.

.

.

.

.

. 329

NAMELIST

.

.

.

.

.

.

.

.

.

.

.

.

.

. 330

NULLIFY

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 331

OPEN

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 332

OPTIONAL

.

.

.

.

.

.

.

.

.

.

.

.

.

. 337

PARAMETER

.

.

.

.

.

.

.

.

.

.

.

.

. 338

PAUSE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 339

POINTER

(Fortran

90)

.

.

.

.

.

.

.

.

.

. 340

POINTER

(integer)

.

.

.

.

.

.

.

.

.

.

. 342

PRINT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 344

PRIVATE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 346

PROGRAM

.

.

.

.

.

.

.

.

.

.

.

.

.

. 347

PROTECTED

.

.

.

.

.

.

.

.

.

.

.

.

. 348

PUBLIC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 350

READ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 351

REAL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 356

RECORD

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 361

RETURN

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 362

REWIND

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 363

SAVE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 365

SELECT

CASE

.

.

.

.

.

.

.

.

.

.

.

.

. 366

SEQUENCE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 367

Statement

Function

.

.

.

.

.

.

.

.

.

.

. 368

STATIC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 370

STOP

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 371

SUBROUTINE

.

.

.

.

.

.

.

.

.

.

.

.

. 372

TARGET

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 373

TYPE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 374

Type

Declaration

.

.

.

.

.

.

.

.

.

.

.

. 378

USE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 384

VALUE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 386

VIRTUAL

.

.

.

.

.

.

.

.

.

.

.

.

.

. 388

VOLATILE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 388

WHERE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 390

WRITE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 392

General

Directives

.

.

.

.

.

.

.

.

. 397

Comment

and

Noncomment

Form

Directives

.

.

. 397

Comment

Form

Directives

.

.

.

.

.

.

.

. 397

Noncomment

Form

Directives

.

.

.

.

.

.

. 399

Directives

and

Optimization

.

.

.

.

.

.

.

. 399

Assertive

Directives

.

.

.

.

.

.

.

.

.

. 399

Directives

for

Loop

Unrolling

.

.

.

.

.

.

. 400

Detailed

Directive

Descriptions

.

.

.

.

.

.

. 400

ASSERT

.

.

.

.

.

.

.

.

.

.

.

.

.

. 400

CNCALL

.

.

.

.

.

.

.

.

.

.

.

.

.

. 402

COLLAPSE

.

.

.

.

.

.

.

.

.

.

.

.

. 403

EJECT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 404

Contents

v

INCLUDE

.

.

.

.

.

.

.

.

.

.

.

.

. 404

INDEPENDENT

.

.

.

.

.

.

.

.

.

.

. 406

#LINE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 409

PERMUTATION

.

.

.

.

.

.

.

.

.

.

. 411

@PROCESS

.

.

.

.

.

.

.

.

.

.

.

.

. 412

SNAPSHOT

.

.

.

.

.

.

.

.

.

.

.

.

. 412

SOURCEFORM

.

.

.

.

.

.

.

.

.

.

.

. 413

STREAM_UNROLL

.

.

.

.

.

.

.

.

.

. 414

SUBSCRIPTORDER

.

.

.

.

.

.

.

.

.

. 415

UNROLL

.

.

.

.

.

.

.

.

.

.

.

.

.

. 417

UNROLL_AND_FUSE

.

.

.

.

.

.

.

.

. 419

Intrinsic

Procedures

.

.

.

.

.

.

.

. 421

Classes

of

Intrinsic

Procedures

.

.

.

.

.

.

.

. 421

Inquiry

Intrinsic

Functions

.

.

.

.

.

.

.

. 421

Elemental

Intrinsic

Procedures

.

.

.

.

.

.

. 421

System

Inquiry

Intrinsic

Functions

.

.

.

.

. 422

Transformational

Intrinsic

Functions

.

.

.

.

. 422

Intrinsic

Subroutines

.

.

.

.

.

.

.

.

.

. 423

Data

Representation

Models

.

.

.

.

.

.

.

. 423

Integer

Bit

Model

.

.

.

.

.

.

.

.

.

.

. 423

Integer

Data

Model

.

.

.

.

.

.

.

.

.

. 424

Real

Data

Model

.

.

.

.

.

.

.

.

.

.

. 425

Detailed

Descriptions

of

Intrinsic

Procedures

.

.

. 425

ABORT()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 426

ABS(A)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 426

ACHAR(I)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 427

ACOS(X)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 427

ACOSD(X)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 428

ADJUSTL(STRING)

.

.

.

.

.

.

.

.

.

.

. 429

ADJUSTR(STRING)

.

.

.

.

.

.

.

.

.

.

. 429

AIMAG(Z),

IMAG(Z)

.

.

.

.

.

.

.

.

.

.

. 430

AINT(A,

KIND)

.

.

.

.

.

.

.

.

.

.

.

. 430

ALL(MASK,

DIM)

.

.

.

.

.

.

.

.

.

.

.

. 431

ALLOCATED(ARRAY)

or

ALLOCATED(SCALAR)

432

ANINT(A,

KIND)

.

.

.

.

.

.

.

.

.

.

.

. 432

ANY(MASK,

DIM)

.

.

.

.

.

.

.

.

.

.

. 433

ASIN(X)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 434

ASIND(X)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 434

ASSOCIATED(POINTER,

TARGET)

.

.

.

.

.

. 435

ATAN(X)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 436

ATAND(X)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 436

ATAN2(Y,

X)

.

.

.

.

.

.

.

.

.

.

.

.

. 437

ATAN2D(Y,

X)

.

.

.

.

.

.

.

.

.

.

.

.

. 438

BIT_SIZE(I)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 439

BTEST(I,

POS)

.

.

.

.

.

.

.

.

.

.

.

.

. 440

CEILING(A,

KIND)

.

.

.

.

.

.

.

.

.

.

. 440

CHAR(I,

KIND)

.

.

.

.

.

.

.

.

.

.

.

. 441

CMPLX(X,

Y,

KIND)

.

.

.

.

.

.

.

.

.

.

. 442

CONJG(Z)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 443

COS(X)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 443

COSD(X)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 444

COSH(X)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 445

COUNT(MASK,

DIM)

.

.

.

.

.

.

.

.

.

. 445

CPU_TIME(TIME)

.

.

.

.

.

.

.

.

.

.

.

. 446

CSHIFT(ARRAY,

SHIFT,

DIM)

.

.

.

.

.

.

.

. 448

CVMGx(TSOURCE,

FSOURCE,

MASK)

.

.

.

. 449

DATE_AND_TIME(DATE,

TIME,

ZONE,

VALUES)

450

DBLE(A)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 451

DCMPLX(X,

Y)

.

.

.

.

.

.

.

.

.

.

.

.

. 452

DIGITS(X)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 453

DIM(X,

Y)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 454

DOT_PRODUCT(VECTOR_A,

VECTOR_B)

.

.

. 454

DPROD(X,

Y)

.

.

.

.

.

.

.

.

.

.

.

.

. 455

EOSHIFT(ARRAY,

SHIFT,

BOUNDARY,

DIM)

.

. 456

EPSILON(X)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 457

ERF(X)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 458

ERFC(X)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 459

EXP(X)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 459

EXPONENT(X)

.

.

.

.

.

.

.

.

.

.

.

.

. 460

FLOOR(A,

KIND)

.

.

.

.

.

.

.

.

.

.

.

. 461

FRACTION(X)

.

.

.

.

.

.

.

.

.

.

.

.

. 462

GAMMA(X)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 462

GETENV(NAME,

VALUE)

.

.

.

.

.

.

.

.

. 463

HFIX(A)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 464

HUGE(X)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 464

IACHAR(C)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 465

IAND(I,

J)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 466

IBCLR(I,

POS)

.

.

.

.

.

.

.

.

.

.

.

.

. 466

IBITS(I,

POS,

LEN)

.

.

.

.

.

.

.

.

.

.

. 467

IBSET(I,

POS)

.

.

.

.

.

.

.

.

.

.

.

.

. 468

ICHAR(C)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 468

IEOR(I,

J)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 469

ILEN(I)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 470

IMAG(Z)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 470

INDEX(STRING,

SUBSTRING,

BACK)

.

.

.

.

. 470

INT(A,

KIND)

.

.

.

.

.

.

.

.

.

.

.

.

. 471

INT2(A)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 472

IOR(I,

J)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 473

ISHFT(I,

SHIFT)

.

.

.

.

.

.

.

.

.

.

.

. 474

ISHFTC(I,

SHIFT,

SIZE)

.

.

.

.

.

.

.

.

.

. 475

KIND(X)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 475

LBOUND(ARRAY,

DIM)

.

.

.

.

.

.

.

.

.

. 476

LEADZ(I)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 477

LEN(STRING)

.

.

.

.

.

.

.

.

.

.

.

.

. 477

LEN_TRIM(STRING)

.

.

.

.

.

.

.

.

.

.

. 478

LGAMMA(X)

.

.

.

.

.

.

.

.

.

.

.

.

. 478

LGE(STRING_A,

STRING_B)

.

.

.

.

.

.

.

. 479

LGT(STRING_A,

STRING_B)

.

.

.

.

.

.

.

. 480

LLE(STRING_A,

STRING_B)

.

.

.

.

.

.

.

. 480

LLT(STRING_A,

STRING_B)

.

.

.

.

.

.

.

. 481

LOC(X)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 482

LOG(X)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 482

LOG10(X)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 483

LOGICAL(L,

KIND)

.

.

.

.

.

.

.

.

.

.

. 484

LSHIFT(I,

SHIFT)

.

.

.

.

.

.

.

.

.

.

.

. 484

MATMUL(MATRIX_A,

MATRIX_B,

MINDIM)

.

. 485

MAX(A1,

A2,

A3,

...)

.

.

.

.

.

.

.

.

.

.

. 486

MAXEXPONENT(X)

.

.

.

.

.

.

.

.

.

.

. 487

MAXLOC(ARRAY,

DIM,

MASK)

or

MAXLOC(ARRAY,

MASK)

.

.

.

.

.

.

.

.

. 488

MAXVAL(ARRAY,

DIM,

MASK)

or

MAXVAL(ARRAY,

MASK)

.

.

.

.

.

.

.

.

. 490

MERGE(TSOURCE,

FSOURCE,

MASK)

.

.

.

.

. 491

MIN(A1,

A2,

A3,

...)

.

.

.

.

.

.

.

.

.

.

. 492

MINEXPONENT(X)

.

.

.

.

.

.

.

.

.

.

. 492

MINLOC(ARRAY,

DIM,

MASK)

or

MINLOC(ARRAY,

MASK)

.

.

.

.

.

.

.

.

. 493

MINVAL(ARRAY,

DIM,

MASK)

or

MINVAL(ARRAY,

MASK)

.

.

.

.

.

.

.

.

. 495

MOD(A,

P)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 496

MODULO(A,

P)

.

.

.

.

.

.

.

.

.

.

.

. 497

vi

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

MVBITS(FROM,

FROMPOS,

LEN,

TO,

TOPOS)

.

. 497

NEAREST(X,S)

.

.

.

.

.

.

.

.

.

.

.

.

. 498

NINT(A,

KIND)

.

.

.

.

.

.

.

.

.

.

.

. 499

NOT(I)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 499

NULL(MOLD)

.

.

.

.

.

.

.

.

.

.

.

.

. 500

NUMBER_OF_PROCESSORS(DIM)

.

.

.

.

.

. 501

PACK(ARRAY,

MASK,

VECTOR)

.

.

.

.

.

.

. 502

PRECISION(X)

.

.

.

.

.

.

.

.

.

.

.

.

. 503

PRESENT(A)

.

.

.

.

.

.

.

.

.

.

.

.

. 504

PROCESSORS_SHAPE()

.

.

.

.

.

.

.

.

.

. 504

PRODUCT(ARRAY,

DIM,

MASK)

or

PRODUCT(ARRAY,

MASK)

.

.

.

.

.

.

.

. 505

QCMPLX(X,

Y)

.

.

.

.

.

.

.

.

.

.

.

.

. 507

QEXT(A)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 507

RADIX(X)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 508

RAND()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 508

RANDOM_NUMBER(HARVEST)

.

.

.

.

.

. 509

RANDOM_SEED(SIZE,

PUT,

GET,

GENERATOR)

509

RANGE(X)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 511

REAL(A,

KIND)

.

.

.

.

.

.

.

.

.

.

.

. 512

REPEAT(STRING,

NCOPIES)

.

.

.

.

.

.

.

. 513

RESHAPE(SOURCE,

SHAPE,

PAD,

ORDER)

.

.

. 513

RRSPACING(X)

.

.

.

.

.

.

.

.

.

.

.

. 514

RSHIFT(I,

SHIFT)

.

.

.

.

.

.

.

.

.

.

.

. 515

SCALE(X,I)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 515

SCAN(STRING,

SET,

BACK)

.

.

.

.

.

.

.

. 516

SELECTED_INT_KIND(R)

.

.

.

.

.

.

.

.

. 517

SELECTED_REAL_KIND(P,

R)

.

.

.

.

.

.

. 517

SET_EXPONENT(X,I)

.

.

.

.

.

.

.

.

.

.

. 518

SHAPE(SOURCE)

.

.

.

.

.

.

.

.

.

.

.

. 519

SIGN(A,

B)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 520

SIGNAL(I,

PROC)

.

.

.

.

.

.

.

.

.

.

.

. 521

SIN(X)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 521

SIND(X)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 522

SINH(X)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 523

SIZE(ARRAY,

DIM)

.

.

.

.

.

.

.

.

.

.

. 523

SIZEOF(A)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 524

SPACING(X)

.

.

.

.

.

.

.

.

.

.

.

.

. 526

SPREAD(SOURCE,

DIM,

NCOPIES)

.

.

.

.

.

. 526

SQRT(X)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 527

SRAND(SEED)

.

.

.

.

.

.

.

.

.

.

.

.

. 528

SUM(ARRAY,

DIM,

MASK)

or

SUM(ARRAY,

MASK)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 529

SYSTEM(CMD,

RESULT)

.

.

.

.

.

.

.

.

. 530

SYSTEM_CLOCK(COUNT,

COUNT_RATE,

COUNT_MAX)

.

.

.

.

.

.

.

.

.

.

.

.

. 531

TAN(X)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 532

TAND(X)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 532

TANH(X)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 533

TINY(X)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 534

TRANSFER(SOURCE,

MOLD,

SIZE)

.

.

.

.

.

. 534

TRANSPOSE(MATRIX)

.

.

.

.

.

.

.

.

.

. 535

TRIM(STRING)

.

.

.

.

.

.

.

.

.

.

.

.

. 536

UBOUND(ARRAY,

DIM)

.

.

.

.

.

.

.

.

. 536

UNPACK(VECTOR,

MASK,

FIELD)

.

.

.

.

.

. 537

VERIFY(STRING,

SET,

BACK)

.

.

.

.

.

.

.

. 538

XL

Fortran

Language

Utilities

.

.

. 541

Floating-Point

Control

and

Inquiry

Procedures

.

.

.

.

.

.

.

.

.

.

.

. 543

fpgets

fpsets

.

.

.

.

.

.

.

.

.

.

.

.

.

. 543

Efficient

Floating-Point

Control

and

Inquiry

Procedures

.

.

.

.

.

.

.

.

.

.

.

.

.

. 544

xlf_fp_util

Floating-Point

Procedures

.

.

.

. 545

IEEE

Modules

and

Support

.

.

.

.

.

.

.

.

. 548

Compiling

and

Exception

Handling

.

.

.

.

. 549

General

Rules

for

Implementing

IEEE

Modules

549

IEEE

Derived

Data

Types

and

Constants

.

.

. 549

IEEE

Operators

.

.

.

.

.

.

.

.

.

.

.

. 551

IEEE

PROCEDURES

.

.

.

.

.

.

.

.

.

. 551

Rules

for

Floating-Point

Status

.

.

.

.

.

. 567

Examples

.

.

.

.

.

.

.

.

.

.

.

.

.

. 568

Hardware

Directives

and

Intrinsic

Procedures

.

.

.

.

.

.

.

.

.

.

.

. 573

Hardware–Specific

Directives

.

.

.

.

.

.

.

. 573

CACHE_ZERO

.

.

.

.

.

.

.

.

.

.

.

. 573

ISYNC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 573

LIGHT_SYNC

.

.

.

.

.

.

.

.

.

.

.

. 574

PREFETCH

.

.

.

.

.

.

.

.

.

.

.

.

. 574

Hardware–Specific

Intrinsic

Procedures

.

.

.

.

. 577

FCTIW(X)

.

.

.

.

.

.

.

.

.

.

.

.

. 577

FCTIWZ(X)

.

.

.

.

.

.

.

.

.

.

.

.

. 577

FMADD(A,

X,

Y)

.

.

.

.

.

.

.

.

.

.

. 577

FMSUB(A,

X,

Y)

.

.

.

.

.

.

.

.

.

.

. 578

FNABS(X)

.

.

.

.

.

.

.

.

.

.

.

.

. 578

FNMADD(A,

X,

Y)

.

.

.

.

.

.

.

.

.

. 578

FNMSUB(A,

X,

Y)

.

.

.

.

.

.

.

.

.

.

. 579

FRES(X)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 579

FRSQRTE(X)

.

.

.

.

.

.

.

.

.

.

.

.

. 580

FSEL(X,Y,Z)

.

.

.

.

.

.

.

.

.

.

.

.

. 580

MTFSF(MASK,

R)

.

.

.

.

.

.

.

.

.

.

. 580

MTFSFI(BF,

I)

.

.

.

.

.

.

.

.

.

.

.

. 580

MULHY(RA,

RB)

.

.

.

.

.

.

.

.

.

.

. 581

ROTATELI(RS,

IS,

SHIFT,

MASK)

.

.

.

.

. 581

ROTATELM(RS,

SHIFT,

MASK)

.

.

.

.

.

. 581

SETFSB0(BT)

.

.

.

.

.

.

.

.

.

.

.

. 582

SETFSB1(BT)

.

.

.

.

.

.

.

.

.

.

.

. 582

SFTI(M,

Y)

.

.

.

.

.

.

.

.

.

.

.

.

. 582

TRAP(A,

B,

TO)

.

.

.

.

.

.

.

.

.

.

. 582

Service

and

Utility

Procedures

.

.

.

. 583

General

Service

and

Utility

Procedures

.

.

.

.

. 583

List

of

Service

and

Utility

Procedures

.

.

.

.

. 584

alarm_

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 584

bic_

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 585

bis_

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 585

bit_

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 585

clock_

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 586

ctime_

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 586

date

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 586

dtime_

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 586

etime_

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 587

exit_

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 587

fdate_

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 587

fiosetup_

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 588

flush_

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 589

ftell_

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 589

Contents

vii

getarg

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 589

getcwd_

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 590

getfd

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 590

getgid_

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 590

getlog_

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 591

getpid_

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 591

getuid_

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 591

global_timef

.

.

.

.

.

.

.

.

.

.

.

.

.

. 591

gmtime_

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 592

hostnm_

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 592

iargc

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 593

idate_

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 593

ierrno_

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 593

irand

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 594

irtc

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 594

itime_

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 594

jdate

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 595

lenchr_

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 595

lnblnk_

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 595

ltime_

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 596

mclock

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 596

qsort_

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 597

qsort_down

.

.

.

.

.

.

.

.

.

.

.

.

.

. 597

qsort_up

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 597

rtc

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 598

setrteopts

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 598

sleep_

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 598

time_

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 599

timef

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 599

timef_delta

.

.

.

.

.

.

.

.

.

.

.

.

.

. 599

umask_

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 600

usleep_

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 600

xl__trbk

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 601

Appendix

A.

Compatibility

Across

Standards

.

.

.

.

.

.

.

.

.

.

.

.

. 603

Fortran

90

compatibility

.

.

.

.

.

.

.

.

.

. 604

Obsolescent

Features

.

.

.

.

.

.

.

.

.

.

. 604

Deleted

Features

.

.

.

.

.

.

.

.

.

.

.

. 606

Appendix

B.

ASCII

and

EBCDIC

Character

Sets

.

.

.

.

.

.

.

.

.

.

. 607

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

. 615

Trademarks

and

Service

Marks

.

.

.

.

.

.

. 617

Glossary

.

.

.

.

.

.

.

.

.

.

.

.

. 619

INDEX

.

.

.

.

.

.

.

.

.

.

.

.

.

. 627

viii

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

The

XL

Fortran

Language

This

section

details

the

primary

concepts

and

fundamentals

of

XL

Fortran.

Beginning

with

an

introduction

to

the

language

that

describes

the

Version

8.1

compiler

and

the

standards

it

supports,

this

section

then

explains

the

following

language

concepts:

v

Language

Fundamentals

v

Data

Types

and

Objects

v

Arrays

v

Expressions

and

Assignment

v

Control

Structures

v

Program

units

and

Procedures

v

Input/Output

Concepts

v

Input/Output

Formatting

In

addition

to

explaining

the

integral

elements

of

the

XL

Fortran

language,

this

part

includes

sections

on

the

following:

v

Statements

and

Attributes

v

General

Directives

v

Intrinsic

Procedures

The

following

parts

explain

more

specific

aspects

of

the

XL

Fortran

language:

v

XL

Fortran

Language

Utilities

©

Copyright

IBM

Corp.

1990,

2003

1

2

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

XL

Fortran

for

Mac

OS

X

The

Language

Reference

is

part

of

a

documentation

suite

that

offers

information

on

installing

and

using

the

XL

Fortran

compiler

on

Mac

OS

X.

In

addition

to

the

Language

Reference,

this

suite

also

includes:

v

The

Installation

Guide

for

information

on

installing

the

XL

Fortran

compiler.

v

The

XL

Fortran

for

Mac

OS

X

User’s

Guide

for

information

on

tasks

like

setting

up

the

compiler,

specifying

compiler

options,

and

porting

a

program

to

XL

Fortran.

Fortran

(FORmula

TRANslation)

is

a

high-level

programming

language

primarily

useful

for

engineering,

mathematical,

and

scientific

applications

involving

numeric

computations.

This

document

is

a

source

for

users

who

already

have

experience

programming

applications

in

Fortran.

Users

new

to

Fortran

can

still

use

this

document

to

find

information

on

the

language

and

features

unique

to

XL

Fortran,

though

this

reference

is

not

a

programming

tutorial.

This

document

defines

the

syntax,

semantics,

and

restrictions

you

must

follow

to

write

valid

XL

Fortran

programs.

The

compiler

detects

most

nonconformities

to

the

XL

Fortran

language

rules,

but

may

not

detect

some

syntactic

and

semantic

combinations.

The

compiler

can

not

detect

all

combinations

for

performance

reasons,

or

because

the

nonconformance

is

only

detectable

at

run

time.

XL

Fortran

programs

that

contain

these

undiagnosed

combinations

are

not

valid,

whether

or

not

the

programs

run

as

expected.

This

section

contains

information

on:

v

Supported

Language

Standards

in

XL

Fortran

v

How

to

Read

XL

Fortran

Syntax

Diagrams

v

Typographical

Conventions

v

Using

Examples

The

following

sections

provide

details

on

language

features

and

implementations:

v

XL

Fortran

language

elements:

–

Fundamentals

of

the

XL

Fortran

Language

–

Data

Types

and

Objects

–

Arrays

–

Expressions

and

Assignment

–

Control

Structures

–

Program

units

and

Procedures

–

Understanding

XL

Fortran

Input/Output

–

Input/Output

Formatting

–

Statements

and

Attributes

–

General

Directives

–

Intrinsic

Procedures
v

Procedures

that

provide

additional

functionality

to

a

user

familiar

with

the

Fortran

Language:

–

Floating-point

Control

and

Inquiry

Procedures

–

Hardware

Directives

and

Intrinsic

Procedures

©

Copyright

IBM

Corp.

1990,

2003

3

–

Service

and

Utility

Procedures

Language

Standards

Fortran

95

The

Fortran

95

language

standard

is

upward-compatible

with

the

FORTRAN

77

and

Fortran

90

language

standards,

excluding

deleted

features.

Some

of

the

improvements

provided

by

the

Fortran

95

standard

are:

v

Default

initialization.

v

ELEMENTAL

functions.

v

The

FORALL

construct

statement.

v

POINTER

initialization.

v

PURE

functions.

v

Specification

functions.

The

Fortran

standard

committees

respond

to

questions

of

interpretation

about

aspects

of

Fortran.

Some

questions

can

relate

to

language

features

already

implemented

in

the

XL

Fortran

compiler.

Any

answers

given

by

these

committees

relating

to

these

language

features

can

result

in

changes

to

future

releases

of

the

XL

Fortran

compiler,

even

if

these

changes

result

in

incompatibilities

with

previous

releases

of

the

product.

Fortran

90

Fortran

90

offers

many

new

features

and

feature

enhancements

to

FORTRAN

77.

The

following

topics

outline

some

of

the

key

features

that

Fortran

90

brings

to

the

FORTRAN

77

language:

v

Array

enhancements.

v

Control

construct

enhancements.

v

Derived

types.

v

Dynamic

behavior.

v

Free

source

form.

v

Modules.

v

Parameterized

data

types.

v

Procedure

enhancements.

v

Pointers.

Fortran

2003

Draft

Standard

Segments

of

this

document

may

contain

information

based

on

the

Fortran

2003

Draft

Standard.

The

standard

is

open

to

continual

interpretation,

modification

and

revision.

IBM

reserves

the

right

to

modify

the

behavior

of

any

features

of

this

product

to

conform

with

future

interpretations

of

this

standard.

Other

Standards

and

Standards

Documents

Standards

Documents

XL

Fortran

is

designed

according

to

the

following

standards.

You

can

refer

to

these

standards

for

precise

definitions

of

some

of

the

features

found

in

this

document.

v

American

National

Standard

Programming

Language

FORTRAN,

ANSI

X3.9-1978.

4

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

v

American

National

Standard

Programming

Language

Fortran

90,

ANSI

X3.198-1992.

(This

document

uses

its

informal

name,

Fortran

90.)

v

ANSI/IEEE

Standard

for

Binary

Floating-Point

Arithmetic,

ANSI/IEEE

Std

754-1985.

v

Information

technology

-

Programming

languages

-

Fortran,

ISO/IEC

1539-1:1991

(E).

v

Information

technology

-

Programming

languages

-

Fortran

-

Part

1:

Base

language,

ISO/IEC

1539-1:1997.

(This

document

uses

its

informal

name,

Fortran

95.)

v

Military

Standard

Fortran

DOD

Supplement

to

ANSI

X3.9-1978,

MIL-STD-1753

(United

States

of

America,

Department

of

Defense

standard).

Note

that

XL

Fortran

supports

only

those

extensions

documented

in

this

standard

that

have

also

been

subsequently

incorporated

into

the

Fortran

90

standard.

Typographical

Conventions

This

document

uses

the

following

methods

to

differentiate

text:

v

Fortran

keywords,

commands,

statements,

directives,

intrinsic

procedures,

compiler

options,

and

filenames

are

shown

in

bold.

For

example,

COMMON,

END,

and

OPEN.

v

References

to

other

sources

of

information

appear

in

italics.

v

Variable

names

and

user-specified

names

appear

in

lowercase

italics.

For

example,

array_element_name.

Fortran

95

Large

blocks

of

text

delineating

Fortran

95

specific

information

are

enclosed

by

marked

brackets,

while

brief

Fortran

95

extensions

are

separated

using

icons.

End

of

Fortran

95

The

IBM

Extension

delineation

is

used

in

the

following

instances:

IBM

Extension

v

For

extensions

to

the

Fortran

90

and

Fortran

95

standards,

where

an

extension

is

any

processor

dependent

value

or

behavior.

v

To

mark

implementations

of

the

Fortran

2003

Draft

Standard.

v

Brief

IBM

extensions

are

separated

using

icons.

End

of

IBM

Extension

Numbered

notes

are

used

in

syntax

diagrams

to

denote

IBM

and

Fortran

95

extensions.

See

the

sample

syntax

diagram

in

this

section

for

an

example.

How

to

Read

Syntax

Diagrams

Throughout

this

document,

diagrams

illustrate

XL

Fortran

syntax.

This

section

will

help

you

to

interpret

and

use

those

diagrams.

If

a

variable

or

user-specified

name

ends

in

_list,

you

can

provide

a

list

of

these

terms

separated

by

commas.

You

must

enter

punctuation

marks,

parentheses,

arithmetic

operators,

and

other

special

characters

as

part

of

the

syntax.

XL

Fortran

for

Mac

OS

X

5

v

Read

syntax

diagrams

from

left

to

right

and

from

top

to

bottom,

following

the

path

of

the

line:

–

The

��───

symbol

indicates

the

beginning

of

a

statement.

–

The

───�

symbol

indicates

that

the

statement

syntax

continues

on

the

next

line.

–

The

�───

symbol

indicates

that

a

statement

continues

from

the

previous

line.

–

The

───��

symbol

indicates

the

end

of

a

statement.

–

Program

units,

procedures,

constructs,

interface

blocks

and

derived-type

definitions

consist

of

several

individual

statements.

For

such

items,

a

box

encloses

the

syntax

representation,

and

individual

syntax

diagrams

show

the

required

order

for

the

equivalent

Fortran

statements.

–

IBM

and

Fortran

95

extensions

are

marked

by

a

number

in

the

syntax

diagram

with

an

explanatory

note

immediately

following

the

diagram.
v

Required

items

appear

on

the

horizontal

line

(the

main

path):

��

keyword

required_argument

��

v

Optional

items

appear

below

the

main

path:

��

keyword

optional_argument

��

Note:

Optional

items

(not

in

syntax

diagrams)

are

enclosed

by

square

brackets

([

and

]).

For

example,

[UNIT=]u

v

If

you

can

choose

from

two

or

more

items,

they

appear

vertically,

in

a

stack.

If

you

must

choose

one

of

the

items,

one

item

of

the

stack

appears

on

the

main

path:

��

keyword

required_argument

required_argument

��

If

choosing

one

of

the

items

is

optional,

the

entire

stack

appears

below

the

main

path:

��

keyword

optional_argument

optional_argument

��

v

An

arrow

returning

to

the

left

above

the

main

line

(a

repeat

arrow)

indicates

that

you

can

repeat

an

item,

and

the

separator

character

if

it

is

other

than

a

blank:

6

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

��

�

,

keyword

repeatable_argument

��

A

repeat

arrow

above

a

stack

indicates

that

you

can

make

more

than

one

choice

from

the

items

in

the

stack.

��

�

,

keyword

required_argument

required_argument

��

Sample

Syntax

Diagram

The

following

is

an

example

of

a

syntax

diagram

with

an

interpretation:

Interpret

the

diagram

as

follows:

v

Enter

the

keyword

EXAMPLE.

v

EXAMPLE

is

an

IBM

extension.

v

Enter

a

value

for

char_constant.

v

Enter

a

value

for

a

or

b,

but

not

for

both.

v

Optionally,

enter

a

value

for

c

or

d.

v

Enter

at

least

one

value

for

e.

If

you

enter

more

than

one

value,

you

must

put

a

comma

between

each.

v

Enter

the

value

of

at

least

one

name

for

name_list.

If

you

enter

more

than

one

value,

you

must

put

a

comma

between

each.

(The

_list

syntax

is

equivalent

to

the

previous

syntax

for

e.)

Using

Examples

v

The

examples

in

this

document,

except

where

otherwise

noted,

are

coded

in

a

simple

style

that

does

not

try

to

conserve

storage,

check

for

errors,

achieve

fast

performance,

or

demonstrate

all

possible

methods

to

achieve

a

desired

result.

v

The

examples

in

this

document

are

compiled

using

one

of

these

invocation

commands:

f77,

fort77,

xlf,

xlf_r,

xlf90,

xlf90_r,

xlf95,

xlf95_r.

See

Compiling

XL

Fortran

Programs

in

the

User’s

Guide

for

details.

v

The

text

explaining

an

example

contains

information

on

any

additional

options

you

must

specify

to

compile

that

example.

��

(1)

EXAMPLE

char_constant

a

b

c

d

�

,

e

name_list

��

Notes:

1 IBM

Extension

XL

Fortran

for

Mac

OS

X

7

v

You

can

paste

the

sample

code

from

this

document

into

an

edit

session.

Most

of

the

examples

will

compile

with

little

or

no

change.

8

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Fundamentals

of

the

XL

Fortran

Language

This

section

describes

the

fundamentals

of

an

XL

Fortran

program:

v

“Characters”

v

“Names”

on

page

10

v

“Statements”

on

page

11

v

“Lines

and

Source

Formats”

on

page

11

v

“Order

of

Statements

and

Execution

Sequence”

on

page

19

Characters

The

XL

Fortran

character

set

consists

of

letters,

digits,

and

special

characters:

Letters

Digits

Special

Characters

A

N

*

a

n

B

O

b

o

C

P

c

p

D

Q

d

q

E

R

e

r

F

S

f

s

G

T

g

t

H

U

h

u

I

V

i

v

J

W

j

w

K

X

k

x

L

Y

l

y

M

Z

m

z

*

0

1

2

3

4

5

6

7

8

9

Blank

=

Equal

sign

+

Plus

sign

-

Minus

sign

*

Asterisk

/

Slash

(

Left

parenthesis

)

Right

parenthesis

,

Comma

.

Decimal

point

/

period

$

Currency

symbol

’

Apostrophe

:

Colon

!

Exclamation

point

"

Double

quotation

mark

%

Percent

sign

&

Ampersand

;

Semicolon

?

Question

mark

<

Less

than

>

Greater

than

_

Underscore

IBM

Extension

Note:

*

Lower

case

letters

are

used

in

XL

Fortran

End

of

IBM

Extension

The

characters

have

an

order

known

as

a

collating

sequence,

which

is

the

arrangement

of

characters

that

determines

their

sequence

order

for

such

processes

as

sorting,

merging,

comparing.

XL

Fortran

uses

American

National

Standard

Code

for

Information

Interchange

(ASCII)

to

determine

the

ordinal

sequence

of

characters.

(See

Appendix

B,

“ASCII

and

EBCDIC

Character

Sets,”

on

page

607

for

a

complete

listing

of

the

ASCII

character

set.)

White

space

refers

to

blanks

and

tabs.

The

significance

of

white

space

depends

on

the

source

format

used.

See

“Lines

and

Source

Formats”

on

page

11

for

details.

©

Copyright

IBM

Corp.

1990,

2003

9

A

lexical

token

is

a

sequence

of

characters

with

an

indivisible

interpretation

that

forms

a

building

block

of

a

program.

It

can

be

a

keyword,

name,

literal

constant

(not

of

type

complex),

operator,

label,

delimiter,

comma,

equal

sign,

colon,

semicolon,

percent

sign,

::,

or

=>.

Names

A

name

is

a

sequence

of

any

or

all

of

the

following

elements:

v

Letters

(A-Z,

a-z)

v

Digits

(0-9)

v

Underscores

(_)

v

Dollar

signs

($)

The

first

character

of

a

name

must

not

be

a

digit.

In

Fortran

90

and

Fortran

95,

the

maximum

length

of

a

name

is

31

characters.

IBM

Extension

In

XL

Fortran,

the

maximum

length

of

a

name

is

250

characters.

Although

XL

Fortran

allows

a

name

to

start

with

an

underscore,

you

may

want

to

avoid

using

one

in

that

position

because

the

Mac

OS

X

operating

system,

and

the

XL

Fortran

compiler

and

libraries

have

reserved

names

that

begin

with

underscores.

All

letters

in

a

source

program

are

translated

into

lowercase

unless

they

are

in

a

character

context.

The

character

contexts

are

characters

within

character

literal

constants,

character-string

edit

descriptors,

and

Hollerith

constants.

Note:

If

you

specify

the

-qmixed

compiler

option,

names

are

not

translated

to

lowercase.

For

example,

XL

Fortran

treats

ia

Ia

iA

IA

the

same

by

default,

but

treats

them

as

distinct

identifiers

if

you

specify

the

-qmixed

compiler

option.

End

of

IBM

Extension

A

name

can

identify

entities

such

as:

v

A

variable

v

A

constant

v

A

procedure

v

A

derived

type

v

A

construct

v

A

program

unit

v

A

common

block

v

A

namelist

group

A

subobject

designator

is

a

name

followed

by

one

or

more

selectors

(array

element

selectors,

array

section

selectors,

component

selectors,

and

substring

selectors).

It

identifies

the

following

items

in

a

program

unit:

v

An

array

element

(see

“Array

Elements”

on

page

74)

v

An

array

section

(see

“Array

Sections”

on

page

75)

10

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

v

A

structure

component

(see

“Structure

Components”

on

page

39)

v

A

character

substring

(see

“Character

Substrings”

on

page

31)

Statements

A

Fortran

statement

is

a

sequence

of

lexical

tokens.

Statements

are

used

to

form

program

units.

IBM

Extension

The

maximum

length

of

a

statement

in

XL

Fortran

is

6700

characters.

End

of

IBM

Extension

See

Statments

and

Attributes

for

details

on

statements

supported

by

XL

Fortran.

See

“Statements

and

Attributes”

on

page

223

for

more

information

on

statements

supported

by

XL

Fortran.

Statement

Keywords

A

statement

keyword

is

part

of

the

syntax

of

a

statement,

and

appears

in

uppercase

bold

everywhere

but

in

syntax

diagrams

and

tables.

For

example,

the

term

DATA

in

the

DATA

statement

is

a

statement

keyword.

No

sequence

of

characters

is

reserved

in

all

contexts.

A

statement

keyword

is

interpreted

as

an

entity

name

if

the

keyword

is

used

in

such

a

context.

Statement

Labels

A

statement

label

is

a

sequence

of

one

to

five

digits,

one

of

which

must

be

nonzero,

that

you

can

use

to

identify

statements

in

a

Fortran

scoping

unit.

In

fixed

source

form,

a

statement

label

can

appear

anywhere

in

columns

1

through

5

of

the

initial

line

of

the

statement.

In

free

source

form,

such

column

restrictions

do

not

apply.

IBM

Extension

XL

Fortran

ignores

all

characters

that

appear

in

columns

1

through

5

on

fixed

source

form

continuation

lines.

End

of

IBM

Extension

Giving

the

same

label

to

more

than

one

statement

in

a

scoping

unit

will

cause

ambiguity,

and

the

compiler

will

generate

an

error.

White

space

and

leading

zeros

are

not

significant

in

distinguishing

between

statement

labels.

You

can

label

any

statement,

but

statement

labels

can

only

refer

to

executable

statements

and

FORMAT

statements.

The

statement

making

the

reference

and

the

statement

it

references

(identified

by

the

statement

label)

must

be

in

the

same

scoping

unit

in

order

for

the

reference

to

resolve.

(See

“Scope”

on

page

127

for

details).

Lines

and

Source

Formats

A

line

is

a

horizontal

arrangement

of

characters.

By

contrast,

a

column

is

a

vertical

arrangement

of

characters,

where

each

character,

or

each

byte

of

a

multibyte

character,

in

a

given

column

shares

the

same

line

position.

Fundamentals

of

the

XL

Fortran

Language

11

IBM

Extension

Because

XL

Fortran

measures

lines

in

bytes,

these

definitions

apply

only

to

lines

containing

single-byte

characters.

Each

byte

of

a

multibyte

character

occupies

one

column.

End

of

IBM

Extension

The

kinds

of

lines

are:

Initial

Line

Is

the

first

line

of

a

statement.

Continuation

Line

Continues

a

statement

beyond

its

initial

line.

Comment

Line

Does

not

affect

the

executable

program

and

can

be

used

for

documentation.

The

comment

text

continues

to

the

end

of

a

line.

Although

comment

lines

can

follow

one

another,

a

comment

line

cannot

be

continued.

A

line

of

all

white

space

or

a

zero-length

line

is

a

comment

line

without

any

text.

Comment

text

can

contain

any

characters

allowed

in

a

character

context.

If

an

initial

line

or

continuation

line

is

not

continued,

or

if

it

is

continued

but

not

in

a

character

context,

an

inline

comment

can

be

placed

on

the

same

line,

to

the

right

of

any

statement

label,

statement

text,

and

continuation

character

that

may

be

present.

An

exclamation

mark

(!)

begins

an

inline

comment.

*

Conditional

Compilation

Line

Indicates

that

the

line

should

only

be

compiled

if

recognition

of

conditional

compilation

lines

is

enabled.

A

conditional

compilation

sentinel

should

appear

on

a

conditional

compilation

line.

(See

“Conditional

Compilation”

on

page

17)

*

*

Debug

Line

Indicates

that

the

line

is

for

debugging

code

(for

fixed

source

form

only).

In

XL

Fortran

the

letter

D

or

X

must

be

specified

in

column

1.

(See

“Debug

Lines”

on

page

14)

*

*

Directive

Line

Provides

instructions

or

information

to

the

compiler

in

XL

Fortran

(see

“Comment

Form

Directives”

on

page

397).

*

IBM

Extension

Note:

*

Debug

Line

and

Directive

Line

are

used

in

XL

Fortran

In

XL

Fortran,

source

lines

can

be

in

fixed

source

form

or

free

source

form

format.

Use

the

SOURCEFORM

directive

to

mix

source

formats

within

the

same

program

unit.

Fixed

source

form

is

the

default

when

using

the

f77,

fort77,

xlf,

or

xlf_r

invocation

commands.

Fortran

90

free

source

form

is

the

default

when

using

the

xlf90,

xlf90_r,

xlf95,

or

xlf95_r

invocation

commands.

See

Compiling

XL

Fortran

Programs

in

the

User’s

Guide

for

details

on

invocation

commands.

End

of

IBM

Extension

Fixed

Source

Form

IBM

Extension

A

fixed

source

form

line

is

a

sequence

of

1

to

132

characters.

The

default

line

size

12

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

(as

stipulated

in

Fortran

95)

is

72

characters,

but

can

be

changed

in

XL

Fortran

by

using

the

-qfixed=right_margin

compiler

option

(see

the

User’s

Guide).

End

of

IBM

Extension

Columns

beyond

the

right

margin

are

not

part

of

the

line

and

can

be

used

for

identification,

sequencing,

or

any

other

purpose.

Except

within

a

character

context,

white

space

is

insignificant;

that

is,

you

can

imbed

white

space

between

and

within

lexical

tokens,

without

affecting

the

way

the

compiler

will

treat

them.

IBM

Extension

Tab

formatting

means

there

is

a

tab

character

in

columns

1

through

6

of

an

initial

line

in

XL

Fortran,

which

directs

the

compiler

to

interpret

the

next

character

as

being

in

column

7.

End

of

IBM

Extension

Requirements

for

lines

and

for

items

on

those

lines

are:

v

A

comment

line

begins

with

a

C,

c,

or

an

asterisk

(*)

in

column

1,

or

is

all

white

space.

Comments

can

also

follow

an

exclamation

mark

(!),

except

when

the

exclamation

mark

is

in

column

6

or

in

a

character

context.

v

For

an

initial

line

without

tab

formatting:

–

Columns

1

through

5

contain

either

blanks,

a

statement

label,

a

D

or

an

X

in

column

1

optionally

followed

by

a

statement

label.

–

Column

6

contains

a

blank

or

zero.

–

Columns

7

through

to

the

right

margin

contain

statement

text,

possibly

followed

by

other

statements

or

by

an

inline

comment.

IBM

Extension

v

For

an

initial

line

with

tab

formatting

in

XL

Fortran:

–

Columns

1

through

6

begin

with

either

blanks,

a

statement

label,

a

D

or

an

X

in

column

1,

optionally

followed

by

a

statement

label.

This

must

be

followed

by

a

tab

character.

–

If

the

-qxflag=oldtab

compiler

option

is

specified,

all

columns

from

the

column

immediately

following

the

tab

character

through

to

the

right

margin

contain

statement

text,

possibly

followed

by

other

statements

and

by

an

inline

comment.

–

If

the

-qxflag=oldtab

compiler

option

is

not

specified,

all

columns

from

column

7

(which

corresponds

to

the

character

after

the

tab)

to

the

right

margin

contain

statement

text,

possibly

followed

by

other

statements

and

by

an

inline

comment.

End

of

IBM

Extension

v

For

a

continuation

line:

–

Column

1

must

not

contain

C,

c,

or

an

asterisk.

Columns

1

through

5

must

not

contain

an

exclamation

mark

as

the

leftmost

nonblank

character.

Fundamentals

of

the

XL

Fortran

Language

13

IBM

Extension

Column

1

can

contain

a

D

(signifying

a

debug

line)

in

XL

Fortran.

Otherwise,

these

columns

can

contain

any

characters

allowed

in

a

character

context;

these

characters

are

ignored.

End

of

IBM

Extension

–

Column

6

must

have

either

a

nonzero

character

or

a

nonwhite

space

character.

The

character

in

column

6

is

referred

to

as

the

continuation

character.

Exclamation

marks

and

semicolons

are

valid

continuation

characters.

–

Columns

7

through

to

the

right

margin

contain

continued

statement

text,

possibly

followed

by

other

statements

and

an

inline

comment.

–

Neither

the

END

statement

nor

a

statement

whose

initial

line

appears

to

be

a

program

unit

END

statement

can

be

continued.

IBM

Extension

–

In

XL

Fortran

there

is

no

limit

to

the

number

of

continuation

lines

for

a

statement,

but

a

statement

cannot

be

longer

than

6700

characters.

The

Fortran

standards

limit

the

number

of

continuation

lines

to

19.

End

of

IBM

Extension

A

semicolon

(;)

separates

statements

on

a

single

source

line,

except

when

it

appears

in

a

character

context,

in

a

comment,

or

in

columns

1

through

6.

Two

or

more

semicolon

separators

that

are

on

the

same

line

and

are

themselves

separated

by

only

white

space

or

other

semicolons

are

considered

to

be

a

single

separator.

A

separator

that

is

the

last

character

on

a

line

or

before

an

inline

comment

is

ignored.

Statements

following

a

semicolon

on

the

same

line

cannot

be

labeled.

Additional

statements

cannot

follow

a

program

unit

END

statement

on

the

same

line.

Debug

Lines

IBM

Extension

A

debug

line,

allowed

only

for

fixed

source

form,

contains

source

code

used

for

debugging

and

is

specified

in

XL

Fortran

by

the

letter

D,

or

the

letter

X

in

column

1.

The

handling

of

debug

lines

depends

on

the

-qdlines

or

the

-qxlines

compiler

options:

v

If

you

specify

the

-qdlines

option,

the

compiler

interprets

the

D

in

column

1

as

a

blank,

and

handles

such

lines

as

lines

of

source

code.

If

you

specify

-qxlines

,

the

compiler

interprets

the

X

in

column

1

as

a

blank

and

treats

these

lines

as

source

code.

v

If

you

do

not

specify

-qdlines

or

-qxlines,

the

compiler

handles

such

lines

as

comment

lines.

This

is

the

default

setting.

If

you

continue

a

debugging

statement

on

more

than

one

line,

every

continuation

line

must

have

a

continuation

character

as

well

as

a

D

or

an

X

in

column

1.

If

the

initial

line

is

not

a

debugging

line,

you

can

designate

any

continuation

lines

as

debug

lines

provided

that

the

statement

is

syntactically

correct,

whether

or

not

you

specify

the

-qdlines

or

-qxlines

compiler

option.

End

of

IBM

Extension

14

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Example

of

Fixed

Source

Form:

C

Column

Numbers:

C

1

2

3

4

5

6

7

C23456789012345678901234567890123456789012345678901234567890123456789012

!IBM*

SOURCEFORM

(FIXED)

CHARACTER

CHARSTR

;

LOGICAL

X

!

2

statements

on

1

line

DO

10

I=1,10

PRINT

*,’this

is

the

index’,I

!

with

an

inline

comment

10

CONTINUE

C

CHARSTR="THIS

IS

A

CONTINUED

X

CHARACTER

STRING"

!

There

will

be

38

blanks

in

the

string

between

"CONTINUED"

!

and

"CHARACTER".

You

cannot

have

an

inline

comment

on

!

the

initial

line

because

it

would

be

interpreted

as

part

!

of

CHARSTR

(character

context).

100

PRINT

*,

IERROR

!

The

following

debug

lines

are

compiled

as

source

lines

if

!

you

use

-qdlines

D

IF

(I.EQ.IDEBUG.AND.

D

+

J.EQ.IDEBUG)

WRITE(6,*)

IERROR

D

IF

(I.EQ.

D

+

IDEBUG

)

D

+

WRITE(6,*)

INFO

END

Free

Source

Form

A

free

source

form

line

can

specify

up

to

132

characters

on

each

line,

with

a

maximum

of

39

continuation

lines

for

a

statement.

IBM

Extension

XL

Fortran

allows

any

line

length

and

number

of

continuation

lines,

so

long

as

the

number

of

characters

does

not

exceed

6700.

End

of

IBM

Extension

Items

can

begin

in

any

column

of

a

line,

subject

to

the

following

requirements

for

lines

and

items

on

those

lines:

v

A

comment

line

is

a

line

of

white

space

or

begins

with

an

exclamation

mark

(!)

that

is

not

in

a

character

context.

v

An

initial

line

can

contain

any

of

the

following

items,

in

the

following

sequence:

–

A

statement

label.

–

Statement

text.

Note

that

statement

text

is

required

in

an

initial

line.

–

Additional

statements.

–

The

ampersand

continuation

character

(&).

–

An

inline

comment.
v

If

you

want

to

continue

an

initial

line

or

continuation

line

in

a

non-character

context,

the

continuation

line

must

start

on

the

first

noncomment

line

that

follows

the

intial

line

or

continuation

line.

To

define

a

line

as

a

continuation

line,

you

must

place

an

ampersand

after

the

statements

on

the

previous

non-comment

line.

v

White

space

before

and

after

the

ampersand

is

optional,

with

the

following

restrictions:

Fundamentals

of

the

XL

Fortran

Language

15

–

If

you

also

place

an

ampersand

in

the

first

nonblank

character

position

of

the

continuation

line,

the

statement

continues

at

the

next

character

position

following

the

ampersand.

–

If

a

lexical

token

is

continued,

the

ampersand

must

immediately

follow

the

initial

part

of

the

token,

and

the

remainder

of

the

token

must

immediately

start

after

the

ampersand

on

the

continuation

line.
v

A

character

context

can

be

continued

if

the

following

conditions

are

true:

–

The

last

character

of

the

continued

line

is

an

ampersand

and

is

not

followed

by

an

inline

comment.

If

the

rightmost

character

of

the

statement

text

to

be

continued

is

an

ampersand,

a

second

ampersand

must

be

entered

as

a

continuation

character.

–

The

first

nonblank

character

of

the

next

noncomment

line

is

an

ampersand.

A

semicolon

separates

statements

on

a

single

source

line,

except

when

it

appears

in

a

character

context

or

in

a

comment.

Two

or

more

separators

that

are

on

the

same

line

and

are

themselves

separated

by

only

white

space

or

other

semicolons

are

considered

to

be

a

single

separator.

A

separator

that

is

the

last

character

on

a

line

or

before

an

inline

comment

is

ignored.

Additional

statements

cannot

follow

a

program

unit

END

statement

on

the

same

line.

White

Space

White

space

must

not

appear

within

lexical

tokens,

except

in

a

character

context

or

in

a

format

specification.

White

space

can

be

inserted

freely

between

tokens

to

improve

readability,

although

it

must

separate

names,

constants,

and

labels

from

adjacent

keywords,

names,

constants,

and

labels.

Certain

adjacent

keywords

may

require

white

space.

The

following

table

lists

keywords

that

require

white

space,

and

keywords

for

which

white

space

is

optional.

Table

1.

Keywords

Where

White

Space

is

Optional

BLOCK

DATA

END

FUNCTION

END

SUBROUTINE

DOUBLE

COMPLEX

END

IF

END

TYPE

DOUBLE

PRECISION

END

INTERFACE

END

UNION

ELSE

IF

END

MAP

END

WHERE

END

BLOCK

DATA

END

MODULE

GO

TO

END

DO

END

PROGRAM

IN

OUT

END

FILE

END

SELECT

SELECT

CASE

END

FORALL

END

STRUCTURE

See

“Type

Declaration”

on

page

378

for

details

about

type_spec.

Example

of

Free

Source

Form:

!IBM*

SOURCEFORM

(FREE(F90))

!

!

Column

Numbers:

!

1

2

3

4

5

6

7

!23456789012345678901234567890123456789012345678901234567890123456789012

DO

I=1,20

PRINT

*,’this

statement&

&

is

continued’

;

IF

(I.LT.5)

PRINT

*,

I

16

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

ENDDO

EN&

&D

!

A

lexical

token

can

be

continued

IBM

Free

Source

Form

IBM

Extension

An

IBM

free

source

form

line

or

statement

is

a

sequence

of

up

to

6700

characters.

Items

can

begin

in

any

column

of

a

line,

subject

to

the

following

requirements

for

lines

and

items

on

those

lines:

v

A

comment

line

begins

with

a

double

quotation

mark

(″)

in

column

1,

is

a

line

of

all

white

space,

or

is

a

zero-length

line.

A

comment

line

must

not

follow

a

continued

line.

Comments

can

also

follow

an

exclamation

mark

(!),

except

in

a

character

context.

v

An

initial

line

can

contain

any

of

the

following

items,

in

the

following

sequence:

–

A

statement

label

–

Statement

text

–

The

minus

sign

continuation

character

(-)

–

An

inline

comment
v

A

continuation

line

immediately

follows

a

continued

line

and

can

contain

any

of

the

following

items,

in

the

following

sequence:

–

Statement

text

–

A

continuation

character

(-)

–

An

inline

comment

If

statement

text

on

an

initial

line

or

continuation

line

is

to

be

continued,

a

minus

sign

indicates

continuation

of

the

statement

text

on

the

next

line.

In

a

character

context,

if

the

rightmost

character

of

the

statement

text

to

be

continued

is

a

minus

sign,

a

second

minus

sign

must

be

entered

as

a

continuation

character.

Except

within

a

character

context,

white

space

is

insignificant;

that

is,

you

can

imbed

white

space

between

and

within

lexical

tokens,

without

affecting

the

way

the

compiler

will

treat

them.

Example

of

IBM

Free

Source

Form

!IBM*

SOURCEFORM

(FREE(IBM))

"

"

Column

Numbers:

"

1

2

3

4

5

6

7

"23456789012345678901234567890123456789012345678901234567890123456789012

DO

I=1,10

PRINT

*,’this

is

-

the

index’,I

!

There

will

be

14

blanks

in

the

string

!

between

“is”

and

“the”

END

DO

END

End

of

IBM

Extension

Conditional

Compilation

IBM

Extension

You

can

use

sentinels

to

mark

specific

lines

of

an

XL

Fortran

program

for

conditional

compilation.

Fundamentals

of

the

XL

Fortran

Language

17

The

syntax

for

conditional

compilation

lines

is

as

follows:

cond_comp_sentinel

is

a

conditional

compilation

sentinel

that

is

defined

by

the

current

source

form

and

is

either:

v

!$,

C$,

c$,

or

*$,

for

fixed

source

form;

or

v

!$,

for

free

source

form

fortran_source_line

is

an

XL

Fortran

source

line

The

syntax

rules

for

conditional

compilation

lines

are

very

similar

to

the

syntax

rules

for

fixed

source

form

and

free

source

form

lines.

The

rules

are

as

follows:

v

General

Rules:

A

valid

XL

Fortran

source

line

must

follow

the

conditional

compilation

sentinel.

A

conditional

compilation

line

may

contain

the

INCLUDE

or

EJECT

noncomment

directives.

A

conditional

compilation

sentinel

must

not

contain

embedded

white

space.

A

conditional

compilation

sentinel

must

not

follow

a

source

statement

or

directive

on

the

same

line.

If

you

are

continuing

a

conditional

compilation

line,

the

conditional

compilation

sentinel

must

appear

on

at

least

one

of

the

continuation

lines

or

on

the

initial

line.

You

must

specify

the

-qcclines

compiler

option

for

conditional

compilation

lines

to

be

recognized.

To

disable

recognition

of

conditional

compilation

lines,

specify

the

-qnocclines

compiler

option.

Trigger

directives

take

precedence

over

conditional

compilation

sentinels.

For

example,

if

you

specify

the

-qdirective=’$’

option,

then

lines

that

start

with

the

trigger,

such

as

!$,

will

be

treated

as

comment

directives,

rather

than

conditional

compilation

lines.

v

Fixed

Source

Form

Rules:

Conditional

compilation

sentinels

must

start

in

column

1.

All

of

the

rules

for

fixed

source

form

line

length,

case

sensitivity,

white

space,

continuation,

tab

formatting,

and

columns

apply.

See

“Fixed

Source

Form”

on

page

12

for

information.

Note

that

when

recognition

of

conditional

compilation

lines

is

enabled,

the

conditional

compilation

sentinel

is

replaced

by

two

white

spaces.

v

Free

Source

Form

Rules:

Conditional

compilation

sentinels

may

start

in

any

column.

All

of

the

rules

for

free

source

form

line

length,

case

sensitivity,

white

space,

and

continuation

apply.

See

“Free

Source

Form”

on

page

15

for

information.

Note

that

when

recognition

of

conditional

compilation

lines

is

enabled,

the

conditional

compilation

sentinel

is

replaced

by

two

white

spaces.

End

of

IBM

Extension

��

cond_comp_sentinel

fortran_source_line

��

IBM

Extension

18

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Order

of

Statements

and

Execution

Sequence

Table

2.

Statement

Order

�1�PROGRAM,

FUNCTION,

SUBROUTINE,

MODULE,

or

BLOCK

DATA

Statement

�2�USE

Statements

�3�DATA,

FORMAT,

and

ENTRY

Statements

�4�Derived-Type

Definitions,

Interface

Blocks,

Type

Declaration

Statements,

Specification

Statements,

IMPLICIT

Statements,

and

PARAMETER

Statements

�5�Executable

constructs

�6�CONTAINS

Statement

�7�Internal

Subprograms

or

Module

Subprograms

�8�END

Statement

Statement

Order

Vertical

lines

delineate

varieties

of

statements

that

can

be

interspersed,

while

horizontal

lines

delineate

varieties

of

statements

that

cannot

be

interspersed.

The

numbers

in

the

diagram

reappear

later

in

the

document

to

identify

groups

of

statements

that

are

allowed

in

particular

contexts.

A

reference

back

to

this

section

is

included

in

the

places

where

these

numbers

are

used

in

the

rest

of

this

document.

Refer

to

“Program

Units

and

Procedures”

on

page

127

or

“Statements

and

Attributes”

on

page

223

for

more

details

on

rules

and

restrictions

concerning

statement

order.

Normal

execution

sequence

is

the

processing

of

references

to

specification

functions

in

any

order,

followed

by

the

processing

of

executable

statements

in

the

order

they

appear

in

a

scoping

unit.

A

transfer

of

control

is

an

alteration

of

the

normal

execution

sequence.

Some

statements

that

you

can

use

to

control

the

execution

sequence

are:

v

Control

statements

v

Input/output

statements

that

contain

an

END=,

ERR=,

or

EOR=

specifier

When

you

reference

a

procedure

that

is

defined

by

a

subprogram,

the

execution

of

the

program

continues

with

any

specification

functions

referenced

in

the

scoping

unit

of

the

subprogram

that

defines

the

procedure.

The

program

resumes

with

the

first

executable

statement

following

the

FUNCTION,

SUBROUTINE

or

ENTRY

statement

that

defines

the

procedure.

When

you

return

from

the

subprogram,

execution

of

the

program

continues

from

the

point

at

which

the

procedure

was

referenced

or

to

a

statement

referenced

by

an

alternate

return

specifier.

In

this

document,

any

description

of

the

sequence

of

events

in

a

specific

transfer

of

control

assumes

that

no

event,

such

as

the

occurrence

of

an

error

or

the

execution

of

a

STOP

statement,

changes

that

normal

sequence.

Fundamentals

of

the

XL

Fortran

Language

19

20

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Data

Types

and

Data

Objects

This

section

describes:

v

“Data

Types”

v

“Data

Objects”

v

“Intrinsic

Types”

on

page

22

v

“Derived

Types”

on

page

33

v

“Typeless

Literal

Constants”

on

page

52

v

“How

Type

Is

Determined”

on

page

57

v

“Definition

Status

of

Variables”

on

page

57

v

“Allocation

Status”

on

page

61

v

“Storage

Classes

for

Variables”

on

page

62

Data

Types

A

data

type

has

a

name,

a

set

of

valid

values,

a

means

to

denote

such

values

(constants),

and

a

set

of

operations

to

manipulate

the

values.

There

are

two

categories

of

data

types:

intrinsic

types

and

derived

types.

The

intrinsic

types,

including

their

operations,

are

predefined

and

are

always

accessible.

There

are

two

classes

of

intrinsic

data

types:

v

Numeric

(also

known

as

Arithmetic):

integer,

real,

complex,

and

byte

v

Nonnumeric:

character,

logical,

and

byte

A

derived

type

is

a

user-defined

data

type.

The

components

of

a

derived

type

can

be

a

mixture

of

both

intrinsic

and

derived

data

types.

Type

Parameters

and

Specifiers

XL

Fortran

provides

one

or

more

representation

methods

for

each

of

the

intrinsic

data

types.

Each

method

can

be

specified

by

a

value

called

a

kind

type

parameter,

which

indicates

the

decimal

exponent

range

for

the

integer

type,

the

decimal

precision

and

exponent

range

for

the

real

and

complex

types,

and

the

representation

methods

for

the

character

and

logical

types.

Each

intrinsic

type

supports

a

specific

set

of

kind

type

parameters.

kind_param

is

either

a

digit_string

or

scalar_int_constant_name.

The

length

type

parameter

specifies

the

number

of

characters

for

entities

of

type

character.

A

type

specifier

specifies

the

type

of

all

entities

declared

in

a

type

declaration

statement.

Some

type

specifiers

(INTEGER,

REAL,

COMPLEX,

LOGICAL,

and

CHARACTER)

can

include

a

kind_selector,

which

specifies

the

kind

type

parameter.

The

KIND

intrinsic

function

returns

the

kind

type

parameter

of

its

argument.

See

“KIND(X)”

on

page

475

for

details.

Data

Objects

A

data

object

is

a

variable,

constant,

or

subobject

of

a

constant.

©

Copyright

IBM

Corp.

1990,

2003

21

A

variable

can

have

a

value

and

can

be

defined

or

redefined

during

execution

of

an

executable

program.

A

variable

can

be:

v

A

scalar

variable

name

v

An

array

variable

name

v

A

subobject

A

subobject

(of

a

variable)

is

a

portion

of

a

named

object

that

can

be

referenced

and

defined.

It

can

be:

v

An

array

element

v

An

array

section

v

A

character

substring

v

A

structure

component

A

subobject

of

a

constant

is

a

portion

of

a

constant.

The

referenced

portion

may

depend

on

a

variable

value.

Constants

A

constant

has

a

value

and

cannot

be

defined

or

redefined

during

execution

of

an

executable

program.

A

constant

with

a

name

is

a

named

constant

(see

“PARAMETER”

on

page

338).

A

constant

without

a

name

is

a

literal

constant.

A

literal

constant

can

be

of

intrinsic

type

or

it

can

be

typeless

(hexadecimal,

octal,

binary,

or

Hollerith).

The

optional

kind

type

parameter

of

a

literal

constant

can

only

be

a

digit

string

or

a

scalar

integer

named

constant.

A

signed

literal

constant

can

have

a

leading

plus

or

minus

sign.

All

other

literal

constants

must

be

unsigned;

they

must

have

no

leading

sign.

The

value

zero

is

considered

neither

positive

nor

negative.

You

can

specify

zero

as

signed

or

unsigned.

Automatic

Objects

An

automatic

object

is

a

data

object

that

is

dynamically

allocated

within

a

procedure.

It

is

a

local

entity

of

a

subprogram

and

has

a

nonconstant

character

length

and/or

a

nonconstant

array

bound.

It

is

not

a

dummy

argument.

An

automatic

object

always

has

the

controlled

automatic

storage

class.

An

automatic

object

cannot

be

specified

in

a

DATA,

EQUIVALENCE,

NAMELIST,

or

COMMON

statement,

nor

can

the

AUTOMATIC,

STATIC,

PARAMETER,

or

SAVE

attributes

be

specified

for

it.

An

automatic

object

cannot

be

initialized

or

defined

with

an

initialization

expression

in

a

type

declaration

statement,

but

it

can

have

a

default

initialization.

An

automatic

object

cannot

appear

in

the

specification

part

of

a

main

program

or

module.

Intrinsic

Types

Integer

IBM

Extension

The

following

table

shows

the

range

of

values

that

XL

Fortran

can

represent

using

the

integer

data

type:

22

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Kind

parameter

Range

of

values

1

-128

through

127

2

-32

768

through

32

767

4

-2

147

483

648

through

2

147

483

647

8

-9

223

372

036

854

775

808

through

9

223

372

036

854

775

807

XL

Fortran

sets

the

default

kind

type

parameter

to

4.

The

kind

type

parameter

is

equivalent

to

the

byte

size

for

integer

values.

Use

the

-qintsize

compiler

option

to

change

the

default

integer

size

to

2,

4,

or

8

bytes.

Note

that

the

-qintsize

option

similarly

affects

the

default

logical

size.

End

of

IBM

Extension

The

integer

type

specifier

must

include

the

INTEGER

keyword.

See

“INTEGER”

on

page

314

for

details

on

declaring

entities

of

type

integer.

The

form

of

a

signed

integer

literal

constant

is:

kind_param

is

either

a

digit-string

or

a

scalar-int-constant-name

A

signed

integer

literal

constant

has

an

optional

sign,

followed

by

a

string

of

decimal

digits

containing

no

decimal

point

and

expressing

a

whole

number,

optionally

followed

by

a

kind

type

parameter.

A

signed,

integer

literal

constant

can

be

positive,

zero,

or

negative.

If

unsigned

and

nonzero,

the

constant

is

assumed

to

be

positive.

If

kind_param

is

specified,

the

magnitude

of

the

literal

constant

must

be

representable

within

the

value

range

permitted

by

that

kind_param.

IBM

Extension

If

no

kind_param

is

specified

in

XL

Fortran,

and

the

magnitude

of

the

constant

cannot

be

represented

as

a

default

integer,

the

constant

is

promoted

to

a

representable

kind.

XL

Fortran

represents

integers

internally

in

two’s-complement

notation,

where

the

leftmost

bit

is

the

sign

of

the

number.

End

of

IBM

Extension

Examples

of

Integer

Constants

0

!

has

default

integer

size

-173_2

!

2-byte

constant

9223372036854775807

!

Kind

type

parameter

is

promoted

to

8

��

+

−

�

digit

_

kind_param

��

Data

Types

and

Data

Objects

23

Real

IBM

Extension

The

following

table

shows

the

range

of

values

that

XL

Fortran

can

represent

with

the

real

data

type:

Kind

Parameter

Approximate

Absolute

Nonzero

Minimum

Approximate

Absolute

Maximum

Approximate

Precision

(decimal

digits)

4

1.175494E-38

3.402823E+38

7

8

2.225074D-308

1.797693D+308

15

16

2.225074Q-308

1.797693Q+308

31

XL

Fortran

sets

the

default

kind

type

parameter

to

4.

The

kind

type

parameter

is

equivalent

to

the

byte

size

for

real

values.

Use

the

-qrealsize

compiler

option

to

change

the

default

real

size

to

4

or

8

bytes.

Note

that

the

-qrealsize

option

affects

the

default

complex

size.

XL

Fortran

represents

REAL(4)

and

REAL(8)

numbers

internally

in

the

ANSI/IEEE

binary

floating-point

format,

which

consists

of

a

sign

bit

(s),

a

biased

exponent

(e),

and

a

fraction

(f).

The

REAL(16)

representation

is

based

on

the

REAL(8)

format.

REAL(4)

Bit

no.

0....|....1....|....2....|....3.

seeeeeeeefffffffffffffffffffffff

REAL(8)

Bit

no.

0....|....1....|....2....|....3....|....4....|....5....|....6...

seeeeeeeeeeeff

REAL(16)

Bit

no.

0....|....1....|....2....|....3....|....4....|....5....|....6...

seeeeeeeeeeeff

Bit

no.

.|....7....|....8....|....9....|....0....|....1....|....2....|..

seeeeeeeeeeeff

This

ANSI/IEEE

binary

floating-point

format

also

provides

representations

for

+infinity,

-infinity,

and

NaN

(not-a-number)

values.

A

NaN

can

be

further

classified

as

a

quiet

NaN

or

a

signaling

NaN.

See

XL

Fortran

Floating-Point

Processing

in

the

User’s

Guide

for

details

on

the

internal

representation

of

NaN

values.

End

of

IBM

Extension

A

real

type

specifier

must

include

either

the

REAL

keyword

or

the

DOUBLE

PRECISION

keyword.

The

precision

of

DOUBLE

PRECISION

values

is

twice

that

of

default

real

values.

(The

term

single

precision

refers

to

the

IEEE

4-byte

representation,

and

the

term

double

precision

refers

to

the

IEEE

8-byte

representation.)

See

“REAL”

on

page

356

and

“DOUBLE

PRECISION”

on

page

269

for

details

on

declaring

entities

of

type

real.

The

forms

of

a

real

literal

constant

are:

v

A

basic

real

constant

optionally

followed

by

a

kind

type

parameter

v

A

basic

real

constant

followed

by

an

exponent

and

an

optional

kind

type

parameter

v

An

integer

constant

(with

no

kind_param)

followed

by

an

exponent

and

an

optional

kind

type

parameter

24

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

A

basic

real

constant

has,

in

order,

an

optional

sign,

an

integer

part,

a

decimal

point,

and

a

fractional

part.

Both

the

integer

part

and

fractional

part

are

strings

of

digits;

you

can

omit

either

of

these

parts,

but

not

both.

You

can

write

a

basic

real

constant

with

more

digits

than

XL

Fortran

will

use

to

approximate

the

value

of

the

constant.

XL

Fortran

interprets

a

basic

real

constant

as

a

decimal

number.

The

form

of

a

real

constant

is:

exponent

kind_param

is

either

a

digit-string

or

a

scalar-int-constant-name

digit_string

denotes

a

power

of

10.

E

specifies

a

constant

of

type

default

real.

D

specifies

a

constant

of

type

default

DOUBLE

PRECISION.

*

Q

specifies

a

constant

of

type

REAL(16)

in

XL

Fortran.

If

both

exponent

and

kind_param

are

specified,

the

exponent

letter

must

be

E.

If

D

or

Q

is

specified,

kind_param

must

not

be

specified.

A

real

literal

constant

that

is

specified

without

an

exponent

and

a

kind

type

parameter

is

of

type

default

real.

Examples

of

Real

Constants

Example

1:

+0.

��

�

�

�

�

�

digit

exponent

+

−

digit

.

+

exponent

−

digit

.

digit

+

exponent

−

digit

�

�

_

kind_param

��

��

E

D

Q*

digit_string

+

−

��

Data

Types

and

Data

Objects

25

Example

2:

+5.432E02_16

!

543.2

in

16-byte

representation

Example

3:

7.E3

IBM

Extension

Example

4:

3.4Q-301

!

Extended-precision

constant

End

of

IBM

Extension

Complex

A

complex

type

specifier

must

include

either:

v

the

COMPLEX

keyword,

or

v

in

XL

Fortran,

the

DOUBLE

COMPLEX

keyword

See

“COMPLEX”

on

page

250

and

“DOUBLE

COMPLEX”

on

page

266

for

details

on

declaring

entities

of

type

complex.

IBM

Extension

The

following

table

shows

the

values

that

XL

Fortran

can

represent

for

the

kind

type

parameter

and

the

length

specification

when

the

complex

type

specifier

has

the

COMPLEX

keyword:

Kind

Type

Parameter

i

COMPLEX(i)

Length

Specification

j

COMPLEX*j

4

8

16

8

16

32

End

of

IBM

Extension

The

kind

of

a

complex

constant

is

determined

by

the

kind

of

the

constants

in

the

real

and

imaginary

parts

in

all

Fortran

compilers.

IBM

Extension

In

XL

Fortran,

the

kind

type

parameter

specifies

the

precision

of

each

part

of

the

complex

entity,

while

the

length

specification

specifies

the

length

of

the

whole

complex

entity.

The

precision

of

DOUBLE

COMPLEX

values

is

twice

that

of

default

complex

values.

Scalar

values

of

type

complex

can

be

formed

using

complex

constructors.

The

form

of

a

complex

constructor

is:

26

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

A

complex

literal

constant

is

a

complex

constructor

where

each

expression

is

a

pair

of

initialization

expressions.

Variables

and

expressions

can

be

used

in

each

part

of

the

complex

constructor

as

an

XL

Fortran

extension.

End

of

IBM

Extension

Fortran

95

In

Fortran

95

you

are

only

allowed

to

use

a

single

signed

integer,

or

real

literal

constant

in

each

part

of

the

complex

constructor.

End

of

Fortran

95

If

both

parts

of

the

literal

constant

are

of

type

real,

the

kind

type

parameter

of

the

literal

constant

is

the

kind

parameter

of

the

part

with

the

greater

precision,

and

the

kind

type

parameter

of

the

part

with

lower

precision

is

converted

to

that

of

the

other

part.

If

both

parts

are

of

type

integer,

they

are

each

converted

to

type

default

real.

If

one

part

is

of

type

integer

and

the

other

is

of

type

real,

the

integer

is

converted

to

type

real

with

the

precision

of

type

real.

See

“COMPLEX”

on

page

250

and

“DOUBLE

COMPLEX”

on

page

266

for

details

on

declaring

entities

of

type

complex.

IBM

Extension

Each

part

of

a

complex

number

has

the

following

internal

representation:

a

sign

bit

(s),

a

biased

exponent

(e),

and

a

fraction

(f).

COMPLEX(4)

(equivalent

to

COMPLEX*8)

Bit

no.

0....|....1....|....2....|....3....|....4....|....5....|....6...

seeeeeeeefffffffffffffffffffffffseeeeeeeefffffffffffffffffffffff

COMPLEX(8)

(equivalent

to

COMPLEX*16)

Bit

no.

0....|....1....|....2....|....3....|....4....|....5....|....6...

seeeeeeeeeeeff

Bit

no.

.|....7....|....8....|....9....|....0....|....1....|....2....|..

seeeeeeeeeeeff

COMPLEX(16)

(equivalent

to

COMPLEX*32)

Bit

no.

0....|....1....|....2....|....3....|....4....|....5....|....6...

seeeeeeeeeeeff

Bit

no.

.|....7....|....8....|....9....|....0....|....1....|....2....|..

seeeeeeeeeeeff

Bit

no.

..3....|....4....|....5....|....6....|....7....|....8....|....9.

seeeeeeeeeeeff

Bit

no.

...|....0....|....1....|....2....|....3....|....4....|....5....|

seeeeeeeeeeeff

End

of

IBM

Extension

Examples

of

Complex

Constants

Example

1:

��

(

expression

,

expression

)

��

Data

Types

and

Data

Objects

27

(3_2,-1.86)

!

Integer

constant

3

is

converted

to

default

real

!

for

constant

3.0

IBM

Extension

Example

2:

(45Q6,6D45)

!

The

imaginary

part

is

converted

to

extended

!

precision

6.Q45

Example

3:

(1+1,2+2)

!

Use

of

constant

expressions.

Both

parts

are

!

converted

to

default

real

End

of

IBM

Extension

Logical

IBM

Extension

The

following

table

shows

the

values

that

XL

Fortran

can

represent

using

the

logical

data

type:

Kind

parameter

Values

Internal

(hex)

Representation

1

.TRUE.

.FALSE.

01

00

2

.TRUE.

.FALSE.

0001

0000

4

.TRUE.

.FALSE.

00000001

00000000

8

.TRUE.

.FALSE.

0000000000000001

0000000000000000

Note:

Any

internal

representation

other

than

1

for

.TRUE.

and

0

for

.FALSE.

is

undefined.

XL

Fortran

sets

the

default

kind

type

parameter

to

4.

The

kind

type

parameter

is

equivalent

to

the

byte

size

for

logical

values.

Use

the

-qintsize

compiler

option

to

change

the

default

logical

size

to

2,

4,

or

8

bytes.

Note

that

the

-qintsize

option

similarly

affects

the

default

integer

size.

Use

–qintlog

to

mix

integer

and

logical

data

entities

in

expressions

and

statements.

End

of

IBM

Extension

The

logical

type

specifier

must

include

the

LOGICAL

keyword.

See

“LOGICAL”

on

page

323

for

details

on

declaring

entities

of

type

logical.

The

form

of

a

logical

literal

constant

is:

28

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

kind_param

is

either

a

digit-string

or

a

scalar-int-constant-name

A

logical

constant

can

have

a

logical

value

of

either

true

or

false.

IBM

Extension

You

can

also

use

the

abbreviations

T

and

F

(without

the

periods)

for

.TRUE.

and

.FALSE.,

respectively,

but

only

in

formatted

input,

or

as

initial

values

in

DATA

statements,

STATIC

statements,

or

type

declaration

statements.

A

kind

type

parameter

cannot

be

specified

for

the

abbreviated

form.

If

T

or

F

has

been

defined

as

a

named

constant,

it

is

treated

as

a

named

constant

rather

than

the

logical

literal

constant.

End

of

IBM

Extension

Examples

of

Logical

Constants

.FALSE._4

.TRUE.

Character

The

character

type

specifier

must

include

the

CHARACTER

keyword.

See

“CHARACTER”

on

page

240

for

details

on

declaring

entities

of

type

character.

The

form

of

a

character

literal

constant

is:

kind_param

is

either

a

digit-string

or

a

scalar-int-constant-name

IBM

Extension

XL

Fortran

supports

a

kind

type

parameter

value

of

1,

representing

the

ASCII

collating

sequence.

End

of

IBM

Extension

Character

literal

constants

can

be

delimited

by

double

quotation

marks

as

well

as

apostrophes.

character_string

consists

of

any

characters

capable

of

representation

in

XL

Fortran,

except

the

new-line

character

(\n),

because

it

is

interpreted

as

the

end

of

the

source

line.

The

delimiting

apostrophes

(’)

or

double

quotation

marks

(")

are

not

part

of

the

data

represented

by

the

constant.

Blanks

embedded

between

these

delimiters

are

significant.

��

.TRUE.

.FALSE.

_

kind_param

��

��

kind_param

_

’

character_string

’

″

character_string

″

��

Data

Types

and

Data

Objects

29

If

a

string

is

delimited

by

apostrophes,

you

can

represent

an

apostrophe

within

the

string

with

two

consecutive

apostrophes

(without

intervening

blanks).

If

a

string

is

delimited

by

double

quotation

marks,

you

can

represent

a

double

quotation

mark

within

the

string

with

two

consecutive

double

quotation

marks

(without

intervening

blanks).

The

two

consecutive

apostrophes

or

double

quotation

marks

will

be

treated

as

one

character.

You

can

place

a

double

quotation

mark

within

a

character

literal

constant

delimited

by

apostrophes

to

represent

a

double

quotation

mark,

and

an

apostrophe

character

within

a

character

constant

delimited

by

double

quotation

marks

to

represent

a

single

apostrophe.

The

length

of

a

character

literal

constant

is

the

number

of

characters

between

the

delimiters,

except

that

each

pair

of

consecutive

apostrophes

or

double

quotation

marks

counts

as

one

character.

A

zero-length

character

object

uses

no

storage.

IBM

Extension

In

XL

Fortran

each

character

object

requires

1

byte

of

storage.

For

compatibility

with

C

language

usage,

XL

Fortran

recognizes

the

following

escape

sequences

in

character

strings:

Escape

Meaning

\b

Backspace

\f

Form

feed

\n

New-line

\r

Carriage

return

\t

Tab

\0

Null

\’

Apostrophe

(does

not

terminate

a

string)

\″

Double

quotation

mark

(does

not

terminate

a

string)

\\

Backslash

\x

x,

where

x

is

any

other

character

To

ensure

that

scalar

character

initialization

expressions

in

procedure

references

are

terminated

with

null

characters

(\0)

for

C

compatibility,

use

the

-qnullterm

compiler

option.

(See

-qnullterm

Option

in

the

User’s

Guide

for

details

and

exceptions).

All

escape

sequences

represent

a

single

character.

End

of

IBM

Extension

If

you

do

not

want

these

escape

sequences

treated

as

a

single

character,

specify

the

-qnoescape

compiler

option.

(See

-qescape

Option

in

the

User’s

Guide.)

The

backslash

will

have

no

special

significance.

30

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

The

maximum

length

of

a

character

literal

constant

depends

on

the

maximum

number

of

characters

allowed

in

a

statement.

IBM

Extension

If

you

specify

the

-qctyplss

compiler

option,

character

constant

expressions

are

treated

as

if

they

are

Hollerith

constants.

See

“Hollerith

Constants”

on

page

54

for

information

on

Hollerith

constants.

For

information

on

the

-qctyplss

compiler

option,

see

-qctyplss

Option

in

the

User’s

Guide

XL

Fortran

supports

multibyte

characters

within

character

literal

constants,

Hollerith

constants,

H

edit

descriptors,

character-string

edit

descriptors,

and

comments

through

the

-qmbcs

compiler

option.

Support

is

also

provided

for

Unicode

characters

and

filenames.

If

the

environment

variable

LANG

is

set

to

UNIVERSAL

and

the

-qmbcs

compiler

option

is

specified,

the

compiler

can

read

and

write

Unicode

characters

and

filenames.

(See

the

User’s

Guide

for

more

information.)

End

of

IBM

Extension

Examples

of

Character

Constants

Example

1:

’’

!

Zero-length

character

constant

Example

2:

1_"ABCDEFGHIJ"

!

Character

constant

of

length

10,

with

kind

1

IBM

Extension

Example

3:

’\"\2\’\A567\\\\\’’

!

Character

constant

of

length

10

"2’A567\\’

End

of

IBM

Extension

Character

Substrings

A

character

substring

is

a

contiguous

portion

of

a

character

string

(called

a

parent

string),

which

is

a

scalar

variable

name,

scalar

constant,

scalar

structure

component,

or

array

element.

A

character

substring

is

identified

by

a

substring

reference

whose

form

is:

��

scalar_variable_name

array_element

scalar_constant

scalar_struct_comp

(

:

)

int_expr1

int_expr2

��

Data

Types

and

Data

Objects

31

int_expr1

and

int_expr2

specify

the

leftmost

character

position

and

rightmost

character

position,

respectively,

of

the

substring.

Each

is

a

scalar

integer

expression

called

a

substring

expression.

The

length

of

a

character

substring

is

the

result

of

the

evaluation

of

MAX(int_expr2

-

int_expr1

+

1,0).

If

int_expr1

is

less

than

or

equal

to

int_expr2,

their

values

must

be

such

that:

v

1

≤

int_expr1

≤

int_expr2

≤

length

where

length

is

the

length

of

the

parent

string.

If

int_expr1

is

omitted,

its

default

value

is

1.

If

int_expr2

is

omitted,

its

default

value

is

length.

IBM

Extension

FORTRAN

77

does

not

allow

character

substrings

of

length

0.

Fortran

90

and

up

does

allow

these

substrings.

To

perform

compile-time

checking

on

substring

bounds

in

accordance

with

FORTRAN

77

rules,

use

the

-qnozerosize

compiler

option.

For

Fortran

90

compliance,

use

-qzerosize.

To

perform

run-time

checking

on

substring

bounds,

use

both

the

-qcheck

option

and

the

-qzerosize

(or

-qnozerosize)

option.

(See

the

User’s

Guide

for

more

information.)

End

of

IBM

Extension

A

substring

of

an

array

section

is

treated

differently.

See

“Array

Sections

and

Substring

Ranges”

on

page

79.

Examples

of

Character

Substrings:

CHARACTER(8)

ABC,

X,

Y,

Z

ABC

=

’ABCDEFGHIJKL’(1:8)

!

Substring

of

a

constant

X

=

ABC(3:5)

!

X

=

’CDE’

Y

=

ABC(-1:6)

!

Not

allowed

in

either

FORTRAN

77

or

Fortran

90

Z

=

ABC(6:-1)

!

Z

=

’

valid

only

in

Fortran

90

BYTE

IBM

Extension

The

byte

type

specifier

is

the

BYTE

keyword

in

XL

Fortran.

See

“BYTE”

on

page

234

for

details

on

declaring

entities

of

type

byte.

The

BYTE

intrinsic

data

type

does

not

have

its

own

literal

constant

form.

A

BYTE

data

object

is

treated

as

an

INTEGER(1),

LOGICAL(1),

or

CHARACTER(1)

data

object,

depending

on

how

it

is

used.

See

“Using

Typeless

Constants”

on

page

54.

End

of

IBM

Extension

32

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Derived

Types

You

can

create

additional

data

types,

known

as

derived

types,

from

intrinsic

data

types

and

other

derived

types.

You

require

a

type

definition

to

define

the

name

of

the

derived

type

(type_name),

as

well

as

the

data

types

and

names

of

the

components

of

the

derived

type.

IBM

Extension

A

record

structure

is

a

popular

extension

for

manipulating

aggregate

non-array

data.

The

record

structure

predates

the

introduction

of

derived

types

in

Fortran

90.

The

syntax

used

for

record

structures

parallels

that

used

for

Fortran

derived

types

in

most

cases.

Also,

in

most

cases,

the

semantics

of

the

two

features

are

parallel.

For

these

reasons,

record

structures

are

supported

in

XL

Fortran

in

a

way

that

makes

the

two

features

almost

completely

interchangeable.

Hence,

v

An

entity

of

a

derived

type

declared

using

either

syntax

can

be

declared

using

either

a

TYPE

statement

or

a

RECORD

statement.

v

A

component

of

an

object

of

derived

type

can

be

selected

using

either

the

percent

sign

or

period.

v

A

derived

type

declared

using

the

record

structure

declaration

has

a

structure

constructor.

v

A

component

of

any

derived

type

can

be

initialized

using

either

the

standard

″equals″

form

of

initialization

or

the

extended

″double

slashes″

form

of

initialization.

There

are

differences,

however,

as

outlined

here:

v

A

standard

derived

type

declaration

cannot

have

a

%FILL

component.

v

A

record

structure

declaration

must

not

have

a

SEQUENCE

or

PRIVATE

statement.

v

The

-qalign

option

applies

only

to

derived

types

declared

using

a

record

structure

declaration.

See

the

-qalign=struct

option

described

in

the

User’s

Guide

for

more

detail.

v

A

derived

type

declared

using

a

record

structure

declaration

may

have

the

same

name

as

an

intrinsic

type.

v

There

are

differences

in

the

rules

for

determination

of

derived

types

declared

using

a

record

structure

declaration

and

those

declared

using

a

standard

derived

type

declaration.

End

of

IBM

Extension

Data

Types

and

Data

Objects

33

DERIVED_TYPE_statement

See

“Derived

Type”

on

page

261

for

syntax

details.

PRIVATE_SEQUENCE_block

includes

the

PRIVATE

statement

(keyword

only)

and/or

the

SEQUENCE

statement.

Only

one

of

each

statement

can

be

specified.

See

“PRIVATE”

on

page

346

and

“SEQUENCE”

on

page

367

for

details

on

syntax.

component_def_stmt_block

consists

of

one

or

more

type

declaration

statements

to

define

the

components

of

the

derived

type.

The

type

declaration

statements

can

specify

only

the

DIMENSION,

POINTER

and

ALLOCATABLE

attributes.

See

“Type

Declaration”

on

page

378

for

detailed

syntax

and

information.

Fortran

95

In

addition,

Fortran

95

allows

you

to

specify

a

default

initialization

for

each

component

in

the

definition

of

a

derived

type.

See

“Type

Declaration”

on

page

378

for

detailed

syntax

and

information.

End

of

Fortran

95

END_TYPE_statement

See

“END

TYPE”

on

page

280.

Fortran

95

Direct

components

of

a

derived

type

in

Fortran

95

are:

v

the

components

of

that

type

v

the

direct

components

of

a

derived

type

component

without

ALLOCATABLE

or

POINTER

attribute.

End

of

Fortran

95

Each

derived

type

is

resolved

into

ultimate

components

of

intrinsic

data

type,

alloctable,

or

pointer.

The

type

name

is

a

local

entity.

It

cannot

be

the

same

name

as

any

of

the

intrinsic

data

types

except

BYTE

and

DOUBLE

COMPLEX.

��

DERIVED_TYPE_statement

��

��

PRIVATE_SEQUENCE_block

��

��

component_def_stmt_block

��

��

END_TYPE_statement

��

34

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

The

END

TYPE

statement

can

optionally

contain

the

same

type_name

as

specified

on

the

TYPE

statement.

The

components

of

a

derived

type

can

specify

any

of

the

intrinsic

data

types.

Components

can

also

be

of

a

previously

defined

derived

type.

A

pointer

component

can

be

of

the

same

derived

type

that

it

is

a

component

of.

Within

a

derived

type,

the

names

of

components

must

be

unique,

although

they

can

be

different

from

names

outside

the

scope

of

the

derived-type

definition.

Components

that

are

declared

to

be

of

type

CHARACTER

must

have

length

specifications

that

are

constant

specification

expressions;

asterisks

are

not

allowed

as

length

specifiers.

Nonpointer

array

components

must

be

declared

with

constant

dimension

declarators.

Pointer

array

components

must

be

declared

with

a

deferred_shape_spec_list.

By

default,

no

storage

sequence

is

implied

by

the

order

of

the

component

definitions.

However,

if

you

specify

the

SEQUENCE

statement,

the

derived

type

becomes

a

sequence

derived

type.

For

a

sequence

derived

type,

the

order

of

the

components

specifies

a

storage

sequence

for

objects

declared

with

this

derived

type.

If

a

component

of

a

sequence

derived

type

is

of

a

derived

type,

that

derived

type

must

also

be

a

sequence

derived

type.

The

size

of

a

sequence

derived

type

is

equal

to

the

number

of

bytes

of

storage

needed

to

hold

all

of

the

components

of

that

derived

type.

Use

of

sequence

derived

types

can

lead

to

misaligned

data,

which

can

adversely

affect

the

performance

of

the

program.

The

PRIVATE

statement

can

only

be

specified

if

the

derived-type

definition

is

within

the

specification

part

of

a

module.

If

a

component

of

a

derived

type

is

of

a

type

declared

to

be

private,

either

the

derived-type

definition

must

contain

the

PRIVATE

statement

or

the

derived

type

itself

must

be

private.

If

a

type

definition

is

private,

the

following

are

accessible

only

within

the

defining

module:

v

The

type

name

v

Structure

constructors

for

the

type

v

Any

entity

of

the

type

v

Any

procedure

that

has

a

dummy

argument

or

function

result

of

the

type

If

a

derived-type

definition

contains

a

PRIVATE

statement,

its

components

are

accessible

only

within

the

defining

module,

even

if

the

derived

type

itself

is

public.

Structure

components

can

only

be

used

in

the

defining

module.

A

component

of

a

derived-type

entity

cannot

appear

as

an

input/output

list

item

if

any

ultimate

component

of

the

object

cannot

be

accessed

by

the

scoping

unit

of

the

input/output

statement.

A

derived-type

object

cannot

appear

in

a

data

transfer

statement

if

it

has

a

component

that

is

a

pointer

or

allocatable.

A

scalar

entity

of

derived

type

is

called

a

structure.

A

scalar

entity

of

sequence

derived

type

is

called

a

sequence

structure.

The

type

specifier

of

a

structure

must

include

the

TYPE

keyword,

followed

by

the

name

of

the

derived

type

in

parentheses.

See

“TYPE”

on

page

374

for

details

on

declaring

entities

of

a

specified

derived

type.

The

components

of

a

structure

are

called

structure

components.

A

structure

component

is

one

of

the

components

of

a

structure

or

is

an

array

whose

elements

are

components

of

the

elements

of

an

array

of

derived

type.

Data

Types

and

Data

Objects

35

An

object

of

a

private

derived

type

cannot

be

used

outside

the

defining

module.

Default

initialization

may

be

specified

using

an

equal

sign

followed

by

an

initialization

expression,

or

by

using

an

initial_value_list

enclosed

in

slashes.

You

can

use

this

form

of

initialization

for

components

declared

using

either

a

record

structure

declaration

or

a

standard

derived

type

declaration.

Fortran

95

In

Fortran

95

a

candidate

data

object

for

default

initialization

is

a

named

data

object

that:

1.

is

of

derived

type

with

default

initialization

specified

for

any

of

its

direct

components.

2.

has

neither

the

POINTER,

nor

the

ALLOCATABLE

attribute.

3.

is

not

use

or

host

associated.

4.

is

not

a

pointee.

A

default

initialization

for

a

non-pointer

component

will

take

precedence

over

any

default

initialization

appearing

for

any

direct

component

of

its

type.

If

a

dummy

argument

with

INTENT(OUT)

is

of

a

derived

type

with

default

initialization,

it

must

not

be

an

assumed-size

array.

If

a

non-pointer

object

or

subobject

has

been

specified

with

default

initialization

in

a

type

definition,

it

must

not

be

initialized

by

a

DATA

statement.

End

of

Fortran

95

IBM

Extension

A

data

object

of

derived

type

with

default

initialization

can

be

specified

in

a

common

block

as

an

IBM

extension.

In

addition,

default

initialization

does

not

imply

the

SAVE

attribute

in

XL

Fortran

unless

-qsave=defaultinit

has

been

specified.

End

of

IBM

Extension

Fortran

95

Unlike

explicit

initialization,

it

is

not

necessary

for

a

data

object

to

have

the

SAVE

attribute

for

component

default

initialization

to

have

an

effect.

You

can

specify

default

initialization

for

some

components

of

a

derived

type,

but

it

is

not

necessary

for

every

component.

You

can

specify

default

initialization

for

a

storage

unit

that

is

storage

associated.

However,

the

objects

or

subobjects

supplying

the

default

initialization

must

be

of

the

same

type.

The

objects

or

subobjects

must

also

have

the

same

type

parameters

and

supply

the

same

value

for

the

storage

unit.

A

direct

component

will

receive

an

initial

value

if

you

specify

a

default

initialization

on

the

corresponding

component

definition

in

the

type

definition,

regardless

of

the

accessibility

of

the

component.

For

candidate

data

objects

for

default

initialization,

their

nonpointer

components

are

either

initially

defined,

or

become

defined

by

their

corresponding

default

36

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

initialization

expressions,

and

their

pointer

components

are

either

initially

disassociated,

or

become

disassociated

if

one

of

the

following

conditions

is

met:

v

become

initially

defined

or

disassociated:

–

the

data

object

in

question

has

the

SAVE

attribute.

–

if

you

declare

the

data

object

in

question

in

a

BLOCK

DATA

unit,

module,

or

main

program

unit.
v

become

defined

or

disassociated:

–

a

function

with

the

data

object

in

question

as

its

result

is

invoked

–

a

procedure

with

the

data

object

in

question

as

an

INTENT(OUT)

dummy

argument

is

invoked.

–

a

procedure

with

the

data

object

in

question

as

a

local

object

is

invoked,

and

the

data

object

does

not

have

the

SAVE

attribute.

Allocation

of

an

object

of

a

derived

type

in

which

you

specify

a

default

initialization

for

a

component

will

cause

the

component

to:

v

become

defined,

if

it

is

a

non-pointer

component

v

become

disassociated,

if

it

is

a

pointer

component

In

a

subprogram

with

an

ENTRY

statement,

default

initialization

only

occurs

for

the

dummy

arguments

that

appear

in

the

argument

list

of

the

procedure

name

referenced.

If

such

a

dummy

argument

has

the

OPTIONAL

attribute,

default

initialization

will

only

occur

if

the

dummy

argument

is

present.

Module

data

objects,

which

are

of

derived

type

with

default

initializations

must

have

the

SAVE

attribute,

if

they

are

candidate

data

objects

for

default

initialization.

End

of

Fortran

95

The

size

of

a

sequence

derived

type

declared

using

a

standard

derived

type

declaration

is

equal

to

the

sum

of

the

number

of

bytes

required

to

hold

all

of

its

components.

The

size

of

a

sequence

derived

type

declared

using

a

record

structure

declaration

is

equal

to

the

sum

of

the

number

of

bytes

required

to

hold

all

of

its

components

and

its

padding.

Previously,

a

numeric

sequence

structure

or

character

sequence

structure

that

appeared

in

a

common

block

was

treated

as

if

its

components

were

enumerated

directly

in

the

common

block.

Now,

that

only

applies

to

structures

of

a

type

declared

using

a

standard

derived

type

declaration.

Input/Output

In

namelist

input,

a

structure

is

expanded

into

a

list

of

its

non-filler

ultimate

components.

In

namelist

output,

a

structure

is

expanded

into

the

values

of

its

non-filler

ultimate

components.

In

a

formatted

data

transfer

statement

(READ,

WRITE

or

PRINT),

only

components

of

entities

of

derived

type

that

are

not

%FILL

components

are

treated

as

if

they

appeared

in

the

input-item-list

or

the

output-item-list.

Data

Types

and

Data

Objects

37

Any

%FILL

field

in

an

entity

of

derived

type

is

treated

as

padding

in

an

unformatted

data

transfer

statement.

Determining

Type

for

Derived

Types

Two

data

objects

have

the

same

derived

type

if

they

are

declared

with

reference

to

the

same

derived-type

definition.

If

the

data

objects

are

in

different

scoping

units,

they

can

still

have

the

same

derived

type.

Either

the

derived-type

definition

is

accessible

via

host

or

use

association,

or

the

data

objects

reference

their

own

derived-type

definitions

with

the

following

conditions:

v

They

were

declared

using

standard

derived

type

declarations,

have

the

same

name,

have

the

SEQUENCE

property,

and

have

components

that

do

not

have

PRIVATE

accessibility

and

agree

in

order,

name

and

attributes;

or

v

They

were

declared

using

record

structure

declarations

that

were

not

unnamed,

the

types

have

the

same

name,

have

no

%FILL

components

and

have

components

that

agree

in

order

and

attributes,

and

any

%FILL

components

appear

in

the

same

positions

in

both.

A

derived-type

definition

that

specifies

SEQUENCE

is

not

the

same

as

a

definition

declared

to

be

private

or

that

has

components

that

are

private.

Example

of

Determining

Type

with

Derived

Types

PROGRAM

MYPROG

TYPE

NAME

!

Sequence

derived

type

SEQUENCE

CHARACTER(20)

LASTNAME

CHARACTER(10)

FIRSTNAME

CHARACTER(1)

INITIAL

END

TYPE

NAME

TYPE

(NAME)

PER1

CALL

MYSUB(PER1)

PER1

=

NAME(’Smith’,’John’,’K’)

!

Structure

constructor

CALL

MYPRINT(PER1)

CONTAINS

SUBROUTINE

MYSUB(STUDENT)

!

Internal

subroutine

MYSUB

TYPE

(NAME)

STUDENT

!

NAME

is

accessible

via

host

association

...

END

SUBROUTINE

MYSUB

END

SUBROUTINE

MYPRINT(NAMES)

!

External

subroutine

MYPRINT

TYPE

NAME

!

Same

type

as

data

type

in

MYPROG

SEQUENCE

CHARACTER(20)

LASTNAME

CHARACTER(10)

FIRSTNAME

CHARACTER(1)

INITIAL

END

TYPE

NAME

TYPE

(NAME)

NAMES

!

NAMES

and

PER1

from

MYPROG

PRINT

*,

NAMES

!

have

the

same

data

type

END

SUBROUTINE

An

Example

with

Different

Component

Names

MODULE

MOD

STRUCTURE

/S/

INTEGER

I

INTEGER,

POINTER

::

P

END

STRUCTURE

38

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

RECORD

/S/

R

END

MODULE

PROGRAM

P

USE

MOD,

ONLY:

R

STRUCTURE

/S/

INTEGER

J

INTEGER,

POINTER

::

Q

END

STRUCTURE

RECORD

/S/

R2

R

=

R2

!

OK

-

same

type

name,

components

have

same

attributes

and

!

type

(but

different

names)

END

PROGRAM

P

Structure

Components

Structure

components

can

be

of

any

explicit

type,

including

derived

type.

Note:

The

case

in

which

a

structure

component

has

a

subobject

that

is

an

array

or

array

section

requires

some

background

information

from

“Array

Sections”

on

page

75,

and

is

explained

in

“Array

Sections

and

Structure

Components”

on

page

79.

The

following

rules

for

scalar

structure

components

apply

also

to

structure

components

that

have

array

subobjects.

Data

Types

and

Data

Objects

39

You

can

refer

to

a

specific

structure

component

using

a

component

designator.

A

scalar

component

designator

has

the

following

syntax:

scalar_struct_comp:

name

is

the

name

of

an

object

of

derived

type

comp_name

is

the

name

of

a

derived-type

component

int_expr

is

a

scalar

integer

or

real

expression

called

a

subscript

expression

separator

is

%

or

.

The

structure

component

has

the

same

type,

type

parameters,

and

POINTER

attribute

(if

any)

as

the

right-most

comp_name.

It

inherits

any

INTENT,

TARGET,

and

PARAMETER

attributes

from

the

parent

object.

Notes:

1.

Each

comp_name

must

be

a

component

of

the

immediately

preceding

name

or

comp_name.

2.

The

name

and

each

comp_name,

except

the

right-most,

must

be

of

derived

type.

3.

The

number

of

subscript

expressions

in

any

int_expr_list

must

equal

the

rank

of

the

preceding

name

or

comp_name.

4.

If

name

or

any

comp_name

is

the

name

of

an

array,

it

must

have

an

int_expr_list.

5.

The

right-most

comp_name

must

be

scalar.

In

namelist

formatting,

a

separator

must

be

a

percent

sign.

If

an

expression

has

a

form

that

could

be

interpreted

either

as

a

structure

component

using

periods

as

separators

or

as

a

binary

operation,

and

an

operator

with

that

name

is

accessible

in

the

scoping

unit,

XL

Fortran

will

treat

the

expression

as

a

binary

operation.

If

that

is

not

the

interpretation

you

intended,

you

should

use

the

percent

sign

to

dereference

the

parts,

or,

in

free

source

form,

insert

white

space

between

the

periods

and

the

comp_name.

Examples

of

References

to

Structure

Components:

Example

1:

Ambiguous

use

of

a

period

as

separator

��

name

(

int_expr_list

)

�

�

�

separator

comp_name

(

int_expr_list

)

�

�

separator

comp_name

(

int_expr_list

)

��

40

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

MODULE

MOD

STRUCTURE

/S1/

STRUCTURE

/S2/

BLUE

INTEGER

I

END

STRUCTURE

END

STRUCTURE

INTERFACE

OPERATOR(.BLUE.)

MODULE

PROCEDURE

BLUE

END

INTERFACE

CONTAINS

INTEGER

FUNCTION

BLUE(R1,

I)

RECORD

/S1/

R1

INTENT(IN)

::

R1

INTEGER,

INTENT(IN)

::

I

BLUE

=

R1%BLUE%I

+

I

END

FUNCTION

BLUE

END

MODULE

MOD

PROGRAM

P

USE

MOD

RECORD

/S1/

R1

R1%BLUE%I

=

17

I

=

13

PRINT

*,

R1.BLUE.I

!

Calls

BLUE(R1,I)

-

prints

30

PRINT

*,

R1%BLUE%I

!

Prints

17

END

PROGRAM

P

Example

2:

Mix

of

separators

STRUCTURE

/S1/

INTEGER

I

END

STRUCTURE

STRUCTURE

/S2/

RECORD

/S1/

C

END

STRUCTURE

RECORD

/S2/

R

R.C%I

=

17

!

OK

R%C.I

=

3

!

OK

R%C%.I

=

13

!

OK

R.C.I

=

19

!

OK

END

Example

3:

Percent

and

period

work

for

any

derived

types

STRUCTURE

/S/

INTEGER

I,

J

END

STRUCTURE

TYPE

DT

INTEGER

I,

J

END

TYPE

DT

RECORD

/S/

R1

TYPE(DT)

::

R2

R1.I

=

17;

R1%J

=

13

R2.I

=

19;

R2%J

=

11

END

Allocatable

Components

IBM

Extension

Allocatable

components

are

defined

as

ultimate

components

just

as

pointer

components

are.

This

is

because

the

value

(if

any)

is

stored

separately

from

the

rest

of

the

structure,

and

this

storage

does

not

exist

(because

the

object

is

unallocated)

Data

Types

and

Data

Objects

41

when

the

structure

is

created.

As

with

ultimate

pointer

components,

variables

containing

ultimate

allocatable

components

are

forbidden

from

appearing

directly

in

input/output

lists.

As

with

allocatable

arrays,

allocatable

components

are

forbidden

from

storage

association

contexts.

So,

any

variable

containing

an

ultimate,

allocatable

component

cannot

appear

in

COMMON

or

EQUIVALENCE.

However,

allocatable

components

are

permitted

in

SEQUENCE

types,

which

allows

the

same

type

to

be

defined

separately

in

more

than

one

scoping

unit.

Deallocation

of

a

variable

containing

an

ultimate

allocatable

component

automatically

deallocates

all

such

components

of

the

variable

that

are

currently

allocated.

In

a

structure

constructor

for

a

derived

type

containing

an

allocatable

component,

the

expression

corresponding

to

the

allocatable

component

must

be

one

of

the

following:

v

An

argumentless

reference

to

the

intrinsic

function

NULL().

The

allocatable

component

receives

the

allocation

status

of

not

currently

allocated

v

A

variable

that

is

itself

allocatable.

The

allocatable

component

receives

the

allocation

status

of

the

variable

and,

if

it

is

allocated,

the

value

of

the

variable.

If

the

variable

is

an

array

that

is

allocated,

the

allocatable

component

also

has

the

bounds

of

the

variable.

v

Any

other

expression.

The

allocatable

component

receives

the

allocation

status

of

currently

allocated

with

the

same

value

as

the

expression.

If

the

expression

is

an

array,

the

allocatable

component

will

have

the

same

bounds.

For

intrinsic

assignment

of

those

objects

of

a

derived

type

containing

an

allocatable

component,

the

allocatable

component

of

the

variable

on

the

left-hand-side

receives

the

allocation

status

and,

if

allocated,

the

bounds

and

value

of

the

corresponding

component

of

the

expression.

This

occurs

as

if

the

following

sequence

of

steps

is

carried

out:

1.

If

the

component

of

the

variable

is

currently

allocated,

it

is

deallocated.

2.

If

the

corresponding

component

of

the

expression

is

currently

allocated,

the

component

of

the

variable

is

allocated

with

the

same

bounds.

The

value

of

the

component

of

the

expression

is

then

assigned

to

the

corresponding

component

of

the

variable

using

intrinsic

assignment.

An

allocated

ultimate

allocatable

component

of

an

actual

argument

that

is

associated

with

an

INTENT(OUT)

dummy

argument

is

deallocated

on

procedure

entry

so

that

the

corresponding

component

of

the

dummy

argument

has

an

allocation

status

of

not

currently

allocated.

This

ensures

that

any

pointers

that

point

to

the

previous

contents

of

the

allocatable

component

of

the

variable

become

undefined.

Example:

MODULE

REAL_POLYNOMIAL_MODULE

TYPE

REAL_POLYNOMIAL

REAL,

ALLOCATABLE

::

COEFF(:)

END

TYPE

INTERFACE

OPERATOR(+)

MODULE

PROCEDURE

RP_ADD_RP,

RP_ADD_R

END

INTERFACE

CONTAINS

FUNCTION

RP_ADD_R(P1,R)

Allocatable

Components

-

IBM

Extension

42

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

TYPE(REAL_POLYNOMIAL)

RP_ADD_R,

P1

REAL

R

INTENT(IN)

P1,R

ALLOCATE(RP_ADD_R%COEFF(SIZE(P1%COEFF)))

RP_ADD_R%COEFF

=

P1%COEFF

RP_ADD_R%COEFF(1)

=

P1%COEFF(1)

+

R

END

FUNCTION

FUNCTION

RP_ADD_RP(P1,P2)

TYPE(REAL_POLYNOMIAL)

RP_ADD_RP,

P1,

P2

INTENT(IN)

P1,

P2

INTEGER

M

ALLOCATE(RP_ADD_RP%COEFF(MAX(SIZE(P1%COEFF),

SIZE(P2%COEFF))))

M

=

MIN(SIZE(P1%COEFF),

SIZE(P2%COEFF))

RP_ADD_RP%COEFF(:M)

=

P1%COEFF(:M)

+

P2%COEFF(:M)

IF

(SIZE(P1%COEFF)>M)

THEN

RP_ADD_RP%COEFF(M+1:)

=

P1%COEFF(M+1:)

ELSE

IF

(SIZE(P2%COEFF)>M)

THEN

RP_ADD_RP%COEFF(M+1:)

=

P2%COEFF(M+1:)

END

IF

END

FUNCTION

END

MODULE

PROGRAM

EXAMPLE

USE

REAL_POLYNOMIAL_MODULE

TYPE(REAL_POLYNOMIAL)

P,

Q,

R

P

=

REAL_POLYNOMIAL((/4,2,1/))

!

Set

P

to

(X**2+2X+4)

Q

=

REAL_POLYNOMIAL((/1,1/))

!

Set

Q

to

(X+1)

R

=

P

+

Q

!

Polynomial

addition

PRINT

*,

’Coefficients

are:

’,

R%COEFF

END

End

of

IBM

Extension

Structure

Constructor

type_name

is

the

name

of

the

derived

type

expr

is

an

expression.

Expressions

are

defined

under

“Expressions

and

Assignment”

on

page

85.

A

structure

constructor

allows

a

scalar

value

of

derived

type

to

be

constructed

from

an

ordered

list

of

values.

A

structure

constructor

must

not

appear

before

the

definition

of

the

referenced

derived

type.

expr_list

contains

one

value

for

each

component

of

the

derived

type.

The

sequence

of

expressions

in

the

expr_list

must

agree

in

number

and

order

with

the

components

of

the

derived

type.

The

type

and

type

parameters

of

each

expression

must

be

assignment-compatible

with

the

type

and

type

parameters

of

the

corresponding

component.

Data

type

conversion

is

performed

if

necessary.

A

component

that

is

a

pointer

can

be

declared

with

the

same

type

that

it

is

a

component

of.

If

a

structure

constructor

is

created

for

a

derived

type

containing

a

pointer,

the

expression

corresponding

to

the

pointer

component

must

evaluate

to

an

object

that

would

be

an

allowable

target

for

such

a

pointer

in

a

pointer

��

type_name

(

expr_list

)

��

Allocatable

Components

-

IBM

Extension

Data

Types

and

Data

Objects

43

assignment

statement.

IBM

Extension

If

a

component

of

a

derived

type

is

allocatable,

the

corresponding

constructor

expression

will

either

be

a

reference

to

the

intrinsic

function

NULL()

with

no

arguments,

an

allocatable

entity,

or

will

evaluate

to

an

entity

of

the

same

rank.

If

the

expression

is

a

reference

to

the

intrinsic

function

NULL(),

the

corresponding

component

of

the

constructor

has

a

status

of

not

currently

allocated.

If

the

expression

is

an

allocatable

entity,

the

corresponding

component

of

the

constructor

has

the

same

allocation

status

as

that

of

allocatable

entity

and,

if

it

is

allocated,

it’s

same

bounds

(if

any)

and

value.

Otherwise,

the

corresponding

component

of

the

constructor

has

an

allocation

status

of

currently

allocated,

and

has

the

same

bounds

(if

any)

and

value

as

the

expression.

If

a

component

using

a

record

structure

declaration

is

%FILL,

the

structure

constructor

for

that

type

cannot

be

used.

If

a

derived

type

is

accessible

in

a

scoping

unit

and

there

is

a

local

entity

of

class

1

that

is

not

a

derived

type

with

the

same

name

accessible

in

the

scoping

unit,

the

structure

constructor

for

that

type

cannot

be

used

in

that

scope.

End

of

IBM

Extension

Examples

of

Derived

Types:

Example

1:

MODULE

PEOPLE

TYPE

NAME

SEQUENCE

!

Sequence

derived

type

CHARACTER(20)

LASTNAME

CHARACTER(10)

FIRSTNAME

CHARACTER(1)

INITIAL

END

TYPE

NAME

TYPE

PERSON

!

Components

accessible

via

use

!

association

INTEGER

AGE

INTEGER

BIRTHDATE(3)

!

Array

component

TYPE

(NAME)

FULLNAME

!

Component

of

derived

type

END

TYPE

PERSON

END

MODULE

PEOPLE

PROGRAM

TEST1

USE

PEOPLE

TYPE

(PERSON)

SMITH,

JONES

SMITH

=

PERSON(30,

(/6,30,63/),

NAME(’Smith’,’John’,’K’))

!

Nested

structure

constructors

JONES%AGE

=

SMITH%AGE

!

Component

designator

CALL

TEST2

CONTAINS

SUBROUTINE

TEST2

TYPE

T

INTEGER

EMP_NO

CHARACTER,

POINTER

::

EMP_NAME(:)

!

Pointer

component

END

TYPE

T

TYPE

(T)

EMP_REC

CHARACTER,

TARGET

::

NAME(10)

EMP_REC

=

T(24744,NAME)

!

Pointer

assignment

occurs

END

SUBROUTINE

!

for

EMP_REC%EMP_NAME

END

PROGRAM

44

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Fortran

95

Example

2:

PROGRAM

LOCAL_VAR

TYPE

DT

INTEGER

A

INTEGER

::

B

=

80

END

TYPE

TYPE(DT)

DT_VAR

!

DT_VAR%B

IS

INITIALIZED

END

PROGRAM

LOCAL_VAR

Example

3:

MODULE

MYMOD

TYPE

DT

INTEGER

::

A

=

40

INTEGER,

POINTER

::

B

=>

NULL()

END

TYPE

END

MODULE

PROGRAM

DT_INIT

USE

MYMOD

TYPE(DT),

SAVE

::

SAVED(8)

!

SAVED%A

AND

SAVED%B

ARE

INITIALIZED

TYPE(DT)

LOCAL(5)

!

LOCAL%A

LOCAL%B

ARE

INITIALIZED

END

PROGRAM

End

of

Fortran

95

Record

Structures

IBM

Extension

Declaring

Record

Structures

Declaring

a

record

structure

declares

a

user-defined

type

in

the

same

way

that

a

standard

Fortran

derived

type

definition

declares

a

user-defined

type.

A

type

declared

using

a

record

structure

declaration

is

a

derived

type.

For

the

most

part,

rules

that

apply

to

derived

types

declared

using

the

standard

Fortran

syntax

apply

to

derived

types

declared

using

the

record

structure

syntax.

In

those

cases

where

there

is

a

difference,

the

difference

will

be

called

out

by

referring

to

the

two

as

derived

types

declared

using

a

record

structure

declaration

and

derived

types

declared

using

a

standard

derived

type

declaration.

Record

structure

declarations

follow

this

syntax:

record_structure_dcl:

Data

Types

and

Data

Objects

45

struct_comp_dcl_item:

��

component_def_stmt

record_structure_dcl

parameter_stmt

��

where

component_def_stmt

is

a

type

declaration

statement

used

to

define

the

components

of

the

derived

type.

structure_stmt:

��

STRUCTURE

/structure_name/

component_dcl_list

��

component_dcl:

��

a

(-array_spec-)

��

where

a

is

an

object

name.

A

structure

statement

declares

the

structure_name

to

be

a

derived

type

in

the

scoping

unit

of

the

nearest

enclosing

program

unit,

interface

body

or

subprogram.

The

derived

type

is

a

local

entity

of

class

1

in

that

scoping

unit.

A

structure

statement

may

not

specify

a

component_dcl_list

unless

it

is

nested

in

another

record

structure

declaration.

Likewise,

the

structure_name

of

a

structure

statement

cannot

be

omitted

unless

it

is

part

of

a

record_structure_dcl

that

is

nested

in

another

record

structure

declaration.

A

record_structure_dcl

must

have

at

least

one

component.

A

derived

type

declared

using

a

record

structure

declaration

is

a

sequence

derived

type,

and

is

subject

to

all

rules

that

apply

to

sequence

derived

types.

A

component

of

a

type

declared

using

a

record

structure

declaration

cannot

be

of

a

nonsequence

derived

type,

as

is

true

of

sequence

derived

types

declared

using

standard

derived

type

declarations.

A

record

structure

declaration

cannot

contain

a

PRIVATE

or

SEQUENCE

statement.

A

record

structure

declaration

defines

a

scoping

unit.

All

statements

in

the

record_structure_dcl

are

part

of

the

scoping

unit

of

the

record

structure

declaration,

with

the

exception

of

any

other

record_structure_dcl

contained

in

the

record_structure_dcl.

These

rules

are

also

true

of

standard

derived

type

declarations,

repeated

here

for

clarity.

��

structure_stmt

��

��

�

struct_comp_dcl_item

��

��

end_structure_stmt

��

Record

Structures

-

IBM

Extension

46

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

A

parameter_stmt

in

a

record_structure_dcl

declares

named

constants

in

the

scoping

unit

of

the

nearest

enclosing

program

unit,

interface

body

or

subprogram.

A

named

constant

declared

in

such

a

parameter_stmt

may

have

the

same

name

as

a

component

declared

in

the

record_structure_dcl

in

which

it

is

contained.

Any

components

declared

on

a

structure_stmt

are

components

of

the

enclosing

derived

type,

and

are

local

entities

of

the

enclosing

structure’s

scoping

unit.

The

type

of

such

a

component

is

the

derived

type

on

whose

structure_stmt

it

is

declared.

Unlike

derived

types

declared

using

a

standard

derived

type

declaration,

a

derived

type

name

declared

using

a

record

structure

declaration

may

be

the

same

as

the

name

of

an

intrinsic

type.

In

place

of

the

name

of

a

component,

%FILL

can

be

used

in

a

component_def_stmt

in

a

record

structure

declaration.

A

%FILL

component

is

used

as

a

place-holder

to

achieve

desired

alignment

of

data

in

a

record

structure

declaration.

Initialization

cannot

be

specified

for

a

%FILL

component.

Each

instance

of

%FILL

in

a

record

structure

declaration

is

treated

as

a

unique

component

name,

different

from

the

names

of

all

other

components

you

specified

for

the

type,

and

different

from

all

other

%FILL

components.

%FILL

is

a

keyword

and

is

not

affected

by

the

-qmixed

compiler

option.

Each

instance

of

a

nested

structure

that

has

no

name

is

treated

as

if

it

had

a

unique

name,

different

from

the

names

of

all

other

accessible

entities.

As

an

extension

to

the

rules

described

on

derived

types

thus

far,

the

direct

components

of

a

derived

type

declared

using

a

record

structure

declaration

are:

v

the

components

of

that

type

that

are

not

%FILL

components;

and

v

the

direct

components

of

a

derived

type

component

that

does

not

have

the

POINTER

attribute

and

is

not

a

%FILL

component.

The

non-filler

ultimate

components

of

a

derived

type

are

the

ultimate

components

of

the

derived

type

that

are

also

direct

components.

IBM

Extension

An

object

of

a

derived

type

with

default

initialization

can

be

a

member

of

a

common

block.

You

must

ensure

that

a

common

block

is

not

initialized

in

more

than

one

scoping

unit.

End

of

IBM

Extension

Examples

of

Declaring

Record

Structures:

Example

1:

Nested

record

structure

declarations

-

named

and

unnamed

STRUCTURE

/S1/

STRUCTURE

/S2/

A

!

A

is

a

component

of

S1

of

type

S2

INTEGER

I

END

STRUCTURE

STRUCTURE

B

!

B

is

a

component

of

S1

of

unnamed

type

INTEGER

J

END

STRUCTURE

END

STRUCTURE

RECORD

/S1/

R1

RECORD

/S2/

R2

!

Type

S2

is

accessible

here.

Record

Structures

-

IBM

Extension

Data

Types

and

Data

Objects

47

R2.I

=

17

R1.A

=

R2

R1.B.J

=

13

END

Example

2:

Parameter

statement

nested

in

a

structure

declaration

INTEGER

I

STRUCTURE

/S/

INTEGER

J

PARAMETER(I=17,

J=13)

!

Declares

I

and

J

in

scope

of

program

unit

to

!

be

named

constants

END

STRUCTURE

INTEGER

J

!

Confirms

implicit

typing

of

named

constant

J

RECORD

/S/

R

R.J

=

I

+

J

PRINT

*,

R.J

!

Prints

30

END

Example

3:

%FILL

fields

STRUCTURE

/S/

INTEGER

I,

%FILL,

%FILL(2,2),

J

STRUCTURE

/S2/

R1,

%FILL,

R2

INTEGER

I

END

STRUCTURE

END

STRUCTURE

RECORD

/S/

R

PRINT

*,

LOC(R%J)-LOC(R%I)

!

Prints

24

with

-qintsize=4

PRINT

*,

LOC(R%R2)-LOC(R%R1)

!

Prints

8

with

-qintsize=4

END

Storage

Mapping

A

derived

type

declared

using

a

record

structure

declaration

is

a

sequence

derived

type.

In

memory,

objects

of

such

a

type

will

have

the

components

stored

in

the

order

specified.

The

same

is

true

of

objects

of

a

sequence

derived

type

declared

using

a

standard

derived

type

declaration.

The

-qalign

option

specifies

the

alignment

of

data

objects

in

storage,

which

avoids

performance

problems

with

misaligned

data.

Both

the

[no]4k

and

struct

suboptions

can

be

specified

and

are

not

mutually

exclusive.

The

default

setting

is

-qalign=no4k:struct=natural.

[no]4K

is

useful

primarily

in

combination

with

logical

volume

I/O

and

disk

striping.

End

of

IBM

Extension

Union

and

Map

IBM

Extension

A

union

declares

a

group

of

fields

in

the

enclosing

record

structure

that

can

share

the

data

area

in

a

program.

Unions

and

maps

follow

this

syntax:

union_dcl:

Record

Structures

-

IBM

Extension

48

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

union_dcl_item:

��

map_dcl

parameter_stmt

��

map_dcl:

map_dcl_item:

��

struct_comp_dcl_item

record_stmt

��

struct_comp_dcl_item:

��

component_def_stmt

record_structure_dcl

parameter_stmt

union_dcl

��

A

union

declaration

must

be

defined

in

a

record

structure,

may

be

in

a

map

declaration,

and

a

map

declaration

must

be

in

a

union

declaration.

All

declarations

in

a

map_dcl_item

within

a

union

declaration

must

be

of

the

same

nesting

level,

regardless

of

which

map_dcl

they

reside

in.

Therefore,

no

component

name

inside

a

map_dcl

may

appear

in

any

other

map_dcl

on

the

same

level.

A

component

declared

within

a

map

declaration

must

not

have

a

POINTER

or

ALLOCATABLE

attribute.

A

record

structure

with

union

map

must

not

appear

in

I/O

statements.

The

components

declared

in

a

map

declaration

share

the

same

storage

as

the

components

declared

in

the

other

map

declarations

within

a

union

construct.

��

UNION

�

union_dcl_item

��

��

END

UNION

��

��

MAP

�

map_dcl_item

��

��

END

MAP

��

IBM

Extension

Data

Types

and

Data

Objects

49

When

you

assign

a

value

to

one

component

in

one

map

declaration,

the

components

in

other

map

declarations

that

share

storage

with

this

component

may

be

affected.

The

size

of

a

map

is

the

sum

of

the

sizes

of

the

components

declared

within

it.

The

size

of

the

data

area

established

for

a

union

declaration

is

the

size

of

the

largest

map

defined

for

that

union

A

parameter_stmt

in

a

map

declaration

or

union

construct

declares

entities

in

the

scoping

unit

of

the

nearest

enclosing

program

unit,

interface

body,

or

subprogram.

A

%FILL

field

in

a

map

declaration

is

used

as

a

place-holder

to

achieve

desired

alignment

of

data

in

a

record

structure.

Other

non-filler

components

or

part

of

the

components

in

other

map

declarations

that

share

the

data

area

with

a

%FILL

field

are

undefined.

If

default

initialization

is

specified

in

component_def_stmts

in

at

least

one

map

declaration

in

a

union

declaration,

the

last

occurence

of

the

initialization

becomes

the

final

initialization

of

the

components.

If

default

initialization

is

specified

in

one

of

the

union

map

declarations

in

a

record

structure,

a

variable

of

that

type

that

will

have

its

storage

class

assigned

by

default

will

be

given

v

the

static

storage

class

if

either

the

-qsave=defaultinit

or

-qsave=all

option

is

specified;

or

v

the

automatic

storage

class,

if

the

-qnosave

option

is

specified.

At

any

time,

only

one

map

is

associated

with

the

shared

storage.

If

a

component

from

another

map

is

referenced,

the

associated

map

becomes

unassociated

and

its

components

become

undefined.

The

map

referenced

will

then

be

associated

with

the

storage.

If

a

component

of

map_dcl

is

entirely

or

partially

mapped

with

the

%FILL

component

of

the

other

map_dcl

in

a

union,

the

value

of

the

overlap

portion

is

undefined

unless

that

component

is

initialized

by

default

initialization

or

an

assignment

statement.

Examples

of

Union

and

Map

Example

1:

The

size

of

the

union

is

equal

to

the

size

of

the

largest

map

in

that

union

structure

/S/

union

map

integer*4

i,

j,

k

real*8

r,

s,

t

end

map

map

integer*4

p,

q

real*4

u,

v

end

map

end

union

!

Size

of

the

union

is

36

bytes.

end

structure

record

/S/

r

Example

2:

The

results

of

union

map

are

different

with

different

-qsave

option

and

suboptions

IBM

Extension

50

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

PROGRAM

P

CALL

SUB

CALL

SUB

END

PROGRAM

P

SUBROUTINE

SUB

LOGICAL,

SAVE

::

FIRST_TIME

=

.TRUE.

STRUCTURE

/S/

UNION

MAP

INTEGER

I/17/

END

MAP

MAP

INTEGER

J

END

MAP

END

UNION

END

STRUCTURE

RECORD

/S/

LOCAL_STRUCT

INTEGER

LOCAL_VAR

IF

(FIRST_TIME)

THEN

LOCAL_STRUCT.J

=

13

LOCAL_VAR

=

19

FIRST_TIME

=

.FALSE.

ELSE

!

Prints

"

13"

if

compiled

with

-qsave

or

-qsave=all

!

Prints

"

13"

if

compiled

with

-qsave=defaultinit

!

Prints

"

17"

if

compiled

with

-qnosave

PRINT

*,

LOCAL_STRUCT%j

!

Prints

"

19"

if

compiled

with

-qsave

or

-qsave=all

!

Value

of

LOCAL_VAR

is

undefined

otherwise

PRINT

*,

LOCAL_VAR

END

IF

END

SUBROUTINE

SUB

Example

3:

The

last

occurrence

of

default

initialization

in

a

map

declaration

within

a

union

structure

becomes

the

final

initialization

of

the

component

structure

/st/

union

map

integer

i

/3/,

j

/4/

union

map

integer

k

/8/,

l

/9/

end

map

end

union

end

map

map

integer

a,

b

union

map

integer

c

/21/

end

map

end

union

end

map

end

union

end

structure

record

/st/

R

print

*,

R.i,

R.j,

R.k,

R.l

!

Prints

"3

4

21

9"

print

*,

R.a,

R.b,

R.c

!

Prints

"3

4

21"

end

Example

4:

The

following

program

is

compiled

with

-qintsize=4

and

-qalign=struct=packed,

the

components

in

the

union

MAP

are

aligned

and

packed

IBM

Extension

Data

Types

and

Data

Objects

51

structure

/s/

union

map

integer*2

i

/z’1a1a’/,

%FILL,

j

/z’2b2b’/

end

map

map

integer

m,

n

end

map

end

union

end

structure

record

/s/

r

print

’(2z6.4)’,

r.i,

r.j

!

Prints

"1A1A

2B2B"

print

’(2z10.8)’,

r.m,

r.n

!

Prints

"1A1A0000

2B2B0000"

however

!

the

two

bytes

in

the

lower

order

are

!

not

guaranteed.

r.m

=

z’abc00cba’

!

Components

are

initialized

by

!

assignment

statements.

r.n

=

z’02344320’

print

’(2z10.8)’,

r.m,

r.n

!

Prints

"ABC00CBA

02344320"

print

’(2z6.4)’,

r.i,

r.j

!

Prints

"ABC0

0234"

end

End

of

IBM

Extension

Typeless

Literal

Constants

IBM

Extension

A

typeless

constant

does

not

have

an

intrinsic

type

in

XL

Fortran.

Hexadecimal,

octal,

binary,

and

Hollerith

constants

can

be

used

in

any

situation

where

intrinsic

literal

constants

are

used,

except

as

the

length

specification

in

a

type

declaration

statement

(although

typeless

constants

can

be

used

in

a

type_param_value

in

CHARACTER

type

declaration

statements).

The

number

of

digits

recognized

in

a

hexadecimal,

octal,

or

binary

constant

depends

on

the

context

in

which

the

constant

is

used.

Hexadecimal

Constants

The

form

of

a

hexadecimal

constant

is:

hexadecimal_number

is

a

string

composed

of

digits

(0-9)

and

letters

(A-F,

a-f).

Corresponding

uppercase

and

lowercase

letters

are

equivalent.

The

Znn...nn

form

of

a

hexadecimal

constant

can

only

be

used

as

a

data

initialization

value

delimited

by

slashes.

If

this

form

of

a

hexadecimal

constant

is

the

same

string

as

the

name

of

a

constant

you

defined

previously

with

the

PARAMETER

attribute,

XL

Fortran

recognizes

the

string

as

the

named

constant.

��

X

’

hexadecimal_number

’

Z

″

hexadecimal_number

″

’

hexadecimal_number

’

X

″

hexadecimal_number

″

Z

Z

hexadecimal_number

��

IBM

Extension

52

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

If

2x

hexadecimal

digits

are

present,

x

bytes

are

represented.

See

“Using

Typeless

Constants”

on

page

54

for

information

on

how

XL

Fortran

interprets

the

constant.

Examples

of

Hexadecimal

Constants

Z’0123456789ABCDEF’

Z"FEDCBA9876543210

Z’0123456789aBcDeF’

Z0123456789aBcDeF

!

This

form

can

only

be

used

as

an

initialization

value

Octal

Constants

The

form

of

an

octal

constant

is:

octal_number

is

a

string

composed

of

digits

(0-7)

Because

an

octal

digit

represents

3

bits,

and

a

data

object

represents

a

multiple

of

8

bits,

the

octal

constant

may

contain

more

bits

than

are

needed

by

the

data

object.

For

example,

an

INTEGER(2)

data

object

can

be

represented

by

a

6-digit

octal

constant

if

the

leftmost

digit

is

0

or

1;

an

INTEGER(4)

data

object

can

be

represented

by

an

11-digit

constant

if

the

leftmost

digit

is

0,

1,

2,

or

3;

an

INTEGER(8)

can

be

represented

by

a

22-digit

constant

if

the

leftmost

digit

is

0

or

1.

See

“Using

Typeless

Constants”

on

page

54

for

information

on

how

the

constant

is

interpreted

by

XL

Fortran.

Examples

of

Octal

Constants

O’01234567’

"01234567"O

Binary

Constants

The

form

of

a

binary

constant

is:

binary_number

is

a

string

formed

from

the

digits

0

and

1

If

8x

binary

digits

are

present,

x

bytes

are

represented.

See

“Using

Typeless

Constants”

on

page

54

for

information

on

how

XL

Fortran

interprets

the

constant.

��

O

’

octal_number

’

″

octal_number

″

’

octal_number

’

O

″

octal_number

″

��

��

B

’

binary_number

’

″

binary_number

″

’

binary_number

’

B

″

binary_number

″

��

IBM

Extension

Data

Types

and

Data

Objects

53

Examples

of

Binary

Constants

B"10101010"

’10101010’B

Hollerith

Constants

The

form

of

a

Hollerith

constant

is:

A

Hollerith

constant

consists

of

a

nonempty

string

of

characters

capable

of

representation

in

the

processor

and

preceded

by

nH,

where

n

is

a

positive

unsigned

integer

constant

representing

the

number

of

characters

after

the

H.

n

cannot

specify

a

kind

type

parameter.

The

number

of

characters

in

the

string

may

be

from

1

to

255.

Note:

If

you

specify

nH

and

fewer

than

n

characters

are

specified

after

the

n,

any

blanks

that

are

used

to

extend

the

input

line

to

the

right

margin

are

considered

to

be

part

of

the

Hollerith

constant.

A

Hollerith

constant

can

be

continued

on

a

continuation

line.

At

least

n

characters

must

be

available

for

the

Hollerith

constant.

XL

Fortran

also

recognizes

escape

sequences

in

Hollerith

constants,

unless

the

-qnoescape

compiler

option

is

specified.

If

a

Hollerith

constant

contains

an

escape

sequence,

n

is

the

number

of

characters

in

the

internal

representation

of

the

string,

not

the

number

of

characters

in

the

source

string.

(For

example,

2H\"\"

represents

a

Hollerith

constant

for

two

double

quotation

marks.)

XL

Fortran

provides

support

for

multibyte

characters

within

character

constants,

Hollerith

constants,

H

edit

descriptors,

character-string

edit

descriptors,

and

comments.

This

support

is

provided

through

the

-qmbcs

option.

Assignment

of

a

constant

containing

multibyte

characters

to

a

variable

that

is

not

large

enough

to

hold

the

entire

string

may

result

in

truncation

within

a

multibyte

character.

Support

is

also

provided

for

Unicode

characters

and

filenames.

If

the

environment

variable

LANG

is

set

to

UNIVERSAL

and

the

-qmbcs

compiler

option

is

specified,

the

compiler

can

read

and

write

Unicode

characters

and

filenames.

See

“Using

Typeless

Constants”

for

information

on

how

the

constant

is

interpreted

by

XL

Fortran.

Using

Typeless

Constants

The

data

type

and

length

of

a

typeless

constant

are

determined

by

the

context

in

which

you

use

the

typeless

constant.

XL

Fortran

does

not

convert

the

data

type

and

length

until

you

use

them

and

context

is

understood.

v

If

you

compile

your

program

with

the

-qctyplss

compiler

option,

character

initialization

expressions

follow

the

rules

that

apply

to

Hollerith

constants.

v

A

typeless

constant

can

assume

only

one

of

the

intrinsic

data

types.

v

When

you

use

a

typeless

constant

with

an

arithmetic

or

logical

unary

operator,

the

constant

assumes

a

default

integer

type.

v

When

you

use

a

typeless

constant

with

an

arithmetic,

logical,

or

relational

binary

operator,

the

constant

assumes

the

same

data

type

as

the

other

operand.

If

both

��

n

H

character_string

��

IBM

Extension

54

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

operands

are

typeless

constants,

they

assume

a

type

of

default

integer

unless

both

operands

of

a

relational

operator

are

Hollerith

constants.

In

this

case,

they

both

assume

a

character

data

type.

v

When

you

use

a

typeless

constant

in

a

concatenation

operation,

the

constant

assumes

a

character

data

type.

v

When

you

use

a

typeless

constant

as

the

expression

on

the

right-hand

side

of

an

assignment

statement,

the

constant

assumes

the

type

of

the

variable

on

the

left-hand

side.

v

When

you

use

a

typeless

constant

in

a

context

that

requires

a

specific

data

type,

the

constant

assumes

that

data

type.

v

When

you

use

a

typeless

constant

as

an

initial

value

in

a

DATA

statement,

STATIC

statement,

or

type

declaration

statement,

or

as

the

constant

value

of

a

named

constant

in

a

PARAMETER

statement,

or

when

the

typeless

constant

is

to

be

treated

as

any

noncharacter

type

of

data,

the

following

rules

apply:

–

If

a

hexadecimal,

octal,

or

binary

constant

is

smaller

than

the

length

expected,

XL

Fortran

adds

zeros

on

the

left.

If

it

is

longer,

the

compiler

truncates

on

the

left.

–

If

a

Hollerith

constant

is

smaller

than

the

length

expected,

the

compiler

adds

blanks

on

the

right.

If

it

is

longer,

the

compiler

truncates

on

the

right.

–

If

a

typeless

constant

specifies

the

value

of

a

named

constant

with

a

character

data

type

having

inherited

length,

the

named

constant

has

a

length

equal

to

the

number

of

bytes

specified

by

the

typeless

constant.
v

When

a

typeless

constant

is

treated

as

an

object

of

type

character

(except

when

used

as

an

initial

value

in

a

DATA,

STATIC,

type

declaration,

or

component

definition

statement).

v

When

you

use

a

typeless

constant

as

part

of

a

complex

constant,

the

constant

assumes

the

data

type

of

the

other

part

of

the

complex

constant.

If

both

parts

are

typeless

constants,

the

constants

assume

the

real

data

type

with

length

sufficient

to

represent

both

typeless

constants.

v

When

you

use

a

typeless

constant

as

an

actual

argument,

the

type

of

the

corresponding

dummy

argument

must

be

an

intrinsic

data

type.

The

dummy

argument

must

not

be

a

procedure,

pointer,

array,

object

of

derived

type,

or

alternate

return

specifier.

v

When

you

use

a

typeless

constant

as

an

actual

argument,

and:

–

The

procedure

reference

is

to

a

generic

intrinsic

procedure,

–

All

of

the

arguments

are

typeless

constants,

and

–

There

is

a

specific

intrinsic

procedure

that

has

the

same

name

as

the

generic

procedure

name,

the

reference

to

the

generic

name

will

be

resolved

through

the

specific

procedure.

v

When

you

use

a

typeless

constant

as

an

actual

argument,

and:

–

The

procedure

reference

is

to

a

generic

intrinsic

procedure,

–

All

of

the

arguments

are

typeless

constants,

and

–

There

is

no

specific

intrinsic

procedure

that

has

the

same

name

as

the

generic

procedure

name,

the

typeless

constant

is

converted

to

default

integer.

If

a

specific

intrinsic

function

takes

integer

arguments,

the

reference

is

resolved

through

that

specific

function.

If

there

are

no

specific

intrinsic

functions,

the

reference

is

resolved

through

the

generic

function.

v

When

you

use

a

typeless

constant

as

an

actual

argument,

and:

IBM

Extension

Data

Types

and

Data

Objects

55

–

The

procedure

reference

is

to

a

generic

intrinsic

procedure,

and

–

There

is

another

argument

specified

that

is

not

a

typeless

constant,

the

typeless

constant

assumes

the

type

of

that

argument.

However,

if

you

specify

the

compiler

option

-qport=typlssarg,

the

actual

argument

is

converted

to

default

integer.

The

selected

specific

intrinsic

procedure

is

based

on

that

type.

v

When

you

use

a

typeless

constant

as

an

actual

argument,

and

the

procedure

name

is

established

to

be

generic

but

is

not

an

intrinsic

procedure,

the

generic

procedure

reference

must

resolve

to

only

one

specific

procedure.

The

constant

assumes

the

data

type

of

the

corresponding

dummy

argument

of

that

specific

procedure.

For

example:

INTERFACE

SUB

SUBROUTINE

SUB1(

A

)

REAL

A

END

SUBROUTINE

SUBROUTINE

SUB2(

A,

B

)

REAL

A,

B

END

SUBROUTINE

SUBROUTINE

SUB3(

I

)

INTEGER

I

END

SUBROUTINE

END

INTERFACE

CALL

SUB(’C0600000’X,

’40066666’X)

!

Resolves

to

SUB2

CALL

SUB(’00000000’X)

!

Invalid

-

ambiguous,

may

!

resolve

to

either

SUB1

or

SUB3

v

When

you

use

a

typeless

constant

as

an

actual

argument,

and

the

procedure

name

is

established

to

be

only

specific,

the

constant

assumes

the

data

type

of

the

corresponding

dummy

argument.

v

When

you

use

a

typeless

constant

as

an

actual

argument,

and:

–

The

procedure

name

has

not

been

established

to

be

either

generic

or

specific,

and

–

The

constant

has

been

passed

by

reference,

the

constant

assumes

the

default

integer

size

but

no

data

type,

unless

it

is

a

Hollerith

constant.

The

default

for

passing

a

Hollerith

constant

is

the

same

as

if

it

were

a

character

actual

argument.

However,

using

the

compiler

option

-qctyplss=arg

will

cause

a

Hollerith

constant

to

be

passed

as

if

it

were

an

integer

actual

argument.

See

“Resolution

of

Procedure

References”

on

page

164

for

more

information

about

establishing

a

procedure

name

to

be

generic

or

specific.

v

When

you

use

a

typeless

constant

as

an

actual

argument,

and:

–

The

procedure

name

has

not

been

established

to

be

either

generic

or

specific,

and

–

The

constant

has

been

passed

by

value,

the

constant

is

passed

as

if

it

were

a

default

integer

for

hexadecimal,

binary,

and

octal

constants.

If

the

constant

is

a

Hollerith

constant

and

it

is

smaller

than

the

size

of

a

default

integer,

XL

Fortran

adds

blanks

on

the

right.

If

the

constant

is

a

Hollerith

constant

and

it

is

larger

than

8

bytes,

XL

Fortran

truncates

the

rightmost

Hollerith

characters.

See

“Resolution

of

Procedure

References”

on

page

164

for

more

information

about

establishing

a

procedure

name

to

be

generic

or

specific.

v

When

you

use

a

typeless

constant

in

any

other

context,

the

constant

assumes

the

default

integer

type,

with

the

exception

of

Hollerith

constants.

Hollerith

constants

assume

a

character

data

type

when

used

in

the

following

situations:

–

An

H

edit

descriptor

IBM

Extension

56

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

–

A

relational

operation

with

both

operands

being

Hollerith

constants

–

An

input/output

list
v

If

a

typeless

constant

is

to

be

treated

as

a

default

integer

but

the

value

cannot

be

represented

within

the

value

range

for

a

default

integer,

the

constant

is

promoted

to

a

representable

kind.

v

A

kind

type

parameter

must

not

be

replaced

with

a

logical

constant

even

if

-qintlog

is

on,

nor

by

a

character

constant

even

if

-qctyplss

is

on,

nor

can

it

be

a

typeless

constant.

Examples

of

Typeless

Constants

in

Expressions

INT=B’1’

!

Binary

constant

is

default

integer

RL4=X’1’

!

Hexadecimal

constant

is

default

real

INT=INT

+

O’1’

!

Octal

constant

is

default

integer

RL4=INT

+

B’1’

!

Binary

constant

is

default

integer

INT=RL4

+

Z’1’

!

Hexadecimal

constant

is

default

real

ARRAY(O’1’)=1.0

!

Octal

constant

is

default

integer

LOGICAL(8)

LOG8

LOG8=B’1’

!

Binary

constant

is

LOGICAL(8),

LOG8

is

.TRUE.

End

of

IBM

Extension

How

Type

Is

Determined

Each

user-defined

function

or

named

entity

has

a

data

type.

The

type

of

an

entity

accessed

by

host

or

use

association

is

determined

in

the

host

scoping

unit

or

accessed

module,

respectively.

The

type

of

a

name

is

determined,

in

the

following

sequence,

in

one

of

three

ways:

1.

Explicitly,

in

one

of

the

following

ways:

v

From

a

specified

type

declaration

statement

(see

“Type

Declaration”

on

page

378

for

details).

v

For

function

results,

from

a

specified

type

statement

or

its

FUNCTION

statement.
2.

Implicitly,

from

a

specified

IMPLICIT

type

statement

(see

“IMPLICIT”

on

page

306

for

details).

3.

Implicitly,

by

predefined

convention.

By

default

(that

is,

in

the

absence

of

an

IMPLICIT

type

statement),

if

the

first

letter

of

the

name

is

I,

J,

K,

L,

M,

or

N,

the

type

is

default

integer.

Otherwise,

the

type

is

default

real.

In

a

given

scoping

unit,

if

a

letter,

dollar

sign,

or

underscore

has

not

been

specified

in

an

IMPLICIT

statement,

the

implicit

type

used

is

the

same

as

the

implicit

type

used

by

the

host

scoping

unit.

A

program

unit

and

interface

body

are

treated

as

if

they

had

a

host

with

an

IMPLICIT

statement

listing

the

predefined

conventions.

The

data

type

of

a

literal

constant

is

determined

by

its

form.

Definition

Status

of

Variables

A

variable

is

defined

or

undefined,

and

its

definition

status

can

change

during

program

execution.

A

named

constant

has

a

value

and

cannot

be

defined

or

redefined

during

program

execution.

IBM

Extension

Data

Types

and

Data

Objects

57

Arrays

(including

sections),

structures,

and

variables

of

character

or

complex

type

are

objects

made

up

of

zero

or

more

subobjects.

Associations

can

be

established

between

variables

and

subobjects

and

between

subobjects

of

different

variables.

v

An

object

is

defined

if

all

of

its

subobjects

are

defined.

That

is,

each

object

or

subobject

has

a

value

that

does

not

change

until

it

becomes

undefined

or

until

it

is

redefined

with

a

different

value.

v

If

an

object

is

undefined,

at

least

one

of

its

subobjects

is

undefined.

An

undefined

object

or

subobject

cannot

provide

a

predictable

value.

Variables

are

initially

defined

if

they

are

specified

to

have

initial

values

by

DATA

statements,

type

declaration

statements,

or

STATIC

statements.

In

addition,

default

initialization

may

cause

a

variable

to

be

initially

defined.

Zero-sized

arrays

and

zero-length

character

objects

are

always

defined.

All

other

variables

are

initially

undefined.

Events

Causing

Definition

The

following

events

will

cause

a

variable

to

become

defined:

1.

Execution

of

an

intrinsic

assignment

statement

other

than

a

masked

array

assignment

statement

or

FORALL

assignment

statement

causes

the

variable

that

precedes

the

equal

sign

to

become

defined.

Execution

of

a

defined

assignment

statement

may

cause

all

or

part

of

the

variable

that

precedes

the

equal

sign

to

become

defined.

2.

Execution

of

a

masked

array

assignment

statement

or

FORALL

assignment

statement

may

cause

some

or

all

of

the

array

elements

in

the

assignment

statement

to

become

defined.

3.

As

execution

of

an

input

statement

proceeds,

each

variable

that

is

assigned

a

value

from

the

input

file

becomes

defined

at

the

time

that

data

are

transferred

to

it.

Execution

of

a

WRITE

statement

whose

unit

specifier

identifies

an

internal

file

causes

each

record

that

is

written

to

become

defined.

4.

Execution

of

a

DO

statement

causes

the

DO

variable,

if

any,

to

become

defined.

Fortran

95

5.

Default

initialization

may

cause

a

variable

to

be

initially

defined.

End

of

Fortran

95

6.

Beginning

of

execution

of

the

action

specified

by

an

implied-DO

list

in

an

input/output

statement

causes

the

implied-DO

variable

to

become

defined.

7.

Execution

of

an

ASSIGN

statement

causes

the

variable

in

the

statement

to

become

defined

with

a

statement

label

value.

8.

A

reference

to

a

procedure

causes

the

entire

dummy

argument

data

object

to

become

defined

if

the

dummy

argument

does

not

have

INTENT(OUT),

and

the

entire

corresponding

actual

argument

is

defined

with

a

value

that

is

not

a

statement

label.

A

reference

to

a

procedure

causes

a

subobject

of

a

dummy

argument

that

does

not

have

INTENT(OUT)

to

become

defined

if

the

corresponding

subobject

of

the

corresponding

actual

argument

is

defined.

9.

Execution

of

an

input/output

statement

containing

an

IOSTAT=

specifier

causes

the

specified

integer

variable

to

become

defined.

58

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

10.

Execution

of

a

READ

statement

containing

a

SIZE=

specifier

causes

the

specified

integer

variable

to

become

defined.

11.

Execution

of

an

INQUIRE

statement

causes

any

variable

that

is

assigned

a

value

during

the

execution

of

the

statement

to

become

defined

if

no

error

condition

exists.

12.

When

a

character

storage

unit

becomes

defined,

all

associated

character

storage

units

become

defined.

When

a

numeric

storage

unit

becomes

defined,

all

associated

numeric

storage

units

of

the

same

type

become

defined,

except

that

variables

associated

with

the

variable

in

an

ASSIGN

statement

become

undefined

when

the

ASSIGN

statement

is

executed.

When

an

entity

of

type

DOUBLE

PRECISION

becomes

defined,

all

totally

associated

entities

of

double

precision

real

type

become

defined.

A

nonpointer

scalar

object

of

type

nondefault

integer,

real

other

than

default

or

double

precision,

nondefault

logical,

nondefault

complex,

nondefault

character

of

any

length,

or

nonsequence

type

occupies

a

single

unspecified

storage

unit

that

is

different

for

each

case.

A

pointer

that

is

distinct

from

other

pointers

in

at

least

one

of

type,

kind,

and

rank

occupies

a

single

unspecified

storage

unit.

When

an

unspecified

storage

unit

becomes

defined,

all

associated

unspecified

storage

units

become

defined.

13.

When

a

default

complex

entity

becomes

defined,

all

partially

associated

default

real

entities

become

defined.

14.

When

both

parts

of

a

default

complex

entity

become

defined

as

a

result

of

partially

associated

default

real

or

default

complex

entities

becoming

defined,

the

default

complex

entity

becomes

defined.

15.

When

all

components

of

a

numeric

sequence

structure

or

character

sequence

structure

become

defined

as

a

result

of

partially

associated

objects

becoming

defined,

the

structure

becomes

defined.

16.

Execution

of

an

ALLOCATE

or

DEALLOCATE

statement

with

a

STAT=

specifier

causes

the

variable

specified

by

the

STAT=

specifier

to

become

defined.

17.

Allocation

of

a

zero-sized

array

causes

the

array

to

become

defined.

18.

Invocation

of

a

procedure

causes

any

automatic

object

of

zero

size

in

that

procedure

to

become

defined.

19.

Execution

of

a

pointer

assignment

statement

that

associates

a

pointer

with

a

target

that

is

defined

causes

the

pointer

to

become

defined.

20.

Invocation

of

a

procedure

that

contains

a

nonpointer,

nonallocatable,

automatic

object,

causes

all

nonpointer

default-initialized

subcomponents

of

the

object

to

become

defined.

21.

Invocation

of

a

procedure

that

contains

a

nonpointer

nonallocatable

INTENT(OUT)

dummy

argument

causes

all

nonpointer

default-initialized

subcomponents

of

the

object

to

become

defined.

22.

Allocation

of

an

object

of

a

derived

type

where

a

nonpointer

component

is

initialized

by

default

initialization,

causes

the

component

and

its

subobjects

to

become

defined.

Fortran

95

23.

In

a

FORALL

statement

or

construct

used

in

Fortran

95,

the

index-name

becomes

defined

when

the

index-name

value

set

is

evaluated.

End

of

Fortran

95

Data

Types

and

Data

Objects

59

Events

Causing

Undefinition

The

following

events

will

cause

a

variable

to

become

undefined:

1.

When

a

variable

of

a

given

type

becomes

defined,

all

associated

variables

of

different

type

become

undefined.

However,

when

a

variable

of

type

default

real

is

partially

associated

with

a

variable

of

type

default

complex,

the

complex

variable

does

not

become

undefined

when

the

real

variable

becomes

defined

and

the

real

variable

does

not

become

undefined

when

the

complex

variable

becomes

defined.

When

a

variable

of

type

default

complex

is

partially

associated

with

another

variable

of

type

default

complex,

definition

of

one

does

not

cause

the

other

to

become

undefined.

2.

Execution

of

an

ASSIGN

statement

causes

the

variable

in

the

statement

to

become

undefined

as

an

integer.

Variables

that

are

associated

with

the

variable

also

become

undefined.

3.

If

the

evaluation

of

a

function

may

cause

an

argument

of

the

function

or

a

variable

in

a

module

or

in

a

common

block

to

become

defined,

and

if

a

reference

to

the

function

appears

in

an

expression

in

which

the

value

of

the

function

is

not

needed

to

determine

the

value

of

the

expression,

the

argument

or

variable

becomes

undefined

when

the

expression

is

evaluated.

4.

The

execution

of

a

RETURN

statement

or

END

statement

within

a

subprogram

causes

all

variables

that

are

local

to

its

scoping

unit,

or

that

are

local

to

the

current

instance

of

its

scoping

unit

for

a

recursive

invocation,

to

become

undefined,

except

for

the

following:

a.

Variables

with

the

SAVE

or

STATIC

attribute.

b.

Variables

in

blank

common.

c.

According

to

Fortran

90,

variables

in

a

named

common

block

that

appears

in

the

subprogram

and

appears

in

at

least

one

other

scoping

unit

that

is

making

either

a

direct

or

indirect

reference

to

the

subprogram.

XL

Fortran

does

not

undefine

these

variables.

d.

Variables

accessed

from

the

host

scoping

unit.

e.

According

to

Fortran

90,

variables

accessed

from

a

module

that

also

is

referenced

directly

or

indirectly

by

at

least

one

other

scoping

unit

that

is

making

either

a

direct

or

indirect

reference

to

the

subprogram.

XL

Fortran

does

not

undefine

these

variables.

f.

According

to

Fortran

90,

variables

in

a

named

common

block

that

are

initially

defined

and

that

have

not

been

subsequently

defined

or

redefined.

XL

Fortran

does

not

undefine

these

variables.

5.

When

an

error

condition

or

end-of-file

condition

occurs

during

execution

of

an

input

statement,

all

of

the

variables

specified

by

the

input

list

or

namelist-group

of

the

statement

become

undefined.

6.

When

an

error

condition,

end-of-file

condition,

or

end-of-record

condition

occurs

during

execution

of

an

input/output

statement

and

the

statement

contains

any

implied-DO

lists,

all

of

the

implied-DO

variables

in

the

statement

become

undefined.

7.

Execution

of

a

defined

assignment

statement

may

leave

all

or

part

of

the

variable

that

precedes

the

equal

sign

undefined.

8.

Execution

of

a

direct

access

input

statement

that

specifies

a

record

that

has

not

been

written

previously

causes

all

of

the

variables

specified

by

the

input

list

of

the

statement

to

become

undefined.

9.

Execution

of

an

INQUIRE

statement

may

cause

the

NAME=,

RECL=,

and

NEXTREC=

variables

to

become

undefined.

60

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

10.

When

a

character

storage

unit

becomes

undefined,

all

associated

character

storage

units

become

undefined.

When

a

numeric

storage

unit

becomes

undefined,

all

associated

numeric

storage

units

become

undefined

unless

the

undefinition

is

a

result

of

defining

an

associated

numeric

storage

unit

of

different

type

(see

(1)

above).

When

an

entity

of

double

precision

real

type

becomes

undefined,

all

totally

associated

entities

of

double

precision

real

type

become

undefined.

When

an

unspecified

storage

unit

becomes

undefined,

all

associated

unspecified

storage

units

become

undefined.

11.

A

reference

to

a

procedure

causes

part

of

a

dummy

argument

to

become

undefined

if

the

corresponding

part

of

the

actual

argument

is

defined

with

a

value

that

is

a

statement

label

value.

12.

When

an

allocatable

entity

is

deallocated,

it

becomes

undefined.

Successful

execution

of

an

ALLOCATE

statement

for

a

nonzero-sized

object

for

which

default

initialization

has

not

been

specified

causes

the

object

to

become

undefined.

13.

Execution

of

an

INQUIRE

statement

causes

all

inquiry

specifier

variables

to

become

undefined

if

an

error

condition

exists,

except

for

the

variable

in

the

IOSTAT=

specifier,

if

any.

14.

When

a

procedure

is

invoked:

a.

An

optional

dummy

argument

that

is

not

associated

with

an

actual

argument

is

undefined.

b.

A

nonpointer

dummy

argument

with

INTENT(OUT)

and

its

associated

actual

argument

are

undefined,

except

for

nonpointer

direct

components

that

have

default

initialization.

c.

A

pointer

dummy

argument

with

INTENT(OUT)

and

its

associated

actual

argument

have

an

association

status

of

undefined.

d.

A

subobject

of

a

dummy

argument

is

undefined

if

the

corresponding

subobject

of

the

actual

argument

is

undefined.

e.

The

function

result

variable

is

undefined,

unless

it

was

declared

with

the

STATIC

attribute

and

was

defined

in

a

previous

invocation.
15.

When

the

association

status

of

a

pointer

becomes

undefined

or

disassociated,

the

pointer

becomes

undefined.

Fortran

95

16.

When

the

execution

of

a

FORALL

statement

or

construct

in

Fortran

95

has

completed,

the

index-name

becomes

undefined.

End

of

Fortran

95

IBM

Extension

17.

When

a

variable

is

specified

in

the

NEW

clause

of

an

INDEPENDENT

directive,

the

variable

is

undefined

at

the

beginning

of

every

iteration

of

the

following

DO

loop.

End

of

IBM

Extension

Allocation

Status

The

allocation

status

of

an

allocatable

object

is

one

of

the

following

during

program

execution:

Data

Types

and

Data

Objects

61

v

Not

currently

allocated,

which

means

that

the

object

has

never

been

allocated

or

that

the

last

operation

on

it

was

a

deallocation.

v

Currently

allocated,

which

means

that

the

object

has

been

allocated

by

an

ALLOCATE

statement

and

has

not

been

subsequently

deallocated.

v

Undefined,

which

means

that

the

object

does

not

have

the

SAVE

or

STATIC

attribute

and

was

currently

allocated

when

execution

of

a

RETURN

or

END

statement

resulted

in

no

executing

scoping

units

having

access

to

it.

IBM

Extension

In

XL

Fortran,

this

status

is

only

available

when

you

are

using

the

-qxlf90=noautodealloc

option.

(For

example,

you

are

using

the

xlf90

compilation

command.)

End

of

IBM

Extension

If

the

allocation

status

of

an

allocatable

object

is

currently

allocated,

the

object

may

be

referenced

and

defined.

An

allocatable

object

that

is

not

currently

allocated

must

not

be

referenced

or

defined.

If

the

allocation

status

of

an

allocatable

object

is

undefined,

the

object

must

not

be

referenced,

defined,

allocated,

or

deallocated.

When

the

allocation

status

of

an

allocatable

object

changes,

the

allocation

status

of

any

associated

allocatable

object

changes

accordingly.

IBM

Extension

In

XL

Fortran,

the

allocation

status

of

such

an

object

remains

currently

allocated.

End

of

IBM

Extension

Fortran

95

In

Fortran

95,

the

allocation

status

of

an

allocatable

object

that

is

declared

in

the

scope

of

a

module

is

processor

dependent

if

it

does

not

have

the

SAVE

attribute

and

was

currently

allocated

when

execution

of

a

RETURN

or

END

statement

resulted

in

no

executing

scoping

units

referencing

the

module.

End

of

Fortran

95

Storage

Classes

for

Variables

IBM

Extension

Note:

This

section

pertains

only

to

storage

for

variables.

Named

constants

and

their

subobjects

have

a

storage

class

of

literal.

Fundamental

Storage

Classes

All

variables

are

ultimately

represented

by

one

of

five

storage

classes:

Automatic

for

variables

in

a

procedure

that

will

not

be

retained

once

the

procedure

ends.

Variables

reside

in

the

stack

storage

area.

Static

for

variables

that

retain

memory

throughout

the

program.

Variables

reside

in

the

data

storage

area.

Uninitialized

variables

reside

in

the

bss

storage

area.

62

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Common

for

common

block

variables.

If

a

common

block

variable

is

initialized,

the

whole

block

resides

in

the

data

storage

area;

otherwise,

the

whole

block

resides

in

the

bss

storage

area.

Controlled

Automatic

for

automatic

objects.

Variables

reside

in

the

stack

storage

area.

XL

Fortran

allocates

storage

on

entry

to

the

procedure

and

deallocates

the

storage

when

the

procedure

completes.

Controlled

for

allocatable

objects.

Variables

reside

in

the

heap

storage

area.

You

must

explicitly

allocate

and

deallocate

the

storage.

Secondary

Storage

Classes

None

of

the

following

storage

classes

own

their

own

storage,

but

are

associated

with

a

fundamental

storage

class

at

run

time.

Pointee

is

dependent

on

the

value

of

the

corresponding

integer

pointer.

Reference

parameter

is

a

dummy

argument

whose

actual

argument

is

passed

to

a

procedure

using

the

default

passing

method

or

%REF.

Value

parameter

is

a

dummy

argument

whose

actual

argument

is

passed

by

value

to

a

procedure.

For

details

on

passing

methods,

see

“%VAL

and

%REF”

on

page

157.

Storage

Class

Assignment

Variable

names

are

assigned

storage

classes

in

one

of

the

following

ways:

1.

Explicitly:

v

Dummy

arguments

have

an

explicit

storage

class

of

reference

parameter

or

value

parameter.

See

“%VAL

and

%REF”

on

page

157

for

more

details.

v

Pointee

variables

have

an

explicit

storage

class

of

pointee.

v

Variables

for

which

the

STATIC

attribute

is

explicitly

specified

have

an

explicit

storage

class

of

static.

v

Variables

for

which

the

AUTOMATIC

attribute

is

explicitly

specified

have

an

explicit

storage

class

of

automatic.

v

Variables

that

appear

in

a

COMMON

block

have

an

explicit

storage

class

of

common.

v

Variables

for

which

the

SAVE

attribute

is

explicitly

specified

have

an

explicit

storage

class

of

static,

unless

they

also

appear

in

a

COMMON

statement,

in

which

case

their

storage

class

is

common.

v

Variables

that

appear

in

a

DATA

statement

or

are

initialized

in

a

type

declaration

statement

have

an

explicit

storage

class

of

static,

unless

they

also

appear

in

a

COMMON

statement,

in

which

case

their

storage

class

is

common.

v

Function

result

variables

that

are

of

type

character

or

derived

have

the

explicit

storage

class

of

reference

parameter.

v

Function

result

variables

that

do

not

have

the

SAVE

or

STATIC

attribute

have

an

explicit

storage

class

of

automatic.

v

Automatic

objects

have

an

explicit

storage

class

of

controlled

automatic.

v

Allocatable

objects

have

an

explicit

storage

class

of

controlled.

Storage

Classes

for

Variables

-

IBM

Extension

Data

Types

and

Data

Objects

63

A

variable

that

does

not

satisfy

any

of

the

above,

but

that

is

equivalenced

with

a

variable

that

has

an

explicit

storage

class,

inherits

that

explicit

storage

class.

A

variable

that

does

not

satisfy

any

of

the

above,

and

is

not

equivalenced

with

a

variable

that

has

an

explicit

storage

class,

has

an

explicit

storage

class

of

static

if:

v

A

SAVE

statement

with

no

list

exists

in

the

scoping

unit

or,

v

The

variable

is

declared

in

the

specification

part

of

a

main

program.
2.

Implicitly:

If

a

variable

does

not

have

an

explicit

storage

class,

it

can

be

assigned

an

implicit

storage

class

as

follows:

v

Variables

whose

names

begin

with

a

letter,

dollar

sign

or

underscore

that

appears

in

an

IMPLICIT

STATIC

statement

have

a

storage

class

of

static.

v

Variables

whose

names

begin

with

a

letter,

dollar

sign

or

underscore

that

appears

in

an

IMPLICIT

AUTOMATIC

statement

have

a

storage

class

of

automatic.

In

a

given

scoping

unit,

if

a

letter,

dollar

sign

or

underscore

has

not

been

specified

in

an

IMPLICIT

STATIC

or

IMPLICIT

AUTOMATIC

statement,

the

implicit

storage

class

is

the

same

as

that

in

the

host.

Variables

declared

in

the

specification

part

of

a

module

are

associated

with

the

static

storage

class.

A

variable

that

does

not

satisfy

any

of

the

above

but

that

is

equivalenced

with

a

variable

that

has

an

implicit

storage

class,

inherits

that

implicit

storage

class.

3.

Default:

All

other

variables

have

the

default

storage

class:

v

Static,

if

you

specified

the

-qsave=all

compiler

option.

v

Static,

for

variables

of

derived

type

that

have

default

initialization

specified,

and

automatic

otherwise

if

you

specify

the

–qsave=defaultinit

compiler

option.

v

Automatic,

if

you

specified

the

-qnosave

compiler

option.

This

is

the

default

setting.

See

-qsave

Option

in

the

User’s

Guide

for

details

on

the

default

settings

with

regard

to

the

invocation

commands.

End

of

IBM

Extension

Storage

Classes

for

Variables

-

IBM

Extension

64

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Array

Concepts

Fortran

90

and

Fortran

95

provide

a

set

of

features,

commonly

referred

to

as

array

language,

that

let

programmers

manipulate

arrays.

This

section

provides

background

information

on

arrays

and

array

language:

v

“Arrays”

v

“Array

Declarators”

on

page

67

v

“Explicit-Shape

Arrays”

on

page

68

v

“Assumed-Shape

Arrays”

on

page

69

v

“Deferred-Shape

Arrays”

on

page

70

v

“Assumed-Size

Arrays”

on

page

72

v

“Array

Elements”

on

page

74

v

“Array

Sections”

on

page

75

v

“Array

Constructors”

on

page

81

v

“Expressions

Involving

Arrays”

on

page

83

Related

Information:

v

Many

statements

in

“Statements

and

Attributes”

on

page

223,

have

special

features

and

rules

for

arrays.

v

This

section

makes

frequent

use

of

the

DIMENSION

statement.

See

“DIMENSION”

on

page

262.

v

A

number

of

intrinsic

functions

are

especially

for

arrays.

These

functions

are

mainly

those

classified

as

“Transformational

Intrinsic

Functions”

on

page

422.

Arrays

An

array

is

an

ordered

sequence

of

scalar

data.

All

the

elements

of

an

array

have

the

same

type

and

type

parameters.

A

whole

array

is

denoted

by

the

name

of

the

array:

!

In

this

declaration,

the

array

is

given

a

type

and

dimension

REAL,

DIMENSION(3)

::

A

!

In

these

expressions,

each

element

is

evaluated

in

each

expression

PRINT

*,

A,

A+5,

COS(A)

A

whole

array

is

either

a

named

constant

or

a

variable.

Bounds

of

a

Dimension

Each

dimension

in

an

array

has

an

upper

and

lower

bound,

which

determine

the

range

of

values

that

can

be

used

as

subscripts

for

that

dimension.

The

bound

of

a

dimension

can

be

positive,

negative,

or

zero.

IBM

Extension

In

XL

Fortran,

the

bound

of

a

dimension

can

be

positive,

negative

or

zero

within

the

range

-(2**31)

to

2**31-1.

End

of

IBM

Extension

©

Copyright

IBM

Corp.

1990,

2003

65

If

any

lower

bound

is

greater

than

the

corresponding

upper

bound,

the

array

is

a

zero-sized

array,

which

has

no

elements

but

still

has

the

properties

of

an

array.

The

lower

and

upper

bounds

of

such

a

dimension

are

one

and

zero,

respectively.

When

the

bounds

are

specified

in

array

declarators:

v

The

lower

bound

is

a

specification

expression.

If

it

is

omitted,

the

default

value

is

1.

v

The

upper

bound

is

a

specification

expression

or

asterisk

(*),

and

has

no

default

value.

Related

Information:

v

“Specification

Expressions”

on

page

88

v

“LBOUND(ARRAY,

DIM)”

on

page

476

v

“UBOUND(ARRAY,

DIM)”

on

page

536

Extent

of

a

Dimension

The

extent

of

a

dimension

is

the

number

of

elements

in

that

dimension,

computed

as

the

value

of

the

upper

bound

minus

the

value

of

the

lower

bound,

plus

one.

INTEGER,

DIMENSION(5)

::

X

!

Extent

=

5

REAL

::

Y(2:4,3:6)

!

Extent

in

1st

dimension

=

3

!

Extent

in

2nd

dimension

=

4

The

minimum

extent

is

zero,

in

a

dimension

where

the

lower

bound

is

greater

than

the

upper

bound.

IBM

Extension

The

theoretical

maximum

number

of

elments

in

an

array

is

2**31-1.

Hardware

addressing

considerations

make

it

impractical

to

declare

any

combination

of

data

objects

whose

total

size

(in

bytes)

exceeds

this

value.

End

of

IBM

Extension

Different

array

declarators

that

are

associated

by

common,

equivalence,

or

argument

association

can

have

different

ranks

and

extents.

Rank,

Shape,

and

Size

of

an

Array

The

rank

of

an

array

is

the

number

of

dimensions

it

has:

INTEGER,

DIMENSION

(10)

::

A

!

Rank

=

1

REAL,

DIMENSION

(-5:5,100)

::

B

!

Rank

=

2

According

to

Fortran

95,

an

array

can

have

from

one

to

seven

dimensions.

IBM

Extension

An

array

can

have

from

one

to

twenty

dimensions

in

XL

Fortran.

End

of

IBM

Extension

A

scalar

is

considered

to

have

rank

zero.

The

shape

of

an

array

is

derived

from

its

rank

and

extents.

It

can

be

represented

as

a

rank-one

array

where

each

element

is

the

extent

of

the

corresponding

dimension:

66

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

INTEGER,

DIMENSION

(10,10)

::

A

!

Shape

=

(/

10,

10

/)

REAL,

DIMENSION

(-5:4,1:10,10:19)

::

B

!

Shape

=

(/

10,

10,

10

/)

The

size

of

an

array

is

the

number

of

elements

in

it,

equal

to

the

product

of

the

extents

of

all

dimensions:

INTEGER

A(5)

!

Size

=

5

REAL

B(-1:0,1:3,4)

!

Size

=

2

*

3

*

4

=

24

Related

Information

v

These

examples

show

only

simple

arrays

where

all

bounds

are

constants.

For

instructions

on

calculating

the

values

of

these

properties

for

more

complicated

kinds

of

arrays,

see

the

following

sections.

v

Related

intrinsic

functions

are

“SHAPE(SOURCE)”

on

page

519,

and

“SIZE(ARRAY,

DIM)”

on

page

523.

The

rank

of

an

array

A

is

SIZE(SHAPE(A)).

Array

Declarators

An

array

declarator

declares

the

shape

of

an

array.

You

must

declare

every

named

array,

and

no

scoping

unit

can

have

more

than

one

array

declarator

for

the

same

name.

An

array

declarator

can

appear

in

the

following

statements:

COMMON,

integer

POINTER,

STATIC,

AUTOMATIC,

DIMENSION,

ALLOCATABLE,

POINTER,

TARGET

and

type

declaration.

For

example:

DIMENSION

::

A(1:5)

!

Declarator

is

"(1:5)"

REAL,

DIMENSION(1,1:5)

::

B

!

Declarator

is

"(1,1:5)"

INTEGER

C(10)

!

Declarator

is

"(10)"

Pointers

can

be

scalars,

assumed-shape

arrays

or

explicit-shape

arrays.

The

form

of

an

array

declarator

is:

��

(

array_spec

)

��

array_spec

is

an

array

specification.

It

is

a

list

of

dimension

declarators,

each

of

which

establishes

the

lower

and

upper

bounds

of

an

array,

or

specifies

that

one

or

both

will

be

set

at

run

time.

Each

dimension

requires

one

dimension

declarator.

IBM

Extension

An

array

can

have

from

one

to

twenty

dimensions

in

XL

Fortran.

End

of

IBM

Extension

An

array_spec

is

one

of:

explicit_shape_spec_list

assumed_shape_spec_list

deferred_shape_spec_list

assumed_size_spec

Array

Concepts

67

Each

array_spec

declares

a

different

kind

of

array,

as

explained

in

the

following

sections.

Explicit-Shape

Arrays

Explicit-shape

arrays

are

arrays

where

the

bounds

are

explicitly

specified

for

each

dimension.

Explicit_shape_spec_list

��

�

,

upper_bound

lower_bound

:

��

lower_bound,

upper_bound

are

specification

expressions

If

any

bound

is

not

constant,

the

array

must

be

declared

inside

a

subprogram.

The

nonconstant

bounds

are

determined

on

entry

to

the

subprogram.

If

a

lower

bound

is

omitted,

its

default

value

is

one.

The

rank

is

the

number

of

specified

upper

bounds.

The

shape

of

an

explicit-shape

dummy

argument

can

differ

from

that

of

the

corresponding

actual

argument.

The

size

is

determined

by

the

specified

bounds.

Examples

of

Explicit-Shape

Arrays

INTEGER

A,B,C(1:10,-5:5)

!

All

bounds

are

constant

A=8;

B=3

CALL

SUB1(A,B,C)

END

SUBROUTINE

SUB1(X,Y,Z)

INTEGER

X,Y,Z(X,Y)

!

Some

bounds

are

not

constant

END

SUBROUTINE

Automatic

Arrays

An

automatic

array

is

an

explicit-shape

array

that

is

declared

in

a

subprogram,

is

not

a

dummy

argument

or

pointee

array,

and

has

at

least

one

bound

that

is

a

nonconstant

specification

expression..

The

bounds

are

evaluated

on

entry

to

the

subprogram

and

remain

unchanged

during

execution

of

the

subprogram.

INTEGER

X

COMMON

X

X

=

10

CALL

SUB1(5)

END

SUBROUTINE

SUB1(Y)

INTEGER

X

COMMON

X

INTEGER

Y

REAL

Z

(X:20,

1:Y)

!

Automatic

array.

Here

the

bounds

are

made

!

available

through

dummy

arguments

and

common

!

blocks,

although

Z

itself

is

not

a

dummy

END

SUBROUTINE

!

argument.

68

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Related

Information

v

For

general

information

about

automatic

data

objects,

see

“Automatic

Objects”

on

page

22

and

“Storage

Classes

for

Variables”

on

page

62.

Adjustable

Arrays

An

adjustable

array

is

an

explicit-shape

array

that

is

declared

in

a

subprogram

and

has

at

least

one

bound

that

is

a

nonconstant

specification

expression.

An

adjustable

array

must

be

a

dummy

argument.

SUBROUTINE

SUB1(X,

Y)

INTEGER

X,

Y(X*3)

!

Adjustable

array.

Here

the

bounds

depend

on

a

!

dummy

argument,

and

the

array

name

is

also

passed

in.

END

SUBROUTINE

Pointee

Arrays

IBM

Extension

Pointee

arrays

are

explicit-shape

or

assumed-size

arrays

that

are

declared

in

integer

POINTER

statements

or

other

specification

statements.

The

declarator

for

a

pointee

array

may

only

contain

variables

if

the

array

is

declared

inside

a

subprogram,

and

any

such

variables

must

be

dummy

arguments,

members

of

a

common

block,

or

use

or

host

associated.

The

sizes

of

the

dimensions

are

evaluated

upon

entry

to

the

subprogram

and

remain

constant

during

execution

of

the

subprogram.

With

the

-qddim

compiler

option,

as

explained

in

the

in

the

User’s

Guide,

the

restrictions

on

which

variables

may

appear

in

the

array

declarator

are

lifted,

declarators

in

the

main

program

may

contain

variable

names,

and

any

specified

nonconstant

bounds

are

re-evaluated

each

time

the

array

is

referenced,

so

that

you

can

change

the

properties

of

the

pointee

array

by

simply

changing

the

values

of

the

variables

used

in

the

bounds

expressions:

@PROCESS

DDIM

INTEGER

PTE,

N,

ARRAY(10)

POINTER

(P,

PTE(N))

N

=

5

P

=

LOC(ARRAY(2))

!

PRINT

*,

PTE

!

Print

elements

2

through

6

of

ARRAY

N

=

7

!

Increase

the

size

PRINT

*,

PTE

!

Print

elements

2

through

8

of

ARRAY

END

Related

Information:

“POINTER

(integer)”

on

page

342

End

of

IBM

Extension

Assumed-Shape

Arrays

Assumed-shape

arrays

are

dummy

argument

arrays

where

the

extent

of

each

dimension

is

taken

from

the

associated

actual

arguments.

Because

the

names

of

assumed-shape

arrays

are

dummy

arguments,

they

must

be

declared

inside

subprograms.

Array

Concepts

69

Assumed_shape_spec_list

��

�

,

:

lower_bound

��

lower_bound

is

a

specification

expression

Each

lower

bound

defaults

to

one,

or

may

be

explicitly

specified.

Each

upper

bound

is

set

on

entry

to

the

subprogram

to

the

specified

lower

bound

(not

the

lower

bound

of

the

actual

argument

array)

plus

the

extent

of

the

dimension

minus

one.

The

extent

of

any

dimension

is

the

extent

of

the

corresponding

dimension

of

the

associated

actual

argument.

The

rank

is

the

number

of

colons

in

the

assumed_shape_spec_list.

The

shape

is

assumed

from

the

associated

actual

argument

array.

The

size

is

determined

on

entry

to

the

subprogram

where

it

is

declared,

and

equals

the

size

of

the

associated

argument

array.

Note:

Subprograms

that

have

assumed-shape

arrays

as

dummy

arguments

must

have

explicit

interfaces.

Examples

of

Assumed-Shape

Arrays

INTERFACE

SUBROUTINE

SUB1(B)

INTEGER

B(1:,:,10:)

END

SUBROUTINE

END

INTERFACE

INTEGER

A(10,11:20,30)

CALL

SUB1

(A)

END

SUBROUTINE

SUB1(B)

INTEGER

B(1:,:,10:)

!

Inside

the

subroutine,

B

is

associated

with

A.

!

It

has

the

same

extents

as

A

but

different

bounds

(1:10,1:10,10:39).

END

SUBROUTINE

Deferred-Shape

Arrays

Deferred-shape

arrays

are

allocatable

arrays

or

array

pointers,

where

the

bounds

can

be

defined

or

redefined

during

execution

of

the

program.

70

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Deferred_shape_spec_list

��

�

,

:

��

The

extent

of

each

dimension

(and

the

related

properties

of

bounds,

shape,

and

size)

is

undefined

until

the

array

is

allocated

or

the

pointer

is

associated

with

an

array

that

is

defined.

Before

then,

no

part

of

the

array

may

be

defined,

or

referenced

except

as

an

argument

to

an

appropriate

inquiry

function.

At

that

point,

an

array

pointer

assumes

the

properties

of

the

target

array,

and

the

properties

of

an

allocatable

array

are

specified

in

an

ALLOCATE

statement.

The

rank

is

the

number

of

colons

in

the

deferred_shape_spec_list.

Although

a

deferred_shape_spec_list

may

sometimes

appear

identical

to

an

assumed_shape_spec_list,

deferred-shape

arrays

and

assumed-shape

arrays

are

not

the

same.

A

deferred-shape

array

must

have

either

the

POINTER

attribute

or

the

ALLOCATABLE

attribute,

while

an

assumed-shape

array

must

be

a

dummy

argument

that

does

not

have

the

POINTER

attribute.

The

bounds

of

a

deferred-shape

array,

and

the

actual

storage

associated

with

it,

can

be

changed

at

any

time

by

reallocating

the

array

or

by

associating

the

pointer

with

a

different

array,

while

these

properties

remain

the

same

for

an

assumed-shape

array

during

the

execution

of

the

containing

subprogram.

Related

Information:

v

“Allocation

Status”

on

page

61

v

“Pointer

Assignment”

on

page

113

v

“ALLOCATABLE”

on

page

226

v

“ALLOCATED(ARRAY)

or

ALLOCATED(SCALAR)”

on

page

432

v

“ASSOCIATED(POINTER,

TARGET)”

on

page

435

Allocatable

Arrays

A

deferred-shape

array

that

has

the

ALLOCATABLE

attribute

is

referred

to

as

an

allocatable

array.

Its

bounds

and

shape

are

determined

when

storage

is

allocated

for

it

by

an

ALLOCATE

statement.

INTEGER,

ALLOCATABLE,

DIMENSION(:,:,:)

::

A

ALLOCATE(A(10,-4:5,20))

!

Bounds

of

A

are

now

defined

(1:10,-4:5,1:20)

DEALLOCATE(A)

ALLOCATE(A(5,5,5))

!

Change

the

bounds

of

A

Array

Concepts

71

Related

Information:

v

“Allocation

Status”

on

page

61

Array

Pointers

An

array

with

the

POINTER

attribute

is

referred

to

as

an

array

pointer.

Its

bounds

and

shape

are

determined

when

it

is

associated

with

a

target

through

pointer

assignment

or

execution

of

an

ALLOCATE

statement.

It

can

appear

in

a

type

declaration,

POINTER,

or

DIMENSION

statement.

REAL,

POINTER,

DIMENSION(:,:)

::

B

REAL,

TARGET,

DIMENSION(5,10)

::

C,

D(10,10)

B

=>

C

!

Bounds

of

B

are

now

defined

(1:5,1:10)

B

=>

D

!

B

now

has

different

bounds

and

is

associated

!

with

different

storage

ALLOCATE(B(5,5))

!

Change

bounds

and

storage

association

again

END

Assumed-Size

Arrays

Assumed-size

arrays

are

dummy

argument

arrays

where

the

size

is

inherited

from

the

associated

actual

array,

but

the

rank

and

extents

may

differ.

They

can

only

be

declared

inside

subprograms.

Migration

Tip:

To

minimize

storage

used:

FORTRAN

77

source

INTEGER

A(1000),B(1000),C(1000)

C

1000

is

the

maximum

size

WRITE

(6,*)

"Enter

the

size

of

the

arrays:"

READ

(5,*)

N

...

DO

I=1,N

A(I)=B(I)+C(I)

END

DO

END

Fortran

90

or

Fortran

95

source

INTEGER,

ALLOCATABLE,

DIMENSION(:)

::

A,B,C

WRITE

(6,*)

"Enter

the

size

of

the

arrays:"

READ

(5,*)

N

ALLOCATE

(A(N),B(N),C(N))

...
A=B+C

END

72

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Assumed_size_spec

��

�

*

,

lower_bound

:

upper_bound

,

lower_bound

:

��

lower_bound,

upper_bound

are

specification

expressions

If

any

bound

is

not

constant,

the

array

must

be

declared

inside

a

subprogram

and

the

nonconstant

bounds

are

determined

on

entry

to

the

subprogram.

If

a

lower

bound

is

omitted,

its

default

value

is

1.

The

last

dimension

has

no

upper

bound

and

is

designated

instead

by

an

asterisk.

You

must

ensure

that

references

to

elements

do

not

go

past

the

end

of

the

actual

array.

The

rank

equals

one

plus

the

number

of

upper_bound

specifications

in

its

declaration,

which

may

be

different

from

the

rank

of

the

actual

array

it

is

associated

with.

The

size

is

assumed

from

the

actual

argument

that

is

associated

with

the

assumed-size

array:

v

If

the

actual

argument

is

a

noncharacter

array,

the

size

of

the

assumed-size

array

is

that

of

the

actual

array.

v

If

the

actual

argument

is

an

array

element

from

a

noncharacter

array,

and

if

the

size

remaining

in

the

array

beginning

at

this

element

is

S,

then

the

size

of

the

dummy

argument

array

is

S.

Array

elements

are

processed

in

array

element

order.

v

If

the

actual

argument

is

a

character

array,

array

element,

or

array

element

substring,

and

assuming

that:

–

A

is

the

starting

offset,

in

characters,

into

the

character

array

–

T

is

the

total

length,

in

characters,

of

the

original

array

–

S

is

the

length,

in

characters,

of

an

element

in

the

dummy

argument

array

then

the

size

of

the

dummy

argument

array

is:

MAX(

INT

(T

-

A

+

1)

/

S,

0

)

For

example:

CHARACTER(10)

A(10)

CHARACTER(1)

B(30)

CALL

SUB1(A)

!

Size

of

dummy

argument

array

is

10

CALL

SUB1(A(4))

!

Size

of

dummy

argument

array

is

7

CALL

SUB1(A(6)(5:10))

!

Size

of

dummy

argument

array

is

4

because

there

!

are

just

under

4

elements

remaining

in

A

CALL

SUB1(B(12))

!

Size

of

dummy

argument

array

is

1,

because

the

!

remainder

of

B

can

hold

just

one

CHARACTER(10)

END

!

element.

SUBROUTINE

SUB1(ARRAY)

CHARACTER(10)

ARRAY(*)

...

END

SUBROUTINE

Array

Concepts

73

Examples

of

Assumed-Size

Arrays

INTEGER

X(3,2)

DO

I

=

1,3

DO

J

=

1,2

X(I,J)

=

I

*

J

!

The

elements

of

X

are

1,

2,

3,

2,

4,

6

END

DO

END

DO

PRINT

*,SHAPE(X)

!

The

shape

is

(/

3,

2

/)

PRINT

*,X(1,:)

!

The

first

row

is

(/

1,

2

/)

CALL

SUB1(X)

CALL

SUB2(X)

END

SUBROUTINE

SUB1(Y)

INTEGER

Y(2,*)

!

The

dimensions

of

y

are

the

reverse

of

x

above

PRINT

*,

SIZE(Y,1)

!

We

can

examine

the

size

of

the

first

dimension

!

but

not

the

last

one.

PRINT

*,

Y(:,1)

!

We

can

print

out

vectors

from

the

first

PRINT

*,

Y(:,2)

!

dimension,

but

not

the

last

one.

END

SUBROUTINE

SUBROUTINE

SUB2(Y)

INTEGER

Y(*)

!

Y

has

a

different

rank

than

X

above.

PRINT

*,

Y(6)

!

We

have

to

know

(or

compute)

the

position

of

!

the

last

element.

Nothing

prevents

us

from

!

subscripting

beyond

the

end.

END

SUBROUTINE

Notes:

1.

An

assumed-size

array

cannot

be

used

as

a

whole

array

in

an

executable

construct

unless

it

is

an

actual

argument

in

a

subprogram

reference

that

does

not

require

the

shape:

!

A

is

an

assumed-size

array.

PRINT

*,

UBOUND(A,1)

!

OK

-

only

examines

upper

bound

of

first

dimension.

PRINT

*,

LBOUND(A)

!

OK

-

only

examines

lower

bound

of

each

dimension.

!

However,

’B=UBOUND(A)’

or

’A=5’

would

reference

the

upper

bound

of

!

the

last

dimension

and

are

not

allowed.

SIZE(A)

and

SHAPE(A)

are

!

also

not

allowed.

2.

If

a

section

of

an

assumed-size

array

has

a

subscript

triplet

as

its

last

section

subscript,

the

upper

bound

must

be

specified.

(Array

sections

and

subscript

triplets

are

explained

in

a

subsequent

section.)

!

A

is

a

2-dimensional

assumed-size

array

PRINT

*,

A(:,

6)

!

Triplet

with

no

upper

bound

is

not

last

dimension.

PRINT

*,

A(1,

1:10)

!

Triplet

in

last

dimension

has

upper

bound

of

10.

PRINT

*,

A(5,

5:9:2)

!

Triplet

in

last

dimension

has

upper

bound

of

9.

Array

Elements

Array

elements

are

the

scalar

data

that

make

up

an

array.

Each

element

inherits

the

type,

type

parameters,

and

INTENT,

PARAMETER,

and

TARGET

attributes

from

its

parent

array.

The

POINTER

attribute

is

not

inherited.

You

identify

an

array

element

by

an

array

element

designator,

whose

form

is:

��

array_name

(

subscript_list

)

array_struct_comp

��

74

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

array_name

is

the

name

of

an

array

array_struct_comp

is

a

structure

component

whose

rightmost

comp_name

is

an

array

subscript

is

an

scalar

integer

expression

IBM

Extension

A

subscript

is

a

real

expression

in

XL

Fortran.

End

of

IBM

Extension

Notes

v

The

number

of

subscripts

must

equal

the

number

of

dimensions

in

the

array.

v

If

array_struct_comp

is

present,

each

part

of

the

structure

component

except

the

rightmost

must

have

rank

zero

(that

is,

must

not

be

an

array

name

or

an

array

section).

v

The

value

of

each

subscript

expression

must

not

be

less

than

the

lower

bound

or

greater

than

the

upper

bound

for

the

corresponding

dimension.

The

subscript

value

depends

on

the

value

of

each

subscript

expression

and

on

the

dimensions

of

the

array.

It

determines

which

element

of

the

array

is

identified

by

the

array

element

designator.

Related

Information:

“Structure

Components”

on

page

39

“Array

Sections

and

Structure

Components”

on

page

79

Array

Element

Order

The

elements

of

an

array

are

arranged

in

storage

in

a

sequence

known

as

the

array

element

order,

in

which

the

subscripts

change

most

rapidly

in

the

first

dimension,

and

subsequently

in

the

remaining

dimensions.

For

example,

an

array

declared

as

A(2,

3,

2)

has

the

following

elements:

Position

of

Array

Element

Array

Element

Order

A(1,1,1)

1

A(2,1,1)

2

A(1,2,1)

3

A(2,2,1)

4

A(1,3,1)

5

A(2,3,1)

6

A(1,1,2)

7

A(2,1,2)

8

A(1,2,2)

9

A(2,2,2)

10

A(1,3,2)

11

A(2,3,2)

12

Array

Sections

An

array

section

is

a

selected

portion

of

an

array.

It

is

an

array

subobject

that

designates

a

set

of

elements

from

an

array,

or

a

specified

substring

or

derived-type

component

from

each

of

those

elements.

An

array

section

is

also

an

array.

Note:

This

introductory

section

describes

the

simple

case,

where

structure

Array

Concepts

75

components

are

not

involved.

“Array

Sections

and

Structure

Components”

on

page

79

explains

the

additional

rules

for

specifying

array

sections

that

are

also

structure

components.

section_subscript

designates

some

set

of

elements

along

a

particular

dimension.

It

can

be

composed

of

a

combination

of

the

following:

subscript

is

a

scalar

integer

expression,

explained

in

“Array

Elements”

on

page

74.

IBM

Extension

A

subscript

is

a

real

expression

in

XL

Fortran.

End

of

IBM

Extension

subscript_triplet,

vector

subscript

designate

a

(possibly

empty)

sequence

of

subscripts

in

a

given

dimension.

For

details,

see

“Subscript

Triplets”

on

page

77

and

“Vector

Subscripts”

on

page

78.

Note:

At

least

one

of

the

dimensions

must

be

a

subscript

triplet

or

vector

subscript,

so

that

an

array

section

is

distinct

from

an

array

element:
INTEGER,

DIMENSION(5,5,5)

::

A

A(1,2,3)

=

100

A(1,3,3)

=

101

PRINT

*,

A(1,2,3)

!

A

single

array

element,

100.

PRINT

*,

A(1,2:2,3)

!

A

one-element

array

section,

(/

100

/)

PRINT

*,

A(1,2:3,3)

!

A

two-element

array

section,

!

(/

100,

101

/)

substring_range

int_expr1

and

int_expr2

are

scalar

integer

expressions

called

substring

expressions,

defined

in

“Character

Substrings”

on

page

31.

They

specify

the

leftmost

and

rightmost

character

positions,

��

array_name

(

section_subscript_list

)

substring_range

��

section

subscript:

��

subscript

subscript_triplet

vector_subscript

��

��

(

:

)

int_expr1

int_expr2

��

76

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

respectively,

of

a

substring

of

each

element

in

the

array

section.

If

an

optional

substring_range

is

present,

the

section

must

be

from

an

array

of

character

objects.

An

array

section

is

formed

from

the

array

elements

specified

by

the

sequences

of

values

from

the

individual

subscripts,

subscript

triplets,

and

vector

subscripts,

arranged

in

column-major

order.

For

example,

if

SECTION

=

A(

1:3,

(/

5,6,5

/),

4

):

v

The

sequence

of

numbers

for

the

first

dimension

is

1,

2,

3.

v

The

sequence

of

numbers

for

the

second

dimension

is

5,

6,

5.

v

The

subscript

for

the

third

dimension

is

the

constant

4.

The

section

is

made

up

of

the

following

elements

of

A,

in

this

order:

A(1,5,4)

|

|

SECTION(1,1)

A(2,5,4)

|-----

First

column

-----|

SECTION(2,1)

A(3,5,4)

|

|

SECTION(3,1)

A(1,6,4)

|

|

SECTION(1,2)

A(2,6,4)

|-----

Second

column

----|

SECTION(2,2)

A(3,6,4)

|

|

SECTION(3,2)

A(1,5,4)

|

|

SECTION(1,3)

A(2,5,4)

|-----

Third

column

-----|

SECTION(2,3)

A(3,5,4)

|

|

SECTION(3,3)

Some

examples

of

array

sections

include:

INTEGER,

DIMENSION(20,20)

::

A

!

These

references

to

array

sections

require

loops

or

multiple

!

statements

in

FORTRAN

77.

PRINT

*,

A(1:5,1)

!

Contiguous

sequence

of

elements

PRINT

*,

A(1:20:2,10)

!

Noncontiguous

sequence

of

elements

PRINT

*,

A(:,5)

!

An

entire

column

PRINT

*,

A(

(/1,10,5/),

(/7,3,1/)

)

!

A

3x3

assortment

of

elements

Related

Information:

“Structure

Components”

on

page

39.

Subscript

Triplets

A

subscript

triplet

consists

of

two

subscripts

and

a

stride,

and

defines

a

sequence

of

numbers

corresponding

to

array

element

positions

along

a

single

dimension.

subscript1,

subscript2

are

subscripts

that

designate

the

first

and

last

values

in

the

sequence

of

indices

for

a

dimension.

If

the

first

subscript

is

omitted,

the

lower

array

bound

of

that

dimension

is

used.

If

the

second

subscript

is

omitted,

the

upper

array

bound

of

that

dimension

is

used.

(The

second

subscript

is

mandatory

for

the

last

dimension

when

specifying

sections

of

an

assumed-size

array.)

stride

is

a

scalar

integer

expression

that

specifies

how

many

subscript

positions

to

count

to

reach

the

next

selected

element.

��

:

subscript1

subscript2

:

stride

��

Array

Concepts

77

A

stride

is

a

real

expression

in

XL

Fortran.

If

the

stride

is

omitted,

it

has

a

value

of

1.

The

stride

must

have

a

nonzero

value:

v

A

positive

stride

specifies

a

sequence

of

integers

that

begins

with

the

first

subscript

and

proceeds

in

increments

of

the

stride

to

the

largest

integer

that

is

not

greater

than

the

second

subscript.

If

the

first

subscript

is

greater

than

the

second,

the

sequence

is

empty.

v

When

the

stride

is

negative,

the

sequence

begins

at

the

first

subscript

and

continues

in

increments

specified

by

the

stride

to

the

smallest

integer

equal

to

or

greater

than

the

second

subscript.

If

the

second

subscript

is

greater

than

the

first,

the

sequence

is

empty.

Calculations

of

values

in

the

sequence

use

the

same

steps

as

shown

in

“Executing

a

DO

Statement”

on

page

123.

A

subscript

in

a

subscript

triplet

does

not

have

to

be

within

the

declared

bounds

for

that

dimension

if

all

the

values

used

in

selecting

the

array

elements

for

the

array

section

are

within

the

declared

bounds:

INTEGER

A(9)

PRINT

*,

A(1:9:2)

!

Count

from

1

to

9

by

2s:

1,

3,

5,

7,

9.

PRINT

*,

A(1:10:2)

!

Count

from

1

to

10

by

2s:

1,

3,

5,

7,

9.

!

No

element

past

A(9)

is

specified.

Examples

of

Subscript

Triplets

REAL,

DIMENSION(10)

::

A

INTEGER,

DIMENSION(10,10)

::

B

CHARACTER(10)

STRING(1:100)

PRINT

*,

A(:)

!

Print

all

elements

of

array.

PRINT

*,

A(:5)

!

Print

elements

1

through

5.

PRINT

*,

A(3:)

!

Print

elements

3

through

10.

PRINT

*,

STRING(50:100)

!

Print

all

characters

in

!

elements

50

through

100.

!

The

following

statement

is

equivalent

to

A(2:10:2)

=

A(1:9:2)

A(2::2)

=

A(:9:2)

!

LHS

=

A(2),

A(4),

A(6),

A(8),

A(10)

!

RHS

=

A(1),

A(3),

A(5),

A(7),

A(9)

!

The

statement

assigns

the

odd-numbered

!

elements

to

the

even-numbered

elements.

!

The

following

statement

is

equivalent

to

PRINT

*,

B(1:4:3,1:7:6)

PRINT

*,

B(:4:3,:7:6)

!

Print

B(1,1),

B(4,1),

B(1,7),

B(4,7)

PRINT

*,

A(10:1:-1)

!

Print

elements

in

reverse

order.

PRINT

*,

A(10:1:1)

!

These

two

are

PRINT

*,

A(1:10:-1)

!

both

zero-sized.

END

Vector

Subscripts

A

vector

subscript

is

an

integer

array

expression

of

rank

one,

designating

a

sequence

of

subscripts

that

correspond

to

the

values

of

the

elements

of

the

expression.

A

vector

subscript

is

a

real

array

expression

in

XL

Fortran.

78

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

The

sequence

does

not

have

to

be

in

order,

and

may

contain

duplicate

values:

INTEGER

A(10),

B(3),

C(3)

PRINT

*,

A(

(/

10,9,8

/)

)

!

Last

3

elements

in

reverse

order

B

=

A(

(/

1,2,2

/)

)

!

B(1)

=

A(1),

B(2)

=

A(2),

B(3)

=

A(2)

also

END

An

array

section

with

a

vector

subscript

in

which

two

or

more

elements

of

the

vector

subscript

have

the

same

value

is

called

a

many-one

section.

Such

a

section

must

not:

v

Appear

on

the

left

side

of

the

equal

sign

in

an

assignment

statement

v

Be

initialized

through

a

DATA

statement

v

Be

used

as

an

input

item

in

a

READ

statement

Notes:

1.

An

array

section

used

as

an

internal

file

must

not

have

a

vector

subscript.

2.

If

you

pass

an

array

section

with

a

vector

subscript

as

an

actual

argument,

the

associated

dummy

argument

must

not

be

defined

or

redefined.

3.

An

array

section

with

a

vector

subscript

must

not

be

the

target

in

a

pointer

assignment

statement.
!

We

can

use

the

whole

array

VECTOR

as

a

vector

subscript

for

A

and

B

INTEGER,

DIMENSION(3)

::

VECTOR=

(/

1,3,2

/),

A,

B

INTEGER,

DIMENSION(4)

::

C

=

(/

1,2,4,8

/)

A(VECTOR)

=

B

!

A(1)

=

B(1),

A(3)

=

B(2),

A(2)

=

B(3)

A

=

B(

(/

3,2,1

/)

)

!

A(1)

=

B(3),

A(2)

=

B(2),

A(3)

=

B(1)

PRINT

*,

C(VECTOR(1:2))

!

Prints

C(1),

C(3)

END

Array

Sections

and

Substring

Ranges

For

an

array

section

with

a

substring

range,

each

element

in

the

result

is

the

designated

character

substring

of

the

corresponding

element

of

the

array

section.

The

rightmost

array

name

or

component

name

must

be

of

type

character.

PROGRAM

SUBSTRING

TYPE

DERIVED

CHARACTER(10)

STRING(5)

!

Each

structure

has

5

strings

of

10

chars.

END

TYPE

DERIVED

TYPE

(DERIVED)

VAR,

ARRAY(3,3)

!

A

variable

and

an

array

of

derived

type.

VAR%STRING(:)(1:3)

=

’abc’

!

Assign

to

chars

1-3

of

elements

1-5.

VAR%STRING(3:)(4:6)

=

’123’

!

Assign

to

chars

4-6

of

elements

3-5.

ARRAY(1:3,2)%STRING(3)(5:10)

=

’hello’

!

Assign

to

chars

5-10

of

the

third

element

in

!

ARRAY(1,2)%STRING,

ARRAY(2,2)%STRING,

and

END

!

ARRAY(3,2)%STRING

Array

Sections

and

Structure

Components

To

understand

how

array

sections

and

structure

components

overlap,

you

should

be

familiar

with

the

syntax

for

“Structure

Components”

on

page

39.

What

we

defined

at

the

beginning

of

this

section

as

an

array

section

is

really

only

a

subset

of

the

possible

array

sections.

An

array

name

or

array

name

with

a

section_subscript_list

can

be

a

subobject

of

a

structure

component:

Array

Concepts

79

struct_sect_subobj:

object_name

is

the

name

of

an

object

of

derived

type

section_subscript_list,

substring_range

are

the

same

as

defined

under

“Array

Sections”

on

page

75

comp_name

is

the

name

of

a

derived-type

component

%

or

.

Separator

character.

Note:

The

.

(period)

separator

is

an

IBM

extension.

Notes:

1.

The

type

of

the

last

component

determines

the

type

of

the

array.

2.

Only

one

part

of

the

structure

component

may

have

nonzero

rank.

Either

the

rightmost

comp_name

must

have

a

section_subscript_list

with

nonzero

rank,

or

another

part

must

have

nonzero

rank.

3.

Any

parts

to

the

right

of

the

part

with

nonzero

rank

must

not

have

the

POINTER

attribute.
TYPE

BUILDING_T

LOGICAL

RESIDENTIAL

END

TYPE

BUILDING_T

TYPE

STREET_T

TYPE

(BUILDING_T)

ADDRESS(500)

END

TYPE

STREET_T

TYPE

CITY_T

TYPE

(STREET_T)

STREET(100,100)

END

TYPE

CITY_T

TYPE

(CITY_T)

PARIS

TYPE

(STREET_T)

S

TYPE

(BUILDING_T)

RESTAURANT

!

LHS

is

not

an

array

section,

no

subscript

triplets

or

vector

subscripts.

PARIS%STREET(10,20)

=

S

!

None

of

the

parts

are

array

sections,

but

the

entire

construct

!

is

a

section

because

STREET

has

a

nonzero

rank

and

is

not

!

the

rightmost

part.

PARIS%STREET%ADDRESS(100)

=

BUILDING_T(.TRUE.)

!

STREET(50:100,10)

is

an

array

section,

making

the

LHS

an

array

section

!

with

rank=2,

shape=(/51,10/).

!

ADDRESS(123)

must

not

be

an

array

section

because

only

one

can

appear

!

in

a

reference

to

a

structure

component.

PARIS%STREET(50:100,10)%ADDRESS(123)%RESIDENTIAL

=

.TRUE.

END

��

object_name

(

section_subscript_list

)

�

�

�

%

comp_name

.

(

section_subscript_list

)

substring_range

��

80

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Rank

and

Shape

of

Array

Sections

For

an

array

section

that

is

not

a

subobject

of

a

structure

component,

the

rank

is

the

number

of

subscript

triplets

and

vector

subscripts

in

the

section_subscript_list.

The

number

of

elements

in

the

shape

array

is

the

same

as

the

number

of

subscript

triplets

and

vector

subscripts,

and

each

element

in

the

shape

array

is

the

number

of

integer

values

in

the

sequence

designated

by

the

corresponding

subscript

triplet

or

vector

subscript.

For

an

array

section

that

is

a

subobject

of

a

structure

component,

the

rank

and

shape

are

the

same

as

those

of

the

part

of

the

component

that

is

an

array

name

or

array

section.

DIMENSION

::

ARR1(10,20,100)

TYPE

STRUCT2_T

LOGICAL

SCALAR_COMPONENT

END

TYPE

TYPE

STRUCT_T

TYPE

(STRUCT2_T),

DIMENSION(10,20,100)

::

SECTION

END

TYPE

TYPE

(STRUCT_T)

STRUCT

!

One

triplet

+

one

vector

subscript,

rank

=

2.

!

Triplet

designates

an

extent

of

10,

vector

subscript

designates

!

an

extent

of

3,

thus

shape

=

(/

10,3

/).

ARR1(:,

(/

1,3,4

/),

10)

=

0

!

One

triplet,

rank

=

1.

!

Triplet

designates

5

values,

thus

shape

=

(/

5

/).

STRUCT%SECTION(1,10,1:5)%SCALAR_COMPONENT

=

.TRUE.

!

Here

SECTION

is

the

part

of

the

component

that

is

an

array,

!

so

rank

=

3

and

shape

=

(/

10,20,100

/),

the

same

as

SECTION.

STRUCT%SECTION%SCALAR_COMPONENT

=

.TRUE.

Array

Constructors

An

array

constructor

is

a

sequence

of

specified

scalar

values.

It

constructs

a

rank-one

array

whose

element

values

are

those

specified

in

the

sequence.

ac_value

is

an

expression

or

implied-DO

list

that

provides

values

for

array

elements.

Each

ac_value

in

the

array

constructor

must

have

the

same

type

and

type

parameters.

If

ac_value

is:

v

A

scalar

expression,

its

value

specifies

an

element

of

the

array

constructor.

v

An

array

expression,

the

values

of

the

elements

of

the

expression,

in

array

element

order,

specify

the

corresponding

sequence

of

elements

of

the

array

constructor.

v

An

implied-DO

list,

it

is

expanded

to

form

an

ac_value

sequence

under

the

control

of

the

ac_do_variable,

as

in

the

DO

construct.

��

(/

ac_value_list

/)

��

Array

Concepts

81

The

data

type

of

the

array

constructor

is

the

same

as

the

data

type

of

the

ac_value_list

expressions.

If

every

expression

in

an

array

constructor

is

a

constant

expression,

the

array

constructor

is

a

constant

expression.

You

can

construct

arrays

of

rank

greater

than

one

using

an

intrinsic

function.

See

“RESHAPE(SOURCE,

SHAPE,

PAD,

ORDER)”

on

page

513

for

details.

INTEGER,

DIMENSION(5)

::

A,

B,

C,

D(2,2)

A

=

(/

1,2,3,4,5

/)

!

Assign

values

to

all

elements

in

A

A(3:5)

=

(/

0,1,0

/)

!

Assign

values

to

some

elements

C

=

MERGE

(A,

B,

(/

T,F,T,T,F

/))

!

Construct

temporary

logical

mask

!

The

array

constructor

produces

a

rank-one

array,

which

!

is

turned

into

a

2x2

array

that

can

be

assigned

to

D.

D

=

RESHAPE(

SOURCE

=

(/

1,2,1,2

/),

SHAPE

=

(/

2,2

/)

)

!

Here,

the

constructor

linearizes

the

elements

of

D

in

!

array-element

order

into

a

one-dimensional

result.

PRINT

*,

A(

(/

D

/)

)

Implied-DO

List

for

an

Array

Constructor

Implied-DO

loops

in

array

constructors

help

to

create

a

regular

or

cyclic

sequence

of

values,

to

avoid

specifying

each

element

individually.

A

zero-sized

array

of

rank

one

is

formed

if

the

sequence

of

values

generated

by

the

loop

is

empty.

implied_do_variable

is

a

named

scalar

integer

or

real

variable.

In

XL

Fortran,

an

implied_do_variable

is

a

real

expression.

In

a

nonexecutable

statement,

the

type

must

be

integer.

You

must

not

reference

the

value

of

an

implied_do_variable

in

the

limit

expressions

expr1

or

expr2.

Loop

processing

follows

the

same

rules

as

for

an

implied-DO

in

“DATA”

on

page

256,

and

uses

integer

or

real

arithmetic

depending

on

the

type

of

the

implied-DO

variable.

The

variable

has

the

scope

of

the

implied-DO,

and

it

must

not

have

the

same

name

as

another

implied-DO

variable

in

a

containing

array

constructor

implied-DO:

M

=

0

PRINT

*,

(/

(M,

M=1,

10)

/)

!

Array

constructor

implied-DO

PRINT

*,

M

!

M

still

0

afterwards

PRINT

*,

(M,

M=1,

10)

!

Non-array-constructor

implied-DO

PRINT

*,

M

!

This

one

goes

to

11

PRINT

*,

(/

((M,

M=1,

5),

N=1,

3)

/)

!

The

result

is

a

15-element,

one-dimensional

array.

!

The

inner

loop

cannot

use

N

as

its

variable.

expr1,

expr2,

and

expr3

are

integer

scalar

expressions

��

(

ac_value_list

,

implied_do_variable

=

expr1

,

expr2

,

expr3

)

��

82

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

IBM

Extension

In

XL

Fortran,

expr1,

expr2

and

expr3

are

real

expressions.

End

of

IBM

Extension

PRINT

*,

(/

(I,

I

=

1,

3)

/)

!

Sequence

is

(1,

2,

3)

PRINT

*,

(/

(I,

I

=

1,

10,

2)

/)

!

Sequence

is

(1,

3,

5,

7,

9)

PRINT

*,

(/

(I,

I+1,

I+2,

I

=

1,

3)

/)

!

Sequence

is

(1,

2,

3,

2,

3,

4,

3,

4,

5)

PRINT

*,

(/

(

(I,

I

=

1,

3),

J

=

1,

3

)

/)

!

Sequence

is

(1,

2,

3,

1,

2,

3,

1,

2,

3)

PRINT

*,

(/

(

(I,

I

=

1,

J),

J

=

1,

3

)

/)

!

Sequence

is

(1,

1,

2,

1,

2,

3)

PRINT

*,

(/2,3,(I,

I+1,

I

=

5,

8)/)

!

Sequence

is

(2,

3,

5,

6,

6,

7,

7,

8,

8,

9).

!

The

values

in

the

implied-DO

loop

before

!

I=5

are

calculated

for

each

iteration

of

the

loop.

Expressions

Involving

Arrays

Arrays

can

be

used

in

the

same

kinds

of

expressions

and

operations

as

scalars.

Intrinsic

operations,

assignments,

or

elemental

procedures

can

be

applied

to

one

or

more

arrays.

For

intrinsic

operations,

in

expressions

involving

two

or

more

array

operands,

the

arrays

must

have

the

same

shape

so

that

the

corresponding

elements

of

each

array

can

be

assigned

to

or

be

evaluated.

In

a

defined

operation

arrays

can

have

different

shapes.

Arrays

with

the

same

shape

are

conformable.

In

a

context

where

a

conformable

entity

is

expected,

you

can

also

use

a

scalar

value:

it

is

conformable

with

any

array,

such

that

each

array

element

has

the

value

of

the

scalar.

For

example:

INTEGER,

DIMENSION(5,5)

::

A,B,C

REAL,

DIMENSION(10)

::

X,Y

!

Here

are

some

operations

on

arrays

A

=

B

+

C

!

Add

corresponding

elements

of

both

arrays.

A

=

-B

!

Assign

the

negative

of

each

element

of

B.

A

=

MAX(A,B,C)

!

A(i,j)

=

MAX(

A(i,j),

B(i,j),

C(i,j)

)

X

=

SIN(Y)

!

Calculate

the

sine

of

each

element.

!

These

operations

show

how

scalars

are

conformable

with

arrays

A

=

A

+

5

!

Add

5

to

each

element.

A

=

10

!

Assign

10

to

each

element.

A

=

MAX(B,

C,

5)

!

A(i,j)

=

MAX(

B(i,j),

C(i,j),

5

)

END

Related

Information:

“Elemental

Intrinsic

Procedures”

on

page

421

“Intrinsic

Assignment”

on

page

101

“WHERE”

on

page

390

shows

a

way

to

assign

values

to

some

elements

in

an

array

but

not

to

others

“FORALL

Construct”

on

page

110

Array

Concepts

83

84

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Expressions

and

Assignment

This

section

describes

the

rules

for

formation,

interpretation,

and

evaluation

of

expressions

and

assignment

statements:

v

“Introduction

to

Expressions

and

Assignment”

v

“Constant

Expressions”

on

page

86

v

“Initialization

Expressions”

on

page

87

v

“Specification

Expressions”

on

page

88

v

“Operators

and

Expressions”

on

page

90

v

“Extended

Intrinsic

and

Defined

Operations”

on

page

97

v

“How

Expressions

Are

Evaluated”

on

page

98

v

“Intrinsic

Assignment”

on

page

101

v

“WHERE

Construct”

on

page

104

v

“FORALL

Construct”

on

page

110

v

“Pointer

Assignment”

on

page

113

Related

Information

v

“Defined

Operators”

on

page

143

v

“Defined

Assignment”

on

page

144

Introduction

to

Expressions

and

Assignment

An

expression

is

a

data

reference

or

a

computation,

and

is

formed

from

operands,

operators,

and

parentheses.

An

expression,

when

evaluated,

produces

a

value,

which

has

a

type,

a

shape,

and

possibly

type

parameters.

An

operand

is

either

a

scalar

or

an

array.

An

operator

is

either

intrinsic

or

defined.

A

unary

operation

has

the

form:

operator

operand

A

binary

operation

has

the

form:

operand1

operator

operand2

where

the

two

operands

are

shape-conforming.

If

one

operand

is

an

array

and

the

other

is

a

scalar,

the

scalar

is

treated

as

an

array

of

the

same

shape

as

the

array,

and

every

element

of

the

array

has

the

value

of

the

scalar.

Any

expression

contained

in

parentheses

is

treated

as

a

data

entity.

Parentheses

can

be

used

to

specify

an

explicit

interpretation

of

an

expression.

They

can

also

be

used

to

restrict

the

alternative

forms

of

the

expression,

which

can

help

control

the

magnitude

and

accuracy

of

intermediate

values

during

evaluation

of

the

expression.

For

example,

the

two

expressions

(I*J)/K

I*(J/K)

are

mathematically

equivalent,

but

may

produce

different

computational

values

as

a

result

of

evaluation.

©

Copyright

IBM

Corp.

1990,

2003

85

Primary

A

primary

is

the

simplest

form

of

an

expression.

It

can

be

one

of

the

following:

v

A

data

object

v

An

array

constructor

v

A

structure

constructor

v

A

complex

constructor

v

A

function

reference

v

An

expression

enclosed

in

parentheses

A

primary

that

is

a

data

object

must

not

be

an

assumed-size

array.

Examples

of

Primaries

12.3

!

Constant

’ABCDEFG’(2:3)

!

Subobject

of

a

constant

VAR

!

Variable

name

(/7.0,8.0/)

!

Array

constructor

EMP(6,’SMITH’)

!

Structure

constructor

SIN(X)

!

Function

reference

(T-1)

!

Expression

in

parentheses

Type,

Parameters,

and

Shape

The

type,

type

parameters,

and

shape

of

a

primary

are

determined

as

follows:

v

A

data

object

or

function

reference

acquires

the

type,

type

parameters,

and

shape

of

the

object

or

function

reference,

respectively.

The

type,

parameters,

and

shape

of

a

generic

function

reference

are

determined

by

the

type,

parameters,

and

ranks

of

its

actual

arguments.

v

A

structure

constructor

is

a

scalar

and

its

type

is

that

of

the

constructor

name.

v

An

array

constructor

has

a

shape

determined

by

the

number

of

constructor

expressions,

and

its

type

and

parameters

are

determined

by

those

of

the

constructor

expressions.

v

A

parenthesized

expression

acquires

the

type,

parameters,

and

shape

of

the

expression.

If

a

pointer

appears

as

a

primary

in

an

operation

in

which

it

is

associated

with

a

nonpointer

dummy

argument,

the

target

is

referenced.

The

type,

parameters,

and

shape

of

the

primary

are

those

of

the

target.

If

the

pointer

is

not

associated

with

a

target,

it

can

appear

only

as

an

actual

argument

in

a

procedure

reference

whose

corresponding

dummy

argument

is

a

pointer,

or

as

the

target

in

a

pointer

assignment

statement.

Given

the

operation

[

expr1]

op

expr2,

the

shape

of

the

operation

is

the

shape

of

expr2

if

op

is

unary

or

if

expr1

is

a

scalar.

Otherwise,

its

shape

is

that

of

expr1.

The

type

and

shape

of

an

expression

are

determined

by

the

operators

and

by

the

types

and

shapes

of

the

expression’s

primaries.

The

type

of

the

expression

can

be

intrinsic

or

derived.

An

expression

of

intrinsic

type

has

a

kind

parameter

and,

if

it

is

of

type

character,

it

also

has

a

length

parameter.

Constant

Expressions

A

constant

expression

is

an

expression

in

which

each

operation

is

intrinsic

and

each

primary

is

one

of

the

following:

v

A

constant

or

a

subobject

of

a

constant.

v

An

array

constructor

where

each

element

and

the

bounds

and

strides

of

each

implied-DO

are

expressions

whose

primaries

are

either

constant

expressions

or

implied-DO

variables.

86

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

v

A

structure

constructor

where

each

component

is

a

constant

expression.

v

An

elemental

intrinsic

function

reference

where

each

argument

is

a

constant

expression.

v

A

transformational

intrinsic

function

reference

where

each

argument

is

a

constant

expression.

v

A

reference

to

the

transformational

intrinsic

function

NULL.

v

A

reference

to

an

array

inquiry

function

(except

ALLOCATED),

a

numeric

inquiry

function,

the

BIT_SIZE

function,

the

LEN

function,

or

the

KIND

function.

Each

argument

is

either

a

constant

expression

or

it

is

a

variable

whose

properties

inquired

about

are

not

assumed,

not

defined

by

an

expression

that

is

not

a

constant

expression,

and

not

definable

by

an

ALLOCATE

or

pointer

assignment

statement.

v

A

constant

expression

enclosed

in

parentheses.

Any

subscript

or

substring

expression

within

the

expression

must

be

a

constant

expression.

Examples

of

Constant

Expressions

-48.9

name(’Pat’,’Doe’)

TRIM(’ABC

’)

(MOD(9,4)**3.5)

Initialization

Expressions

An

initialization

expression

is

a

constant

expression.

Rules

for

constant

expressions

also

apply

to

initialization

expressions,

except

that

items

that

form

primaries

are

constrained

by

the

following

rules:

v

The

exponentiation

operation

can

only

have

an

integer

power.

v

A

primary

that

is

an

elemental

intrinsic

function

reference

must

be

of

type

integer

or

character,

where

each

argument

is

an

initialization

expression

of

type

integer

or

character.

v

Only

one

of

the

following

transformational

functions

can

be

referenced:

REPEAT,

RESHAPE,

SELECTED_INT_KIND,

SELECTED_REAL_KIND,

TRANSFER,

or

TRIM.

Each

argument

must

be

an

initialization

expression.

The

following

generic

intrinsic

functions

(and

related

specific

functions)

are

also

allowed:

IBM

Extension

–

ABS

(and

only

the

ABS,

DABS,

and

QABS

specific

functions)

–

AIMAG,

IMAG

–

CONJG

–

DIM

(and

only

the

DIM,

DDIM,

and

QDIM

specific

functions)

–

DPROD

–

INT,

REAL,

DBLE,

QEXT,

CMPLX,

DCMPLX,

QCMPLX

–

MAX

–

MIN

–

MOD

–

NINT

–

SIGN

–

INDEX,

SCAN,

VERIFY

(optional

3rd

argument

allowed)

End

of

IBM

Extension

–

NULL

Expressions

and

Assignment

87

If

an

initialization

expression

includes

a

reference

to

an

inquiry

function

for

a

type

parameter

or

an

array

bound

of

an

object

specified

in

the

same

specification

part,

the

type

parameter

or

array

bound

must

be

specified

in

a

prior

specification

of

the

specification

part.

The

prior

specification

can

be

to

the

left

of

the

inquiry

function

in

the

same

statement.

Examples

of

Initialization

Expressions

3.4**3

KIND(57438)

(/’desk’,’lamp’/)

’ab’//’cd’//’ef’

Specification

Expressions

A

specification

expression

is

an

expression

with

limitations

that

you

can

use

to

specify

items

such

as

character

lengths

and

array

bounds.

A

specification

expression

is

a

scalar,

integer,

restricted

expression.

A

restricted

expression

is

an

expression

in

which

each

operation

is

intrinsic

and

each

primary

is:

v

A

constant

or

a

subobject

of

a

constant.

v

A

variable

that

is

a

dummy

argument

that

has

neither

the

OPTIONAL

nor

the

INTENT(OUT)

attribute,

or

a

subobject

of

such

a

variable.

v

A

variable

that

is

in

a

common

block,

or

a

subobject

of

such

a

variable.

v

A

variable

accessible

by

use

association

or

host

association,

or

a

subobject

of

such

a

variable.

v

An

array

constructor

where

each

element

and

the

bounds

and

strides

of

each

implied-DO

are

expressions

whose

primaries

are

either

restricted

expressions

or

implied-DO

variables.

v

A

structure

constructor

where

each

component

is

a

restricted

expression.

v

A

reference

to

an

array

inquiry

function

(except

ALLOCATED),

the

bit

inquiry

function

BIT_SIZE,

the

character

inquiry

function

LEN,

the

kind

inquiry

function

KIND,

or

a

numeric

inquiry

function.

Each

argument

is

either

a

restricted

expression,

or

it

is

a

variable

whose

properties

inquired

about

are

not

dependent

on

the

upper

bound

of

the

last

dimension

of

an

assumed-size

array,

not

defined

by

an

expression

that

is

not

a

restricted

expression,

or

not

definable

by

an

ALLOCATE

statement

or

by

a

pointer

assignment

statement.

Fortran

95

v

A

reference

to

any

remaining

intrinsic

functions

defined

in

this

document

where

each

argument

is

a

restricted

expression.

End

of

Fortran

95

IBM

Extension

v

A

reference

to

a

system

inquiry

function,

where

any

arguments

are

restricted

expressions.

End

of

IBM

Extension

v

Any

subscript

or

substring

expression

must

be

a

restricted

expression.

88

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

v

A

reference

to

a

specification

function,

where

any

arguments

are

restricted

expressions.

Fortran

95

You

can

use

a

specification

function

in

a

specification

expression.

A

function

is

a

specification

function

if

it

is

a

pure

function

that

is

not

an

intrinsic,

internal

or

statement

function.

A

specification

function

cannot

have

a

dummy

procedure

argument,

and

cannot

be

recursive.

End

of

Fortran

95

A

variable

in

a

specification

expression

must

have

its

type

and

type

parameters,

if

any,

specified

by

a

previous

declaration

in

the

same

scoping

unit,

or

by

the

implicit

typing

rules

in

effect

for

the

scoping

unit,

or

by

host

or

use

association.

If

a

variable

in

a

specification

expression

is

typed

by

the

implicit

typing

rules,

its

appearance

in

any

subsequent

type

declaration

statement

must

confirm

the

implied

type

and

type

parameters.

If

a

specification

expression

includes

a

reference

to

an

inquiry

function

for

a

type

parameter

or

an

array

bound

of

an

entity

specified

in

the

same

specification

part,

the

type

parameter

or

array

bound

must

be

specified

in

a

prior

specification

of

the

specification

part.

If

a

specification

expression

includes

a

reference

to

the

value

of

an

element

of

an

array

specified

in

the

same

specification

part,

the

array

bounds

must

be

specified

in

a

prior

declaration.

The

prior

specification

can

be

to

the

left

of

the

inquiry

function

in

the

same

statement.

Examples

of

Specification

Expressions

LBOUND(C,2)+6

!

C

is

an

assumed-shape

dummy

array

ABS(I)*J

!

I

and

J

are

scalar

integer

variables

276/NN(4)

!

NN

is

accessible

through

host

association

Fortran

95

The

following

example

shows

how

a

user-defined

pure

function,

fact,

can

be

used

in

the

specification

expression

of

an

array-valued

function

result

variable:

MODULE

MOD

CONTAINS

INTEGER

PURE

FUNCTION

FACT(N)

INTEGER,

INTENT(IN)

::

N

...

END

FUNCTION

FACT

END

MODULE

MOD

PROGRAM

P

PRINT

*,

PERMUTE(’ABCD’)

CONTAINS

FUNCTION

PERMUTE(ARG)

USE

MOD

CHARACTER(*),

INTENT(IN)

::

ARG

...

CHARACTER(LEN(ARG))

::

PERMUTE(FACT(LEN(ARG)))

...

END

FUNCTION

PERMUTE

END

PROGRAM

P

End

of

Fortran

95

Expressions

and

Assignment

89

Operators

and

Expressions

This

section

presents

the

expression

levels

in

the

order

of

evaluation

precedence,

from

least

to

most.

General

The

general

form

of

an

expression

(general_expr)

is:

defined_binary_op

is

a

defined

binary

operator.

See

“Extended

Intrinsic

and

Defined

Operations”

on

page

97.

expr

is

one

of

the

kinds

of

expressions

defined

below.

There

are

four

kinds

of

intrinsic

expressions:

arithmetic,

character,

relational,

and

logical.

Arithmetic

An

arithmetic

expression

(arith_expr),

when

evaluated,

produces

a

numeric

value.

The

form

of

arith_expr

is:

The

form

of

arith_term

is:

��

general_expr

defined_binary_op

expr

��

��

arith_term

+

arith_expr

-

��

��

arith_term

/

*

arith_factor

��

90

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

The

form

of

arith_factor

is:

An

arith_primary

is

a

primary

of

arithmetic

type.

The

following

table

shows

the

available

arithmetic

operators

and

the

precedence

each

takes

within

an

arithmetic

expression.

Arithmetic

Operator

Representation

Precedence

**

Exponentiation

First

*

Multiplication

Second

/

Division

Second

+

Addition

or

identity

Third

-

Subtraction

or

negation

Third

XL

Fortran

evaluates

the

terms

from

left

to

right

when

evaluating

an

arithmetic

expression

containing

two

or

more

addition

or

subtraction

operators.

For

example,

2+3+4

is

evaluated

as

(2+3)+4,

although

a

processor

can

interpret

the

expression

in

another

way

if

it

is

mathematically

equivalent

and

respects

any

parentheses.

The

factors

are

evaluated

from

left

to

right

when

evaluating

a

term

containing

two

or

more

multiplication

or

division

operators.

For

example,

2*3*4

is

evaluated

as

(2*3)*4.

The

primaries

are

combined

from

right

to

left

when

evaluating

a

factor

containing

two

or

more

exponentiation

operators.

For

example,

2**3**4

is

evaluated

as

2**(3**4).

(Again,

mathematical

equivalents

are

allowed.)

The

precedence

of

the

operators

determines

the

order

of

evaluation

when

XL

Fortran

is

evaluating

an

arithmetic

expression

containing

two

or

more

operators

having

different

precedence.

For

example,

in

the

expression

-A**3,

the

exponentiation

operator

(**)

has

precedence

over

the

negation

operator

(-).

Therefore,

the

operands

of

the

exponentiation

operator

are

combined

to

form

an

expression

that

is

used

as

the

operand

of

the

negation

operator.

Thus,

-A**3

is

evaluated

as

-(A**3).

Note

that

expressions

containing

two

consecutive

arithmetic

operators,

such

as

A**-B

or

A*-B,

are

not

allowed.

You

can

use

expressions

such

as

A**(-B)

and

A*(-B).

If

an

expression

specifies

the

division

of

an

integer

by

an

integer,

the

result

is

rounded

to

an

integer

closer

to

zero.

For

example,

(-7)/3

has

the

value

-2.

IBM

Extension

For

details

of

exception

conditions

that

can

arise

during

evaluation

of

floating-point

expressions,

see

Detecting

and

Trapping

Floating-Point

Exceptions

in

the

User’s

Guide.

End

of

IBM

Extension

��

arith_primary

**

arith_factor

��

Expressions

and

Assignment

91

Examples

of

Arithmetic

Expressions

Arithmetic

Expression

Fully

Parenthesized

Equivalent

-b**2/2.0

-((b**2)/2.0)

i**j**2

i**(j**2)

a/b**2

-

c

(a/(b**2))

-

c

Data

Type

of

an

Arithmetic

Expression

Because

the

identity

and

negation

operators

operate

on

a

single

operand,

the

type

of

the

resulting

value

is

the

same

as

the

type

of

the

operand.

The

following

table

indicates

the

resulting

type

when

an

arithmetic

operator

acts

on

a

pair

of

operands.

Notation:

T(param),

where

T

is

the

data

type

(I:

integer,

R:

real,

X:

complex)

and

param

is

the

kind

type

parameter.

Table

3.

Result

Types

for

Binary

Arithmetic

Operators

second

operand

first

operand

I(1)

I(2)

I(4)

I(8)

R(4)

R(8)

R(16)

X(4)

X(8)

X(16)

I(1)

I(1)

I(2)

I(4)

I(8)

R(4)

R(8)

R(16)

X(4)

X(8)

X(16)

I(2)

I(2)

I(2)

I(4)

I(8)

R(4)

R(8)

R(16)

X(4)

X(8)

X(16)

I(4)

I(4)

I(4)

I(4)

I(8)

R(4)

R(8)

R(16)

X(4)

X(8)

X(16)

I(8)

I(8)

I(8)

I(8)

I(8)

R(4)

R(8)

R(16)

X(4)

X(8)

X(16)

R(4)

R(4)

R(4)

R(4)

R(4)

R(4)

R(8)

R(16)

X(4)

X(8)

X(16)

R(8)

R(8)

R(8)

R(8)

R(8)

R(8)

R(8)

R(16)

X(8)

X(8)

X(16)

R(16)

R(16)

R(16)

R(16)

R(16)

R(16)

R(16)

R(16)

X(16)

X(16)

X(16)

X(4)

X(4)

X(4)

X(4)

X(4)

X(4)

X(8)

X(16)

X(4)

X(8)

X(16)

X(8)

X(8)

X(8)

X(8)

X(8)

X(8)

X(8)

X(16)

X(8)

X(8)

X(16)

X(16)

X(16)

X(16)

X(16)

X(16)

X(16)

X(16)

X(16)

X(16)

X(16)

X(16)

IBM

Extension

Notes:

1.

XL

Fortran

implements

REAL(4)

operations

using

REAL(4)

internal

precision.

See

Detecting

and

Trapping

Floating-Point

Exceptions

in

the

User’s

Guide

for

details.

2.

XL

Fortran

implements

integer

operations

using

INTEGER(4)

arithmetic,

or

INTEGER(8)

arithmetic

if

data

items

are

8

bytes

in

length.

If

the

intermediate

result

is

used

in

a

context

requiring

INTEGER(1)

or

INTEGER(2)

data

type,

it

is

converted

as

required.

INTEGER(2)

I2_1,

I2_2,

I2_RESULT

INTEGER(4)

I4

I2_1

=

32767

!

Maximum

I(2)

I2_2

=

32767

!

Maximum

I(2)

I4

=

I2_1

+

I2_2

PRINT

*,

"I4=",

I4

!

Prints

I4=-2

I2_RESULT

=

I2_1

+

I2_2

!

Assignment

to

I(2)

variable

I4

=

I2_RESULT

!

and

then

assigned

to

an

I(4)

PRINT

*,

"I4=",

I4

!

Prints

I4=-2

END

End

of

IBM

Extension

92

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Character

A

character

expression,

when

evaluated,

produces

a

result

of

type

character.

The

form

of

char_expr

is:

char_primary

is

a

primary

of

type

character.

All

character

primaries

in

the

expression

must

have

the

same

kind

type

parameter,

which

is

also

the

kind

type

parameter

of

the

result.

The

only

character

operator

is

//,

representing

concatenation.

In

a

character

expression

containing

one

or

more

concatenation

operators,

the

primaries

are

joined

to

form

one

string

whose

length

is

equal

to

the

sum

of

the

lengths

of

the

individual

primaries.

For

example,

’AB’//’CD’//’EF’

evaluates

to

’ABCDEF’,

a

string

6

characters

in

length.

Parentheses

have

no

effect

on

the

value

of

a

character

expression.

A

character

expression

can

involve

concatenation

of

an

operand

whose

length

was

declared

with

an

asterisk

in

parentheses

(indicating

inherited

length),

if

the

inherited-length

character

string

is

used

to

declare:

v

A

dummy

argument

specified

in

a

FUNCTION,

SUBROUTINE,

or

ENTRY

statement.

The

length

of

the

dummy

argument

assumes

the

length

of

the

associated

actual

argument

on

invocation.

v

A

named

constant.

It

takes

on

the

length

of

the

constant

value.

v

The

length

of

an

external

function

result.

The

calling

scoping

unit

must

not

declare

the

function

name

with

an

asterisk.

On

invocation,

the

length

of

the

function

result

assumes

this

defined

length.

Example

of

a

Character

Expression

CHARACTER(7)

FIRSTNAME,LASTNAME

FIRSTNAME=’Martha’

LASTNAME=’Edwards’

PRINT

*,

LASTNAME//’,

’//FIRSTNAME

!

Output:’Edwards,

Martha’

END

Relational

A

relational

expression

(rel_expr),

when

evaluated,

produces

a

result

of

type

logical,

and

can

appear

wherever

a

logical

expression

can

appear.

It

can

be

an

arithmetic

relational

expression

or

a

character

relational

expression.

Arithmetic

Relational

Expressions

An

arithmetic

relational

expression

compares

the

values

of

two

arithmetic

expressions.

Its

form

is:

arith_expr1

and

arith_expr2

are

each

an

arithmetic

expression.

Complex

expressions

can

only

be

specified

if

relational_operator

is

.EQ.,

.NE.,

<>,

==,

or

/=.

relational_operator

is

any

of:

��

char_expr

//

char_primary

��

��

arith_expr1

relational_operator

arith_expr2

��

Expressions

and

Assignment

93

Relational

Operator

Representing

.LT.

or

<

Less

than

.LE.

or

<=

Less

than

or

equal

to

.EQ.

or

==

Equal

to

.NE.

or

*<>

or

/=

Not

equal

to

.GT.

or

>

Greater

than

.GE.

or

>=

Greater

than

or

equal

to

Note:

*

XL

Fortran

relational

operator.

An

arithmetic

relational

expression

is

interpreted

as

having

the

logical

value

.true.

if

the

values

of

the

operands

satisfy

the

relation

specified

by

the

operator.

If

the

operands

do

not

satisfy

the

specified

relation,

the

expression

has

the

logical

value

.false..

If

the

types

or

kind

type

parameters

of

the

expressions

differ,

their

values

are

converted

to

the

type

and

kind

type

parameter

of

the

expression

(arith_expr1

+

arith_expr2)

before

evaluation.

Example

of

an

Arithmetic

Relational

Expression:

IF

(NODAYS

.GT.

365)

YEARTYPE

=

’leapyear’

Character

Relational

Expressions

A

character

relational

expression

compares

the

values

of

two

character

expressions.

Its

form

is:

char_expr1

and

char_expr2

are

each

character

expressions

relational_operator

is

any

of

the

relational

operators

described

in

“Arithmetic

Relational

Expressions”

on

page

93.

For

all

relational

operators,

the

collating

sequence

is

used

to

interpret

a

character

relational

expression.

The

character

expression

whose

value

is

lower

in

the

collating

sequence

is

less

than

the

other

expression.

The

character

expressions

are

evaluated

one

character

at

a

time

from

left

to

right.

You

can

also

use

the

intrinsic

functions

(LGE,

LLT,

and

LLT)

to

compare

character

strings

in

the

order

specified

by

the

ASCII

collating

sequence.

For

all

relational

operators,

if

the

operands

are

of

unequal

length,

the

shorter

is

extended

on

the

right

with

blanks.

If

both

char_expr1

and

char_expr2

are

of

zero

length,

they

are

evaluated

as

equal.

IBM

Extension

Even

if

char_expr1

and

char_expr2

are

multibyte

characters

(MBCS)

in

XL

Fortran,

the

ASCII

collating

sequence

is

still

used.

End

of

IBM

Extension

Example

of

a

Character

Relational

Expression:

��

char_expr1

relational_operator

char_expr2

��

94

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

IF

(CHARIN

.GT.

’0’

.AND.

CHARIN

.LE.

’9’)

CHAR_TYPE

=

’digit’

Logical

A

logical

expression

(logical_expr),

when

evaluated,

produces

a

result

of

type

logical.

The

form

of

a

logical

expression

is:

The

form

of

a

logical_disjunct

is:

The

form

of

a

logical_term

is:

The

form

of

a

logical_factor

is:

logical_primary

is

a

primary

of

type

logical.

rel_expr

is

a

relational

expression.

The

logical

operators

are:

Logical

Operator

Representing

Precedence

.NOT.

Logical

negation

First

(highest)

.AND.

Logical

conjunction

Second

.OR.

Logical

inclusive

disjunction

Third

.XOR.

(See

Note

*.)

Logical

exclusive

disjunction

Fourth

(lowest)

(See

Note

*.)

.EQV.

Logical

equivalence

Fourth

(lowest)

.NEQV.

Logical

nonequivalence

Fourth

(lowest)

Note:

*

XL

Fortran

logical

operator.

IBM

Extension

The

.XOR.

operator

is

treated

as

an

intrinsic

operator

only

when

the

-qxlf77=intxor

��

logical_expr

.EQV.

.NEQV.

(1)

.XOR.

logical_disjunct

��

Notes:

1 XL

Fortran

logical

operator

��

logical_disjunct

.OR.

logical_term

��

��

logical_term

.AND.

logical_factor

��

��

logical_primary

.NOT.

rel_expr

��

Expressions

and

Assignment

95

compiler

option

is

specified.

(See

the

-qxlf77

Option

in

the

User’s

Guide

for

details.)

Otherwise,

it

is

treated

as

a

defined

operator.

If

it

is

treated

as

an

intrinsic

operator,

it

can

also

be

extended

by

a

generic

interface.

End

of

IBM

Extension

The

precedence

of

the

operators

determines

the

order

of

evaluation

when

a

logical

expression

containing

two

or

more

operators

having

different

precedences

is

evaluated.

For

example,

evaluation

of

the

expression

A.OR.B.AND.C

is

the

same

as

evaluation

of

the

expression

A.OR.(B.AND.C).

Value

of

a

Logical

Expression

Given

that

x1

and

x2

represent

logical

values,

use

the

following

tables

to

determine

the

values

of

logical

expressions:

x1

.NOT.

x1

True

False

False

True

x1

x2

.AND.

.OR.

.XOR.

.EQV.

.NEQV.

False

False

False

False

False

True

False

False

True

False

True

True

False

True

True

False

False

True

True

False

True

True

True

True

True

False

True

False

Sometimes

a

logical

expression

does

not

need

to

be

completely

evaluated

to

determine

its

value.

Consider

the

following

logical

expression

(assume

that

LFCT

is

a

function

of

type

logical):

A

.LT.

B

.OR.

LFCT(Z)

If

A

is

less

than

B,

the

evaluation

of

the

function

reference

is

not

required

to

determine

that

this

expression

is

true.

XL

Fortran

evaluates

a

logical

expression

to

a

LOGICAL(n)

or

INTEGER(n)

result,

where

n

is

the

kind

type

parameter.

The

value

of

n

depends

on

the

kind

parameter

of

each

operand.

By

default,

for

the

unary

logical

operator

.NOT.,

n

will

be

the

same

as

the

kind

type

parameter

of

the

operand.

For

example,

if

the

operand

is

LOGICAL(2),

the

result

will

also

be

LOGICAL(2).

The

following

table

shows

the

resultant

type

for

unary

operations:

OPERAND

RESULT

of

Unary

Operation

*

BYTE

INTEGER(1)

*

LOGICAL(1)

LOGICAL(1)

LOGICAL(2)

LOGICAL(2)

LOGICAL(4)

LOGICAL(4)

LOGICAL(8)

LOGICAL(8)

*

Typeless

Default

integer

*

96

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Note:

*

Resultant

types

for

unitary

operations

in

XL

Fortran

If

the

operands

are

of

the

same

length,

n

will

be

that

length.

IBM

Extension

For

binary

logical

operations

with

operands

that

have

different

kind

type

parameters,

the

kind

type

parameter

of

the

expression

is

the

same

as

the

larger

length

of

the

two

operands.

For

example,

if

one

operand

is

LOGICAL(4)

and

the

other

LOGICAL(2),

the

result

will

be

LOGICAL(4).

End

of

IBM

Extension

The

following

table

shows

the

resultant

type

for

binary

operations:

Table

4.

Result

Types

for

Binary

Logical

Expressions

second

operand

first

operand

*BYTE

LOGICAL(1)

LOGICAL(2)

LOGICAL(4)

LOGICAL(8)

*Typeless

*BYTE

*INTEGER(1)

*LOGICAL(1)

*LOGICAL(2)

*LOGICAL(4)

*LOGICAL(8)

*INTEGER(1)

LOGICAL(1)

LOGICAL(1)

LOGICAL(1)

LOGICAL(2)

LOGICAL(4)

LOGICAL(8)

LOGICAL(1)

LOGICAL(2)

LOGICAL(2)

LOGICAL(2)

LOGICAL(2)

LOGICAL(4)

LOGICAL(8)

LOGICAL(2)

LOGICAL(4)

LOGICAL(4)

LOGICAL(4)

LOGICAL(4)

LOGICAL(4)

LOGICAL(8)

LOGICAL(4)

LOGICAL(8)

LOGICAL(8)

LOGICAL(8)

LOGICAL(8)

LOGICAL(8)

LOGICAL(8)

LOGICAL(8)

*Typeless

*INTEGER(1)

*LOGICAL(1)

*LOGICAL(2)

*LOGICAL(4)

*LOGICAL(8)

*Default

Integer

Note:

*

Resultant

types

for

binary

logical

expressions

in

XL

Fortran

If

the

expression

result

is

to

be

treated

as

a

default

integer

but

the

value

cannot

be

represented

within

the

value

range

for

a

default

integer,

the

constant

is

promoted

to

a

representable

kind.

Primary

The

form

of

a

primary

expression

is:

defined_unary_op

is

a

defined

unary

operator.

See

“Extended

Intrinsic

and

Defined

Operations.”

Extended

Intrinsic

and

Defined

Operations

A

defined

operation

is

either

a

defined

unary

operation

or

a

defined

binary

operation.

It

is

defined

by

a

function

and

a

generic

interface

block

(see

“Interface

Blocks”

on

page

138).

A

defined

operation

is

not

an

intrinsic

operation,

although

an

intrinsic

operator

can

be

extended

in

a

defined

operation.

For

example,

to

add

two

objects

of

derived

type,

you

can

extend

the

meaning

of

the

intrinsic

binary

operator

for

addition

(+).

If

an

extended

intrinsic

operator

has

typeless

operands,

the

operation

is

evaluated

intrinsically.

��

primary

defined_unary_op

��

Expressions

and

Assignment

97

The

operand

of

a

unary

intrinsic

operation

that

is

extended

must

not

have

a

type

that

is

required

by

the

intrinsic

operator.

Either

or

both

of

the

operands

of

a

binary

intrinsic

operator

that

is

extended

must

not

have

the

types

or

ranks

that

are

required

by

the

intrinsic

operator.

The

defined

operator

of

a

defined

operation

must

be

defined

in

a

generic

interface.

A

defined

operator

is

an

extended

intrinsic

operator

or

has

the

form:

A

defined

operator

must

not

contain

more

than

31

characters

and

must

not

be

the

same

as

any

intrinsic

operator

or

logical

literal

constant.

See

“Generic

Interface

Blocks”

on

page

141

for

details

on

defining

and

extending

operators

in

an

interface

block.

How

Expressions

Are

Evaluated

Precedence

of

Operators

An

expression

can

contain

more

than

one

kind

of

operator.

When

it

does,

the

expression

is

evaluated

from

left

to

right,

according

to

the

following

precedence

among

operators:

1.

Defined

unary

2.

Arithmetic

3.

Character

4.

Relational

5.

Logical

6.

Defined

binary

For

example,

the

logical

expression:

L

.OR.

A

+

B

.GE.

C

where

L

is

of

type

logical,

and

A,

B,

and

C

are

of

type

real,

is

evaluated

the

same

as

the

logical

expression

below:

L

.OR.

((A

+

B)

.GE.

C)

An

extended

intrinsic

operator

maintains

its

precedence.

That

is,

the

operator

does

not

have

the

precedence

of

a

defined

unary

operator

or

a

defined

binary

operator.

Summary

of

Interpretation

Rules

Primaries

that

contain

operators

are

combined

in

the

following

order:

1.

Use

of

parentheses

2.

Precedence

of

the

operators

��

�

.

letter

.

(1)

_

(2)

$

��

Notes:

1 XL

Fortran

defined

operator

2 XL

Fortran

defined

operator

98

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

3.

Right-to-left

interpretation

of

exponentiations

in

a

factor

4.

Left-to-right

interpretation

of

multiplications

and

divisions

in

a

term

5.

Left-to-right

interpretation

of

additions

and

subtractions

in

an

arithmetic

expression

6.

Left-to-right

interpretation

of

concatenations

in

a

character

expression

7.

Left-to-right

interpretation

of

conjunctions

in

a

logical

term

8.

Left-to-right

interpretation

of

disjunctions

in

a

logical

disjunct

9.

Left-to-right

interpretation

of

logical

equivalences

in

a

logical

expression

Evaluation

of

Expressions

Arithmetic,

character,

relational,

and

logical

expressions

are

evaluated

according

to

the

following

rules:

v

A

variable

or

function

must

be

defined

at

the

time

it

is

used.

You

must

define

an

integer

operand

with

an

integer

value,

not

a

statement

label

value.

All

referenced

characters

in

a

character

data

object

or

referenced

array

elements

in

an

array

or

array

section

must

be

defined

at

the

time

the

reference

is

made.

All

components

of

a

structure

must

be

defined

when

a

structure

is

referenced.

A

pointer

must

be

associated

with

a

defined

target.

Execution

of

an

array

element

reference,

array

section

reference,

and

substring

reference

requires

the

evaluation

of

its

subscript,

section

subscript

and

substring

expressions.

Evaluation

of

any

array

element

subscript,

section

subscript,

substring

expression,

or

the

bounds

and

stride

of

any

array

constructor

implied-DO

does

not

affect,

nor

is

it

affected

by,

the

type

of

the

containing

expression.

See

“Expressions

Involving

Arrays”

on

page

83.

You

cannot

use

any

constant

integer

operation

or

floating-point

operation

whose

result

is

not

mathematically

defined

in

an

executable

program.

If

such

expressions

are

nonconstant

and

are

executed,

they

are

detected

at

run

time.

(Examples

are

dividing

by

zero

and

raising

a

zero-valued

primary

to

a

zero-valued

or

negative-valued

power.)

As

well,

you

cannot

raise

a

negative-valued

primary

of

type

real

to

a

real

power.

v

The

invocation

of

a

function

in

a

statement

must

not

affect,

or

be

affected

by,

the

evaluation

of

any

other

entity

within

the

statement

in

which

the

function

reference

appears.

When

the

value

of

an

expression

is

true,

invocation

of

a

function

reference

in

the

expression

of

a

logical

IF

statement

or

a

WHERE

statement

can

affect

entities

in

the

statement

that

is

executed.

If

a

function

reference

causes

definition

or

undefinition

of

an

actual

argument

of

the

function,

that

argument

or

any

associated

entities

must

not

appear

elsewhere

in

the

same

statement.

For

example,

you

cannot

use

the

statements:

A(I)

=

FUNC1(I)

Y

=

FUNC2(X)

+

X

if

the

reference

to

FUNC1

defines

I

or

the

reference

to

FUNC2

defines

X.

The

data

type

of

an

expression

in

which

a

function

reference

appears

does

not

affect,

nor

is

it

affected

by,

the

evaluation

of

the

actual

arguments

of

the

function.

v

An

argument

to

a

statement

function

reference

must

not

be

altered

by

evaluating

that

reference.

IBM

Extension

Several

compiler

options

affect

the

data

type

of

the

final

result:

Expressions

and

Assignment

99

v

When

you

use

the

-qintlog

compiler

option,

you

can

mix

integer

and

logical

values

in

expressions

and

statements.

The

data

type

and

kind

type

parameter

of

the

result

depends

on

the

operands

and

the

operator

involved.

In

general:

–

For

unary

logical

operators

(.NOT.)

and

arithmetic

unary

operators

(+,-):

Data

Type

of

OPERAND

Data

Type

of

RESULT

of

Unary

Operation

BYTE

INTEGER(1)

INTEGER(n)

INTEGER(n)

LOGICAL(n)

LOGICAL(n)

Typeless

Default

integer

where

n

represents

the

kind

type

parameter.

n

must

not

be

replaced

with

a

logical

constant

even

if

-qintlog

is

on,

nor

by

a

character

constant

even

if

-qctyplss

is

on,

nor

can

it

be

a

typeless

constant.

In

the

case

of

INTEGER

and

LOGICAL

data

types,

the

length

of

the

result

is

the

same

as

the

kind

type

parameter

of

the

operand.

–

For

binary

logical

operators

(.AND.,

.OR.,

.XOR.,

.EQV.,

.NEQV.)

and

arithmetic

binary

operators

(**,

*,

/,

+,

-),

the

following

table

summarizes

what

data

type

the

result

has:

second

operand

first

operand

BYTE

INTEGER(y)

LOGICAL(y)

Typeless

BYTE

INTEGER(1)

INTEGER(y)

LOGICAL(y)

INTEGER(1)

INTEGER(x)

INTEGER(x)

INTEGER(z)

INTEGER(z)

INTEGER(x)

LOGICAL(x)

LOGICAL(x)

INTEGER(z)

LOGICAL(z)

LOGICAL(x)

Typeless

INTEGER(1)

INTEGER(y)

LOGICAL(y)

Default

integer

Note:

z

is

the

kind

type

parameter

of

the

result

such

that

z

is

equal

to

the

greater

of

x

and

y.

For

example,

a

logical

expression

with

a

LOGICAL(4)

operand

and

an

INTEGER(2)

operand

has

a

result

of

INTEGER(4).

For

binary

logical

operators

(.AND.,

.OR.,

.XOR.,

.EQV.,

.NEQV.),

the

result

of

a

logical

operation

between

an

integer

operand

and

a

logical

operand

or

between

two

integer

operands

will

be

integer.

The

kind

type

parameter

of

the

result

will

be

the

same

as

the

larger

kind

parameter

of

the

two

operands.

If

the

operands

have

the

same

kind

parameter,

the

result

has

the

same

kind

parameter.
v

When

you

use

the

-qlog4

compiler

option

and

the

default

integer

size

is

INTEGER(4),

logical

results

of

logical

operations

will

have

type

LOGICAL(4),

instead

of

LOGICAL(n)

as

specified

in

the

table

above.

If

you

specify

the

-qlog4

option

and

the

default

integer

size

is

not

INTEGER(4),

the

results

will

be

as

specified

in

the

table

above.

v

When

you

specify

the

-qctyplss

compiler

option,

XL

Fortran

treats

character

constant

expressions

as

Hollerith

constants.

If

one

or

both

operands

are

character

constant

expressions,

the

data

type

and

the

length

of

the

result

are

the

same

as

if

the

character

constant

expressions

were

Hollerith

constants.

See

the

″Typeless″

rows

in

the

previous

tables

for

the

data

type

and

length

of

the

result.

100

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

See

XL

Fortran

Compiler-Option

Reference

in

the

User’s

Guide

for

information

about

compiler

options.

End

of

IBM

Extension

Using

BYTE

Data

Objects

IBM

Extension

Data

objects

of

type

BYTE

can

be

used

wherever

a

LOGICAL(1),

CHARACTER(1),

or

INTEGER(1)

data

object

can

be

used.

The

data

types

of

BYTE

data

objects

are

determined

by

the

context

in

which

you

use

them.

XL

Fortran

does

not

convert

them

before

use.

For

example,

the

type

of

a

named

constant

is

determined

by

use,

not

by

the

initial

value

assigned

to

it.

v

When

you

use

a

BYTE

data

object

as

an

operand

of

an

arithmetic,

logical,

or

relational

binary

operator,

the

data

object

assumes:

–

An

INTEGER(1)

data

type

if

the

other

operand

is

arithmetic,

BYTE,

or

a

typeless

constant

–

A

LOGICAL(1)

data

type

if

the

other

operand

is

logical

–

A

CHARACTER(1)

data

type

if

the

other

operand

is

character
v

When

you

use

a

BYTE

data

object

as

an

operand

of

the

concatenation

operator,

the

data

object

assumes

a

CHARACTER(1)

data

type.

v

When

you

use

a

BYTE

data

object

as

an

actual

argument

to

a

procedure

with

an

explicit

interface,

the

data

object

assumes

the

type

of

the

corresponding

dummy

argument:

–

INTEGER(1)

for

an

INTEGER(1)

dummy

argument

–

LOGICAL(1)

for

a

LOGICAL(1)

dummy

argument

–

CHARACTER(1)

for

a

CHARACTER(1)

dummy

argument
v

When

you

use

a

BYTE

data

object

as

an

actual

argument

passed

by

reference

to

an

external

subprogram

with

an

implicit

interface,

the

data

object

assumes

a

length

of

1

byte

and

no

data

type.

v

When

you

use

a

BYTE

data

object

as

an

actual

argument

passed

by

value

(%VAL),

the

data

object

assumes

an

INTEGER(1)

data

type.

v

When

you

use

a

BYTE

data

object

in

a

context

that

requires

a

specific

data

type,

which

is

arithmetic,

logical,

or

character,

the

data

object

assumes

an

INTEGER(1),

LOGICAL(1),

or

CHARACTER(1)

data

type,

respectively.

v

A

pointer

of

type

BYTE

cannot

be

associated

with

a

target

of

type

character,

nor

can

a

pointer

of

type

character

be

associated

with

a

target

of

type

BYTE.

v

When

you

use

a

BYTE

data

object

in

any

other

context,

the

data

object

assumes

an

INTEGER(1)

data

type.

End

of

IBM

Extension

Intrinsic

Assignment

Assignment

statements

are

executable

statements

that

define

or

redefine

variables

based

on

the

result

of

expression

evaluation.

A

defined

assignment

is

not

intrinsic,

and

is

defined

by

a

subroutine

and

an

interface

block.

See

“Defined

Assignment”

on

page

144.

Expressions

and

Assignment

101

The

general

form

of

an

intrinsic

assignment

is:

The

shapes

of

variable

and

expression

must

conform.

variable

must

be

an

array

if

expression

is

an

array

(see

“Expressions

Involving

Arrays”

on

page

83).

If

expression

is

a

scalar

and

variable

is

an

array,

expression

is

treated

as

an

array

of

the

same

shape

as

variable,

with

every

array

element

having

the

same

value

as

the

scalar

value

of

expression.

variable

must

not

be

a

many-one

array

section

(see

“Vector

Subscripts”

on

page

78

for

details),

and

neither

variable

nor

expression

can

be

an

assumed-size

array.

The

types

of

variable

and

expression

must

conform

as

follows:

Type

of

variable

Type

of

expression

Numeric

Numeric

Logical

Logical

Character

Character

Derived

type

Derived

type

(same

as

variable)

In

numeric

assignment

statements,

variable

and

expression

can

specify

different

numeric

types

and

different

kind

type

parameters.

For

logical

assignment

statements,

the

kind

type

parameters

can

differ.

For

character

assignment

statements,

the

length

type

parameters

can

differ.

If

the

length

of

a

character

variable

is

greater

than

the

length

of

a

character

expression,

the

character

expression

is

extended

on

the

right

with

blanks

until

the

lengths

are

equal.

If

the

length

of

the

character

variable

is

less

than

the

character

expression,

the

character

expression

is

truncated

on

the

right

to

match

the

length

of

the

character

variable.

If

variable

is

a

pointer,

it

must

be

associated

with

a

definable

target

that

has

type,

type

parameters

and

shape

that

conform

with

those

of

expression.

The

value

of

expression

is

then

assigned

to

the

target

associated

with

variable.

Both

variable

and

expression

can

contain

references

to

any

portion

of

variable.

An

assignment

statement

causes

the

evaluation

of

expression

and

all

expressions

within

variable

before

assignment,

the

possible

conversion

of

expression

to

the

type

and

type

parameters

of

variable,

and

the

definition

of

variable

with

the

resulting

value.

No

value

is

assigned

to

variable

if

it

is

a

zero-length

character

object

or

a

zero-sized

array.

A

derived-type

assignment

statement

is

an

intrinsic

assignment

statement

if

there

is

no

accessible

defined

assignment

for

objects

of

this

derived

type.

The

derived

type

expression

must

be

of

the

same

derived

type

as

the

variable.

(See

“Determining

Type

for

Derived

Types”

on

page

38

for

the

rules

that

determine

when

two

structures

are

of

the

same

derived

type.)

Assignment

is

performed

as

if

each

component

of

the

expression

(or

each

pointer)

is

assigned

to

the

corresponding

component

of

the

variable.

Pointer

assignment

is

executed

for

pointer

components

and

intrinsic

assignment

is

performed

for

nonpointer

nonallocatablecomponents.

For

an

allocatable

component

the

following

sequence

of

operations

is

applied:

1.

If

the

component

of

variable

is

currently

allocated,

it

is

deallocated.

��

variable

=

expression

��

102

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

2.

If

the

component

of

expression

is

currently

allocated,

the

corresponding

component

of

variable

is

allocated

with

the

same

type

and

type

parameters

as

the

component

of

expression.

If

it

is

an

array,

it

is

allocated

with

the

same

bounds.

The

value

of

the

component

of

expression

is

then

assigned

to

the

corresponding

component

of

variable

using

intrinsic

assignment.

When

variable

is

a

subobject,

the

assignment

does

not

affect

the

definition

status

or

value

of

other

parts

of

the

object.

Arithmetic

Conversion

For

numeric

intrinsic

assignment,

the

value

of

expression

may

be

converted

to

the

type

and

kind

type

parameter

of

variable,

as

specified

in

the

following

table:

Type

of

variable

Value

Assigned

Integer

INT(expression,KIND=KIND(variable))

Real

REAL(expression,KIND=KIND(variable))

Complex

CMPLX(expression,KIND=KIND(variable))

IBM

Extension

Note:

Integer

operations

for

INTEGER(1),

INTEGER(2),

and

INTEGER(4)

data

objects

are

performed

using

INTEGER(4)

arithmetic

during

evaluation

of

expressions.

If

the

intermediate

result

is

used

in

a

context

requiring

an

INTEGER(1)

or

INTEGER(2)

data

type,

it

is

converted

as

required.

Integer

operations

for

INTEGER(8)

data

items

are

performed

using

INTEGER(8)

arithmetic.

End

of

IBM

Extension

Character

Assignment

Only

as

much

of

the

character

expression

as

is

necessary

to

define

the

character

variable

needs

to

be

evaluated.

For

example:

CHARACTER

SCOTT*4,

DICK*8

SCOTT

=

DICK

This

assignment

of

DICK

to

SCOTT

requires

only

that

you

have

previously

defined

the

substring

DICK(1:4).

You

do

not

have

to

previously

define

the

rest

of

DICK

(DICK(5:8)).

BYTE

Assignment

IBM

Extension

If

expression

is

of

type

arithmetic,

arithmetic

assignment

is

used.

Similarly,

if

expression

is

of

type

character,

character

assignment

is

used,

and

if

expression

is

of

type

logical,

logical

assignment

is

used.

If

the

expression

on

the

right

is

of

type

BYTE,

arithmetic

assignment

is

used.

End

of

IBM

Extension

Examples

of

Intrinsic

Assignment:

Expressions

and

Assignment

103

INTEGER

I(10)

LOGICAL

INSIDE

REAL

R,RMIN,RMAX

REAL

::

A=2.3,B=4.5,C=6.7

TYPE

PERSON

INTEGER(4)

P_AGE

CHARACTER(20)

P_NAME

END

TYPE

TYPE

(PERSON)

EMP1,

EMP2

CHARACTER(10)

::

CH

=

’ABCDEFGHIJ’

I

=

5

!

All

elements

of

I

assigned

value

of

5

RMIN

=

28.5

;

RMAX

=

29.5

R

=

(-B

+

SQRT(B**2

-

4.0*A*C))/(2.0*A)

INSIDE

=

(R

.GE.

RMIN)

.AND.

(R

.LE.

RMAX)

CH(2:4)

=

CH(3:5)

!

CH

is

now

’ACDEEFGHIJ’

EMP1

=

PERSON(45,

’Frank

Jones’)

EMP2

=

EMP1

!

EMP2%P_AGE

is

assigned

EMP1%P_AGE

using

arithmetic

assignment

!

EMP2%P_NAME

is

assigned

EMP1%P_NAME

using

character

assignment

END

WHERE

Construct

The

WHERE

construct

masks

the

evaluation

of

expressions

and

assignments

of

values

in

array

assignment

statements.

It

does

this

according

to

the

value

of

a

logical

array

expression.

WHERE_construct_statement

See

“WHERE”

on

page

390

for

syntax

details.

where_body_construct

��

WHERE_construct_statement

�

where_body_construct

�

�

�

masked_ELSEWHERE_block

�

ELSEWHERE_block

�

�

END_WHERE_statement

��

104

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

where_assignment_statement

Is

an

assignment_statement.

Fortran

95

masked_ELSEWHERE_block

masked_ELSEWHERE_statement

Is

an

ELSEWHERE

statement

that

specifies

a

mask_expr.

See

“ELSEWHERE”

on

page

274

for

syntax

details.

End

of

Fortran

95

ELSEWHERE_block

ELSEWHERE_statement

Is

an

ELSEWHERE

statement

that

does

not

specify

a

mask_expr.

See

“ELSEWHERE”

on

page

274

for

syntax

details.

END_WHERE_statement

See

“END

(Construct)”

on

page

277

for

syntax

details.

Rules:

v

mask_expr

is

a

logical

array

expression.

v

In

each

where_assignment_statement,

the

mask_expr

and

the

variable

being

defined

must

be

arrays

of

the

same

shape.

v

A

statement

that

is

part

of

a

where_body_construct

must

not

be

a

branch

target

statement.

Also,

ELSEWHERE,

masked

ELSEWHERE,

and

END

WHERE

statements

must

not

be

branch

target

statements.

Fortran

95

��

where_assignment_statement

(1)

WHERE_statement

(2)

WHERE_construct

��

Notes:

1 Fortran

95

variable

2 Fortran

95

variable

��

masked_ELSEWHERE_statement

where_body_construct

��

��

ELSEWHERE_statement

where_body_construct

��

Expressions

and

Assignment

105

v

A

where_assignment_statement

that

is

a

defined

assignment

must

be

an

elemental

defined

assignment.

v

The

mask_expr

on

the

WHERE

construct

statement

and

all

corresponding

masked

ELSEWHERE

statements

must

have

the

same

shape.

The

mask_expr

on

a

nested

WHERE

statement

or

nested

WHERE

construct

statement

must

have

the

same

shape

as

the

mask_expr

on

the

WHERE

construct

statement

of

the

construct

in

which

it

is

nested.

v

If

a

construct

name

appears

on

a

WHERE

construct

statement,

it

must

also

appear

on

the

corresponding

END

WHERE

statement.

A

construct

name

is

optional

on

the

masked

ELSEWHERE

and

ELSEWHERE

statements

in

the

WHERE

construct.

End

of

Fortran

95

Interpreting

Masked

Array

Assignments

To

understand

how

to

interpret

masked

array

assignments,

you

need

to

understand

the

concepts

of

a

control

mask

(mc)

and

a

pending

control

mask

(mp):

v

The

mc

is

an

array

of

type

logical

whose

value

determines

which

elements

of

an

array

in

a

where_assignment_statement

will

be

defined.

This

value

is

determined

by

the

execution

of

one

of

the

following:

–

a

WHERE

statement

–

a

WHERE

construct

statement

–

an

ELSEWHERE

statement

–

a

masked

ELSEWHERE

statement

–

an

END

WHERE

statement

The

value

of

mc

is

cumulative;

the

compiler

determines

the

value

using

the

mask

expressions

of

surrounding

WHERE

statements

and

the

current

mask

expression.

Subsequent

changes

to

the

value

of

entities

in

a

mask_expr

have

no

effect

on

the

value

of

mc.

The

compiler

evaluates

the

mask_expr

only

once

for

each

WHERE

statement,

WHERE

construct

statement,

or

masked

ELSEWHERE

statement.

v

The

mp

is

a

logical

array

that

provides

information

to

the

next

masked

assignment

statement

at

the

same

nesting

level

on

the

array

elements

not

defined

by

the

current

WHERE

statement,

WHERE

construct

statement,

or

masked

ELSEWHERE

statement.

The

following

describes

how

the

compiler

interprets

statements

in

a

WHERE,

WHERE

construct,

masked

ELSEWHERE

,

ELSEWHERE,

or

END

WHERE

statement.

It

describes

the

effect

on

mc

and

mp

and

any

further

behavior

of

the

statements,

in

order

of

occurrence.

v

WHERE

statement

Fortran

95

–

If

the

WHERE

statement

is

nested

in

a

WHERE

construct,

the

following

occurs:

1.

mc

becomes

mc

.AND.

mask_expr.

2.

After

the

compiler

executes

the

WHERE

statement,

mc

has

the

value

it

had

prior

to

the

execution

of

the

WHERE

statement.

End

of

Fortran

95

106

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

–

Otherwise,

mc

becomes

the

mask_expr.
v

WHERE

construct

Fortran

95

–

If

the

WHERE

construct

is

nested

in

another

WHERE

construct,

the

following

occurs:

1.

mp

becomes

mc

.AND.

(.NOT.

mask_expr).

2.

mc

becomes

mc

.AND.

mask_expr.

End

of

Fortran

95

–

Otherwise:

1.

The

compiler

evaluates

the

mask_expr,

and

assigns

mc

the

value

of

that

mask_expr.

2.

mp

becomes

.NOT.

mask_expr.

Fortran

95

v

Masked

ELSEWHERE

statement

The

following

occurs:

1.

mc

becomes

mp.

2.

mp

becomes

mc

.AND.

(.NOT.

mask_expr).

3.

mc

becomes

mc

.AND.

mask_expr.

End

of

Fortran

95

v

ELSEWHERE

statement

The

following

occurs:

1.

mc

becomes

mp.

No

new

mp

value

is

established.
v

END

WHERE

statement

After

the

compiler

executes

an

END

WHERE

statement,

mc

and

mp

have

the

values

they

had

prior

to

the

execution

of

the

corresponding

WHERE

construct

statement.

v

where_assignment_statement

The

compiler

assigns

the

values

of

the

expr

that

correspond

to

the

true

values

of

mc

to

the

corresponding

elements

of

the

variable.

If

a

non-elemental

function

reference

occurs

in

the

expr

or

variable

of

a

where_assignment_statement

or

in

a

mask_expr,

the

compiler

evaluates

the

function

without

any

masked

control;

that

is,

it

fully

evaluates

all

of

the

function’s

argument

expressions

and

then

it

fully

evaluates

the

function.

If

the

result

is

an

array

and

the

reference

is

not

within

the

argument

list

of

a

non-elemental

function,

the

compiler

selects

elements

corresponding

to

true

values

in

mc

for

use

in

evaluating

the

expr,

variable,

or

mask_expr.

If

an

elemental

intrinsic

operation

or

function

reference

occurs

in

the

expr

or

variable

of

a

where_assignment_statement

or

in

a

mask_expr,

and

is

not

within

the

argument

list

of

a

non-elemental

function

reference,

the

compiler

performs

the

operation

or

evaluates

the

function

only

for

the

elements

corresponding

to

true

values

in

mc.

Expressions

and

Assignment

107

If

an

array

constructor

appears

in

a

where_assignment_statement

or

in

a

mask_expr,

the

compiler

evaluates

the

array

constructor

without

any

masked

control

and

then

executes

the

where_assignment_statement

or

evaluates

the

mask_expr.

The

execution

of

a

function

reference

in

the

mask_expr

of

a

WHERE

statement

is

allowed

to

affect

entities

in

the

where_assignment_statement.

Execution

of

an

END

WHERE

has

no

effect.

The

following

example

shows

how

control

masks

are

updated.

In

this

example,

mask1,

mask2,

mask3,

and

mask4

are

conformable

logical

arrays,

mc

is

the

control

mask,

and

mp

is

the

pending

control

mask.

The

compiler

evaluates

each

mask

expression

once.

Sample

code

(with

statement

numbers

shown

in

the

comments):

WHERE

(mask1)

!

W1

*

WHERE

(mask2)

!

W2

*

...

!

W3

*

ELSEWHERE

(mask3)

!

W4

*

...

!

W5

*

END

WHERE

!

W6

*

ELSEWHERE

(mask4)

!

W7

*

...

!

W8

*

ELSEWHERE

!

W9

...

!

W10

END

WHERE

!

W11

Note:

*

Fortran

95

The

compiler

sets

control

and

pending

control

masks

as

it

executes

each

statement,

as

shown

below:

Fortran

95

Statement

W1

mc

=

mask1

mp

=

.NOT.

mask1

Statement

W2

mp

=

mask1

.AND.

(.NOT.

mask2)

mc

=

mask1

.AND.

mask2

Statement

W4

mc

=

mask1

.AND.

(.NOT.

mask2)

mp

=

mask1

.AND.

(.NOT.

mask2)

.AND.

(.NOT.

mask3)

mc

=

mask1

.AND.

(.NOT.

mask2)

.AND.

mask3

Statement

W6

mc

=

mask1

mp

=

.NOT.

mask1

End

of

Fortran

95

Statement

W7

mc

=

.NOT.

mask1

mp

=

(.NOT.

mask1)

.AND.

(.NOT.

mask4)

mc

=

(.NOT.

mask1)

.AND.

mask4

108

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Statement

W9

mc

=

(.NOT.

mask1)

.AND.

(.NOT.

mask4)

Statement

W11

mc

=

0

mp

=

0

The

compiler

uses

the

values

of

the

control

masks

set

by

statements

W2,

W4,

W7,

and

W9

when

it

executes

the

respective

where_assignment_statements

W3,

W5,

W8,

and

W10.

Examples

of

the

WHERE

Construct

REAL,

DIMENSION(10)

::

A,B,C,D

WHERE

(A>0.0)

A

=

LOG(A)

!

Only

the

positive

elements

of

A

!

are

used

in

the

LOG

calculation.

B

=

A

!

The

mask

uses

the

original

array

A

!

instead

of

the

new

array

A.

C

=

A

/

SUM(LOG(A))

!

A

is

evaluated

by

LOG,

but

!

the

resulting

array

is

an

!

argument

to

a

non-elemental

!

function.

All

elements

in

A

will

!

be

used

in

evaluating

SUM.

END

WHERE

WHERE

(D>0.0)

C

=

CSHIFT(A,

1)

!

CSHIFT

applies

to

all

elements

in

array

A,

!

and

the

array

element

values

of

D

determine

!

which

CSHIFT

expression

determines

the

!

corresponding

element

values

of

C.

ELSEWHERE

C

=

CSHIFT(A,

2)

END

WHERE

END

Migration

Tip:

Simplify

logical

evaluation

of

arrays

FORTRAN

77

source:

INTEGER

A(10,10),B(10,10)

...
DO

I=1,10

DO

J=1,10

IF

(A(I,J).LT.B(I,J))

A(I,J)=B(I,J)

END

DO

END

DO

END

Fortran

90

or

Fortran

95

source:

INTEGER

A(10,10),B(10,10)

...
WHERE

(A.LT.B)

A=B

END

Expressions

and

Assignment

109

Fortran

95

The

following

example

shows

an

array

constructor

in

a

WHERE

construct

statement

and

in

a

masked

ELSEWHERE

mask_expr:

CALL

SUB((/

0,

-4,

3,

6,

11,

-2,

7,

14

/))

CONTAINS

SUBROUTINE

SUB(ARR)

INTEGER

ARR(:)

INTEGER

N

N

=

SIZE(ARR)

!

Data

in

array

ARR

at

this

point:

!

!

A

=

|

0

-4

3

6

11

-2

7

14

|

WHERE

(ARR

<

0)

ARR

=

0

ELSEWHERE

(ARR

<

ARR((/(N-I,

I=0,

N-1)/)))

ARR

=

2

END

WHERE

!

Data

in

array

ARR

at

this

point:

!

!

A

=

|

2

0

3

2

11

0

7

14

|

END

SUBROUTINE

END

The

following

example

shows

a

nested

WHERE

construct

statement

and

masked

ELSEWHERE

statement

with

a

where_construct_name:

INTEGER

::

A(10,

10),

B(10,

10)

...

OUTERWHERE:

WHERE

(A

<

10)

INNERWHERE:

WHERE

(A

<

0)

B

=

0

ELSEWHERE

(A

<

5)

INNERWHERE

B

=

5

ELSEWHERE

INNERWHERE

B

=

10

END

WHERE

INNERWHERE

ELSEWHERE

OUTERWHERE

B

=

A

END

WHERE

OUTERWHERE

...

End

of

Fortran

95

FORALL

Construct

Fortran

95

The

FORALL

construct

performs

assignment

to

groups

of

subobjects,

especially

array

elements.

Unlike

the

WHERE

construct,

FORALL

performs

assignment

to

array

elements,

array

sections,

and

substrings.

Also,

each

assignment

within

a

FORALL

construct

need

not

be

conformable

with

the

previous

one.

The

FORALL

construct

can

contain

nested

FORALL

statements,

FORALL

constructs,

WHERE

statements,

and

110

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

WHERE

constructs.

End

of

Fortran

95

IBM

Extension

The

INDEPENDENT

directive

specifies

that

each

operation

in

the

FORALL

statement

or

construct

can

be

executed

in

any

order

without

affecting

the

semantics

of

the

program.

For

more

information

on

the

INDEPENDENT

directive,

see

“INDEPENDENT”

on

page

406.

End

of

IBM

Extension

Fortran

95

FORALL_construct_statement

See

“FORALL

(Construct)”

on

page

292

for

syntax

details.

END_FORALL_statement

See

“END

(Construct)”

on

page

277

for

syntax

details.

forall_body

is

one

or

more

of

the

following

statements

or

constructs:

forall_assignment

WHERE

statement

(see

“WHERE”

on

page

390)

WHERE

construct

(see

“WHERE

Construct”

on

page

104)

FORALL

statement

(see

“FORALL”

on

page

289)

FORALL

construct

forall_assignment

is

either

assignment_statement

or

pointer_assignment_statement

Any

procedures

that

are

referenced

in

a

forall_body

(including

one

referenced

by

a

defined

operation

or

defined

assignment)

must

be

pure.

If

a

FORALL

statement

or

construct

is

nested

within

a

FORALL

construct,

the

inner

FORALL

statement

or

construct

cannot

redefine

any

index_name

used

in

the

outer

FORALL

construct.

Although

no

atomic

object

can

be

assigned

to,

or

have

its

association

status

changed

in

the

same

statement

more

than

once,

different

assignment

statements

within

the

same

FORALL

construct

can

redefine

or

reassociate

an

atomic

object.

Also,

each

WHERE

statement

and

assignment

statement

within

a

WHERE

construct

must

follow

these

restrictions.

��

FORALL_construct_statement

��

��

forall_body

��

��

END_FORALL_statement

��

Expressions

and

Assignment

111

If

a

FORALL_construct_name

is

specified,

it

must

appear

in

both

the

FORALL

statement

and

the

END

FORALL

statement.

Neither

the

END

FORALL

statement

nor

any

statement

within

the

FORALL

construct

can

be

a

branch

target

statement.

End

of

Fortran

95

Interpreting

the

FORALL

Construct

Fortran

95

1.

From

the

FORALL

Construct

statement,

evaluate

the

subscript

and

stride

expressions

for

each

forall_triplet_spec

in

any

order.

All

possible

pairings

of

index_name

values

form

the

set

of

combinations.

For

example,

given

the

statement:

FORALL

(I=1:3,J=4:5)

The

set

of

combinations

of

I

and

J

is:

{(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)}

The

-1

and

-qnozerosize

compiler

options

do

not

affect

this

step.

2.

Evaluate

the

scalar_mask_expr

(from

the

FORALL

Construct

statement)

for

the

set

of

combinations,

in

any

order,

producing

a

set

of

active

combinations

(those

that

evaluated

to

.TRUE.).

For

example,

if

the

mask

(I+J.NE.6)

is

applied

to

the

above

set,

the

set

of

active

combinations

is:

{(1,4),(2,5),(3,4),(3,5)}

3.

Execute

each

forall_body

statement

or

construct

in

order

of

appearance.

For

the

set

of

active

combinations,

each

statement

or

construct

is

executed

completely

as

follows:

assignment_statement

Evaluate,

in

any

order,

all

values

in

the

right-hand

side

expression

and

all

subscripts,

strides,

and

substring

bounds

in

the

left-hand

side

variable

for

all

active

combinations

of

index_name

values.

Assign,

in

any

order,

the

computed

expression

values

to

the

corresponding

variable

entities

for

all

active

combinations

of

index_name

values.

INTEGER,

DIMENSION(50)

::

A,B,C

INTEGER

::

X,I=2,J=49

FORALL

(X=I:J)

A(X)=B(X)+C(X)

C(X)=B(X)-A(X)

!

All

these

assignments

are

performed

after

the

!

assignments

in

the

preceding

statement

END

FORALL

END

pointer_assignment_statement

Determine,

in

any

order,

what

will

be

the

targets

of

the

pointer

assignment,

and

evaluate

all

subscripts,

strides,

and

substring

bounds

in

the

pointer

for

all

active

combinations

of

index_name

values.

If

a

target

is

not

a

pointer,

determination

of

the

target

does

not

include

evaluation

of

its

value.

Pointer

assignment

never

requires

the

value

of

the

righthand

side

to

be

determined.

Associate,

in

any

order,

all

targets

with

the

corresponding

pointer

entities

for

all

active

combinations

of

index_name

values.

WHERE

statement

or

construct

112

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Evaluate,

in

any

order,

the

control

mask

and

pending

control

mask

for

each

WHERE

statement,

WHERE

construct

statement,

ELSEWHERE

statement,

or

masked

ELSEWHERE

statement

each

active

combination

of

index_name

values,

producing

a

refined

set

of

active

combinations

for

that

statement,

as

described

in

“Interpreting

Masked

Array

Assignments”

on

page

106.

For

each

active

combination,

the

compiler

executes

the

assignment(s)

of

the

WHERE

statement,

WHERE

construct

statement,

or

masked

ELSEWHERE

statement

for

those

values

of

the

control

mask

that

are

true

for

that

active

combination.

The

compiler

executes

each

statement

in

a

WHERE

construct

in

order,

as

described

previously.

INTEGER

I(100,10),

J(100),

X

FORALL

(X=1:100,

J(X)>0)

WHERE

(I(X,:)<0)

I(X,:)=0

!

Assigns

0

to

an

element

of

I

along

row

X

!

only

if

element

value

is

less

than

0

and

value

!

of

element

in

corresponding

column

of

J

is

ELSEWHERE

!

greater

than

0.

I(X,:)=1

END

WHERE

END

FORALL

END

FORALL

statement

or

construct

Evaluate,

in

any

order,

the

subscript

and

stride

expressions

in

the

forall_triplet_spec_list

for

the

active

combinations

of

the

outer

FORALL

statement

or

construct.

The

valid

combinations

are

the

Cartesian

product

of

combination

sets

of

the

inner

and

outer

FORALL

constructs.

The

scalar_mask_expr

determines

the

active

combinations

for

the

inner

FORALL

construct.

Statements

and

constructs

for

these

active

combinations

are

executed.

!

Same

as

FORALL

(I=1:100,J=1:100,I.NE.J)

A(I,J)=A(J,I)

INTEGER

A(100,100)

OUTER:

FORALL

(I=1:100)

INNER:

FORALL

(J=1:100,I.NE.J)

A(I,J)=A(J,I)

END

FORALL

INNER

END

FORALL

OUTER

END

End

of

Fortran

95

Pointer

Assignment

The

pointer

assignment

statement

causes

a

pointer

to

become

associated

with

a

target

or

causes

the

pointer’s

association

status

to

become

disassociated

or

undefined.

target

is

a

variable

or

expression.

It

must

have

the

same

type,

type

parameters

and

rank

as

pointer_object.

pointer_object

must

have

the

POINTER

attribute.

��

pointer_object

=>

target

��

Expressions

and

Assignment

113

A

target

that

is

an

expression

must

yield

a

value

that

has

the

POINTER

attribute.

A

target

that

is

a

variable

must

have

the

TARGET

attribute

(or

be

a

subobject

of

such

an

object)

or

the

POINTER

attribute.

A

target

must

not

be

an

array

section

with

a

vector

subscript,

nor

can

it

be

a

whole

assumed-size

array.

The

size,

bounds,

and

shape

of

the

target

of

a

disassociated

array

pointer

are

undefined.

No

part

of

such

an

array

can

be

defined

or

referenced,

although

the

array

can

be

the

argument

of

an

intrinsic

inquiry

function

that

is

inquiring

about

association

status,

argument

presence,

or

a

property

of

the

type

or

type

parameters.

IBM

Extension

A

pointer

of

type

byte

can

only

be

associated

with

a

target

of

type

byte,

INTEGER(1),

or

LOGICAL(1).

End

of

IBM

Extension

Any

previous

association

between

pointer_object

and

a

target

is

broken.

If

target

is

not

a

pointer,

pointer_object

becomes

associated

with

target.

If

target

is

itself

an

associated

pointer,

pointer_object

is

associated

with

the

target

of

target.

If

target

is

a

pointer

with

an

association

status

of

disassociated

or

undefined,

pointer_object

acquires

the

same

status.

If

target

of

a

pointer

assignment

is

an

allocatable

object,

it

must

be

allocated.

Pointer

assignment

for

a

pointer

structure

component

can

also

occur

via

execution

of

a

derived-type

intrinsic

assignment

statement

or

a

defined

assignment

statement.

During

pointer

assignment

of

an

array

pointer,

the

lower

bound

of

each

dimension

is

the

result

of

the

LBOUND

intrinsic

function

applied

to

the

corresponding

dimension

of

the

target.

For

an

array

section

or

array

expression

that

is

not

a

whole

array

or

a

structure

component,

the

lower

bound

is

1.

The

upper

bound

of

each

dimension

is

the

result

of

the

UBOUND

intrinsic

function

applied

to

the

corresponding

dimension

of

the

target.

Related

Information:

v

See

“ALLOCATE”

on

page

227

for

an

alternative

form

of

associating

a

pointer

with

a

target.

v

See

“Pointers

as

Dummy

Arguments”

on

page

163

for

details

on

using

pointers

in

procedure

references.

Examples

of

Pointer

Assignment

TYPE

T

INTEGER,

POINTER

::

COMP_PTR

ENDTYPE

T

TYPE(T)

T_VAR

INTEGER,

POINTER

::

P,Q,R

INTEGER,

POINTER

::

ARR(:)

BYTE,

POINTER

::

BYTE_PTR

LOGICAL(1),

POINTER

::

LOG_PTR

INTEGER,

TARGET

::

MYVAR

INTEGER,

TARGET

::

DARG(1:5)

P

=>

MYVAR

!

P

points

to

MYVAR

Q

=>

P

!

Q

points

to

MYVAR

NULLIFY

(R)

!

R

is

disassociated

Q

=>

R

!

Q

is

disassociated

114

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

T_VAR

=

T(P)

!

T_VAR%COMP_PTR

points

to

MYVAR

ARR

=>

DARG(1:3)

BYTE_PTR

=>

LOG_PTR

END

Integer

Pointer

Assignment

IBM

Extension

Integer

pointer

variables

can

be:

v

Used

in

integer

expressions

v

Assigned

values

as

absolute

addresses

v

Assigned

the

address

of

a

variable

using

the

LOC

intrinsic

function.

(Objects

of

derived

type

and

structure

components

must

be

of

sequence-derived

type

when

used

with

the

LOC

intrinsic

function.)

Note

that

the

XL

Fortran

compiler

uses

1-byte

arithmetic

for

integer

pointers

in

assignment

statements.

Example

of

Integer

Pointer

Assignment

INTEGER

INT_TEMPLATE

POINTER

(P,INT_TEMPLATE)

INTEGER

MY_ARRAY(10)

DATA

MY_ARRAY/1,2,3,4,5,6,7,8,9,10/

INTEGER,

PARAMETER

::

WORDSIZE=4

P

=

LOC(MY_ARRAY)

PRINT

*,

INT_TEMPLATE

!

Prints

’1’

P

=

P

+

4;

!

Add

4

to

reach

next

element

!

because

arithmetic

is

byte-based

PRINT

*,

INT_TEMPLATE

!

Prints

’2’

P

=

LOC(MY_ARRAY)

DO

I

=

1,10

PRINT

*,INT_TEMPLATE

P

=

P

+

WORDSIZE

!

Parameterized

arithmetic

is

suggested

END

DO

END

End

of

IBM

Extension

Expressions

and

Assignment

115

116

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Control

Structures

This

section

describes:

v

“Statement

Blocks”

v

“IF

Construct”

v

“CASE

Construct”

on

page

119

v

“DO

Construct”

on

page

121

v

“DO

WHILE

Construct”

on

page

125

v

“Branching”

on

page

126

You

can

control

your

program’s

execution

sequence

by

constructs

containing

statement

blocks

and

other

executable

statements

that

can

alter

the

normal

execution

sequence,

as

defined

under

“Order

of

Statements

and

Execution

Sequence”

on

page

19.

The

construct

descriptions

in

this

section

do

not

provide

detailed

syntax

of

any

construct

statements;

rather,

references

are

made

to

the

Statements

section.

If

a

construct

is

contained

in

another

construct,

it

must

be

wholly

contained

(nested)

within

that

construct.

If

a

statement

specifies

a

construct

name,

it

belongs

to

that

construct;

otherwise,

it

belongs

to

the

innermost

construct

in

which

it

appears.

Statement

Blocks

A

statement

block

consists

of

a

sequence

of

zero

or

more

executable

statements,

executable

constructs,

FORMAT

statements,

or

DATA

statements

embedded

in

another

executable

construct

and

are

treated

as

a

single

unit.

Within

an

executable

program,

it

is

not

permitted

to

transfer

control

from

outside

of

the

statement

block

to

within

it.

It

is

permitted

to

transfer

control

within

the

statement

block,

or

from

within

the

statement

block

to

outside

the

block.

For

example,

in

a

statement

block,

you

can

have

a

statement

with

a

statement

label

and

a

GO

TO

statement

using

that

label.

IF

Construct

The

IF

construct

selects

no

more

than

one

of

its

statement

blocks

for

execution.

©

Copyright

IBM

Corp.

1990,

2003

117

Block_IF_statement

See

“IF

(Block)”

on

page

304

for

syntax

details.

END_IF_statement

See

“END

(Construct)”

on

page

277

for

syntax

details.

ELSE_IF_block

ELSE_IF_statement

See

“ELSE

IF”

on

page

273

for

syntax

details.

ELSE_block

ELSE_statement

See

“ELSE”

on

page

273

for

syntax

details.

The

scalar

logical

expressions

in

an

IF

construct

(that

is,

the

block

IF

and

ELSE

IF

statements)

are

evaluated

in

the

order

of

their

appearance

until

a

true

value,

an

ELSE

statement,

or

an

END

IF

statement

is

found:

��

Block_IF_statement

��

��

statement_block

��

��

�

ELSE_IF_block

��

��

ELSE_block

��

��

END_IF_statement

��

��

ELSE_IF_statement

��

��

statement_block

��

��

ELSE_statement

��

��

statement_block

��

118

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

v

If

a

true

value

or

an

ELSE

statement

is

found,

the

statement

block

immediately

following

executes,

and

the

IF

construct

is

complete.

The

scalar

logical

expressions

in

any

remaining

ELSE

IF

statements

or

ELSE

statements

of

the

IF

construct

are

not

evaluated.

v

If

an

END

IF

statement

is

found,

no

statement

blocks

execute,

and

the

IF

construct

is

complete.

If

the

IF

construct

name

is

specified,

it

must

appear

on

the

IF

statement

and

END

IF

statement,

and

optionally

on

any

ELSE

IF

or

ELSE

statements.

Example

!

Get

a

record

(containing

a

command)

from

the

terminal

DO

WHICHC:

IF

(CMD

.EQ.

’RETRY’)

THEN

!

named

IF

construct

IF

(LIMIT

.GT.

FIVE)

THEN

!

nested

IF

construct

!

Print

retry

limit

exceeded

CALL

STOP

ELSE

CALL

RETRY

END

IF

ELSE

IF

(CMD

.EQ.

’STOP’)

THEN

WHICHC

!

ELSE

IF

blocks

CALL

STOP

ELSE

IF

(CMD

.EQ.

’ABORT’)

THEN

CALL

ABORT

ELSE

WHICHC

!

ELSE

block

!

Print

unrecognized

command

END

IF

WHICHC

END

DO

END

CASE

Construct

The

CASE

construct

has

a

concise

syntax

for

selecting,

at

most,

one

of

a

number

of

statement

blocks

for

execution.

The

case

selector

of

each

CASE

statement

is

compared

to

the

expression

of

the

SELECT

CASE

statement.

SELECT_CASE_statement

defines

the

case

expression

that

is

to

be

evaluated.

See

“SELECT

CASE”

on

page

366

for

syntax

details.

END_SELECT_statement

terminates

the

CASE

construct.

See

“END

(Construct)”

on

page

277

for

syntax

details.

��

SELECT_CASE_statement

��

��

�

CASE_statement_block

��

��

END_SELECT_statement

��

Control

Structures

119

CASE_statement_block

CASE_statement

defines

the

case

selector,

which

is

a

value,

set

of

values,

or

default

case,

for

which

the

subsequent

statement

block

is

executed.

See

“CASE”

on

page

238

for

syntax

details.

In

the

construct,

each

case

value

must

be

of

the

same

type

as

the

case

expression.

The

CASE

construct

executes

as

follows:

1.

The

case

expression

is

evaluated.

The

resulting

value

is

the

case

index.

2.

The

case

index

is

compared

to

the

case_selector

of

each

CASE

statement.

3.

If

a

match

occurs,

the

statement

block

associated

with

that

CASE

statement

is

executed.

No

statement

block

is

executed

if

no

match

occurs.

(See

“CASE”

on

page

238.)

4.

Execution

of

the

construct

is

complete

and

control

is

transferred

to

the

statement

after

the

END

SELECT

statement.

A

CASE

construct

contains

zero

or

more

CASE

statements

that

can

each

specify

a

value

range,

although

the

value

ranges

specified

by

the

CASE

statements

cannot

overlap.

A

default

case_selector

can

be

specified

by

one

of

the

CASE

statements.

A

default

CASE_statement_block

can

appear

anywhere

in

the

CASE

construct;

it

can

appear

at

the

beginning

or

end,

or

among

the

other

blocks.

If

a

construct

name

is

specified,

it

must

appear

on

the

SELECT

CASE

statement

and

END

SELECT

statement,

and

optionally

on

any

CASE

statements.

You

can

only

branch

to

the

END

SELECT

statement

from

within

the

CASE

construct.

A

CASE

statement

cannot

be

a

branch

target.

��

CASE_statement

��

��

statement_block

��

120

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Examples

ZERO:

SELECT

CASE(N)

CASE

DEFAULT

ZERO

OTHER:

SELECT

CASE(N)

!

start

of

CASE

construct

OTHER

CASE(:-1)

SIGNUM

=

-1

!

this

statement

executed

when

n≤-1

CASE(1:)

OTHER

SIGNUM

=

1

END

SELECT

OTHER

!

end

of

CASE

construct

OTHER

CASE

(0)

SIGNUM

=

0

END

SELECT

ZERO

END

DO

Construct

The

DO

construct

specifies

the

repeated

execution

of

a

statement

block.

Such

a

repeated

block

is

called

a

loop.

The

iteration

count

of

a

loop

can

be

determined

at

the

beginning

of

execution

of

the

DO

construct,

unless

it

is

indefinite.

You

can

curtail

a

specific

iteration

with

the

CYCLE

statement,

and

the

EXIT

statement

terminates

the

loop.

Migration

Tip:

Use

CASE

in

place

of

block

IFs.

FORTRAN

77

source

IF

(I

.EQ.3)

THEN

CALL

SUBA()

ELSE

IF

(I.EQ.

5)

THEN

CALL

SUBB()

ELSE

IF

(I

.EQ.

6)

THEN

CALL

SUBC()

ELSE

CALL

OTHERSUB()

ENDIF

END

Fortran

90

or

Fortran

95

source

SELECTCASE(I)

CASE(3)

CALL

SUBA()

CASE(5)

CALL

SUBB()

CASE(6)

CALL

SUBC()

CASE

DEFAULT

CALL

OTHERSUB()

END

SELECT

END

Control

Structures

121

DO_statement

See

“DO”

on

page

263

for

syntax

details

END_DO_statement

See

“END

(Construct)”

on

page

277

for

syntax

details

terminal_statement

is

a

statement

that

terminates

the

DO

construct.

See

the

description

below.

If

you

specify

a

DO

construct

name

on

the

DO

statement,

you

must

terminate

the

construct

with

an

END

DO

statement

with

the

same

construct

name.

Conversely,

if

you

do

not

specify

a

DO

construct

name

on

the

DO

statement,

and

you

terminate

the

DO

construct

with

an

END

DO

statement,

you

must

not

have

a

DO

construct

name

on

the

END

DO

statement.

The

Terminal

Statement

The

terminal

statement

must

follow

the

DO

statement

and

must

be

executable.

See

“Statements

and

Attributes”

on

page

223

for

a

listing

of

statements

that

can

be

used

as

the

terminal

statement.

If

the

terminal

statement

of

a

DO

construct

is

a

logical

IF

statement,

it

can

contain

any

executable

statement

except

those

statements

to

which

the

restrictions

on

the

logical

IF

statement

apply.

If

you

specify

a

statement

label

in

the

DO

statement,

you

must

terminate

the

DO

construct

with

a

statement

that

is

labeled

with

that

statement

label.

You

can

terminate

a

labeled

DO

statement

with

an

END

DO

statement

that

is

labeled

with

that

statement

label,

but

you

cannot

terminate

it

with

an

unlabeled

END

DO

statement.

If

you

do

not

specify

a

label

in

the

DO

statement,

you

must

terminate

the

DO

construct

with

an

END

DO

statement.

Nested,

labeled

DO

and

DO

WHILE

constructs

can

share

the

same

terminal

statement

if

the

terminal

statement

is

labeled,

and

if

it

is

not

an

END

DO

statement.

Range

of

a

DO

Construct

The

range

of

a

DO

construct

consists

of

all

the

executable

statements

following

the

DO

statement,

up

to

and

including

the

terminal

statement.

In

addition

to

the

rules

governing

the

range

of

constructs,

you

can

only

transfer

control

to

a

shared

terminal

statement

from

the

innermost

sharing

DO

construct.

Active

and

Inactive

DO

Constructs

A

DO

construct

is

either

active

or

inactive.

Initially

inactive,

a

DO

construct

becomes

active

only

when

its

DO

statement

is

executed.

Once

active,

the

DO

construct

becomes

inactive

only

when:

v

Its

iteration

count

becomes

zero.

��

DO_statement

��

��

statement_block

��

��

END_DO_statement

terminal_statement

��

122

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

v

A

RETURN

statement

occurs

within

the

range

of

the

DO

construct.

v

Control

is

transferred

to

a

statement

in

the

same

scoping

unit

but

outside

the

range

of

the

DO

construct.

v

A

subroutine

invoked

from

within

the

DO

construct

returns,

through

an

alternate

return

specifier,

to

a

statement

that

is

outside

the

range

of

the

DO

construct.

v

An

EXIT

statement

that

belongs

to

the

DO

construct

executes.

v

An

EXIT

statement

or

a

CYCLE

statement

that

is

within

the

range

of

the

DO

construct,

but

belongs

to

an

outer

DO

or

DO

WHILE

construct,

executes.

v

A

STOP

statement

executes

or

the

program

stops

for

any

other

reason.

When

a

DO

construct

becomes

inactive,

the

DO

variable

retains

the

last

value

assigned

to

it.

Executing

a

DO

Statement

An

infinite

DO

loops

indefinitely.

If

the

loop

is

not

an

infinite

DO,

the

DO

statement

includes

an

initial

parameter,

a

terminal

parameter,

and

an

optional

increment.

1.

The

initial

parameter,

m1,

the

terminal

parameter,

m2,

and

the

increment,

m3,

are

established

by

evaluating

the

DO

statement

expressions

(a_expr1,

a_expr2,

and

a_expr3,

respectively).

Evaluation

includes,

if

necessary,

conversion

to

the

type

of

the

DO

variable

according

to

the

rules

for

arithmetic

conversion.

(See

“Arithmetic

Conversion”

on

page

103.)

If

you

do

not

specify

a_expr3,

m3

has

a

value

of

1.

m3

must

not

have

a

value

of

zero.

2.

The

DO

variable

becomes

defined

with

the

value

of

the

initial

parameter

(m1).

3.

The

iteration

count

is

established,

determined

by

the

expression:

MAX

(INT

(

(m2

-

m1

+

m3)

/

m3),

0)

Note

that

the

iteration

count

is

0

whenever:

m1

>

m2

and

m3

>

0,

or

m1

<

m2

and

m3

<

0

The

iteration

count

cannot

be

calculated

if

the

DO

variable

is

missing.

This

is

referred

to

as

an

infinite

DO

construct.

IBM

Extension

The

iteration

count

cannot

exceed

2**31

-

1

for

integer

variables

of

kind

1,

2,

or

4,

and

cannot

exceed

2**63

-

1

for

integer

variables

of

kind

8.

The

count

becomes

undefined

if

an

overflow

or

underflow

situation

arises

during

the

calculation.

End

of

IBM

Extension

At

the

completion

of

the

DO

statement,

loop

control

processing

begins.

Loop

Control

Processing

Loop

control

processing

determines

if

further

execution

of

the

range

of

the

DO

construct

is

required.

The

iteration

count

is

tested.

If

the

count

is

not

zero,

the

first

statement

in

the

range

of

the

DO

construct

begins

execution.

If

the

iteration

count

is

zero,

the

DO

construct

becomes

inactive.

If,

as

a

result,

all

of

the

DO

constructs

sharing

the

terminal

statement

of

this

DO

construct

are

inactive,

normal

execution

continues

with

the

execution

of

the

next

executable

statement

following

the

Control

Structures

123

terminal

statement.

However,

if

some

of

the

DO

constructs

sharing

the

terminal

statement

are

active,

execution

continues

with

incrementation

processing

of

the

innermost

active

DO

construct.

Execution

of

the

Range

Statements

that

are

part

of

the

statement

block

are

in

the

range

of

the

DO

construct.

They

are

executed

until

the

terminal

statement

is

reached.

Except

by

incrementation

processing,

you

cannot

redefine

the

DO

variable,

nor

can

it

become

undefined

during

execution

of

the

range

of

the

DO

construct.

Terminal

Statement

Execution

Execution

of

the

terminal

statement

occurs

as

a

result

of

the

normal

execution

sequence,

or

as

a

result

of

transfer

of

control,

subject

to

the

restriction

that

you

cannot

transfer

control

into

the

range

of

a

DO

construct

from

outside

the

range.

Unless

execution

of

the

terminal

statement

results

in

a

transfer

of

control,

execution

continues

with

incrementation

processing.

Incrementation

Processing

1.

The

DO

variable,

the

iteration

count,

and

the

increment

of

the

active

DO

construct

whose

DO

statement

was

most

recently

executed,

are

selected

for

processing.

2.

The

value

of

the

DO

variable

is

increased

by

the

value

of

m3.

3.

The

iteration

count

is

decreased

by

1.

4.

Execution

continues

with

loop

control

processing

of

the

same

DO

construct

whose

iteration

count

was

decremented.

Examples:

INTEGER

::

SUM=0

OUTER:

DO

INNER:

DO

Migration

Tip:

v

Use

EXIT,

CYCLE,

and

infinite

DO

statements

instead

of

a

GOTO

statement.

FORTRAN

77

source

I

=

0

J

=

0

20

CONTINUE

I

=

I

+

1

J

=

J

+

1

PRINT

*,

I

IF

(I.GT.4)

GOTO

10

!

Exiting

loop

IF

(J.GT.3)

GOTO

20

!

Iterate

loop

immediately

I

=

I

+

2

GOTO

20

10

CONTINUE

END

Fortran

90

or

Fortran

95

source

I

=

0

;

J

=

0

DO

I

=

I

+

1

J

=

J

+

1

PRINT

*,

I

IF

(I.GT.4)

EXIT

IF

(J.GT.3)

CYCLE

I

=

I

+

2

END

DO

END

124

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

READ

(5,*)

J

IF

(J.LE.I)

THEN

PRINT

*,

’VALUE

MUST

BE

GREATER

THAN

’,

I

CYCLE

INNER

END

IF

SUM=SUM+J

IF

(SUM.GT.500)

EXIT

OUTER

IF

(SUM.GT.100)

EXIT

INNER

END

DO

INNER

SUM=SUM+I

I=I+10

END

DO

OUTER

PRINT

*,

’SUM

=’,SUM

END

DO

WHILE

Construct

The

DO

WHILE

construct

specifies

the

repeated

execution

of

a

statement

block

for

as

long

as

the

scalar

logical

expression

specified

in

the

DO

WHILE

statement

is

true.

You

can

curtail

a

specific

iteration

with

the

CYCLE

statement,

and

the

EXIT

statement

terminates

the

loop.

DO_WHILE_statement

See

“DO

WHILE”

on

page

265

for

syntax

details

END_DO_statement

See

“END

(Construct)”

on

page

277

for

syntax

details

terminal_stmt

is

a

statement

that

terminates

the

DO

WHILE

construct.

See

“The

Terminal

Statement”

on

page

122

for

details.

The

rules

discussed

earlier

concerning

DO

construct

names

and

ranges,

active

and

inactive

DO

constructs,

and

terminal

statements

also

apply

to

the

DO

WHILE

construct.

Example

I=10

TWO_DIGIT:

DO

WHILE

((I.GE.10).AND.(I.LE.99))

J=J+I

READ

(5,*)

I

END

DO

TWO_DIGIT

END

��

DO_WHILE_statement

��

��

statement_block

��

��

END_DO_statement

terminal_statement

��

Control

Structures

125

Branching

You

can

also

alter

the

normal

execution

sequence

by

branching.

A

branch

transfers

control

from

one

statement

to

a

labeled

branch

target

statement

in

the

same

scoping

unit.

A

branch

target

statement

can

be

any

executable

statement

except

a

CASE,

ELSE,

or

ELSE

IF

statement.

The

following

statements

can

be

used

for

branching:

v

Assigned

GO

TO

transfers

program

control

to

an

executable

statement,

whose

statement

label

is

designated

in

an

ASSIGN

statement.

See

“GO

TO

(Assigned)”

on

page

301

for

syntax

details.

v

Computed

GO

TO

transfers

control

to

possibly

one

of

several

executable

statements.

See

“GO

TO

(Computed)”

on

page

302

for

syntax

details.

v

Unconditional

GO

TO

transfers

control

to

a

specified

executable

statement.

See

“GO

TO

(Unconditional)”

on

page

303

for

syntax

details.

v

Arithmetic

IF

transfers

control

to

one

of

three

executable

statements,

depending

on

the

evaluation

of

an

arithmetic

expression.

See

“IF

(Arithmetic)”

on

page

304

for

syntax

details.

The

following

input/output

specifiers

can

also

be

used

for

branching:

v

the

END=

end-of-file

specifier

transfers

control

to

a

specified

executable

statement

if

an

endfile

record

is

encountered

(and

no

error

occurs)

in

a

READ

statement.

v

the

ERR=

error

specifier

transfers

control

to

a

specified

executable

statement

in

the

case

of

an

error.

You

can

specify

this

specifier

in

the

BACKSPACE,

ENDFILE,

REWIND,

CLOSE,

OPEN,

READ,

WRITE,

and

INQUIRE

statements.

v

the

EOR=

end-or-record

specifier

transfers

control

to

a

specified

executable

statement

if

an

end-of-record

condition

is

encountered

(and

no

error

occurs)

in

a

READ

statement.

126

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Program

Units

and

Procedures

This

chapter

describes:

v

“Scope”

v

“Association”

on

page

131

v

“Program

Units,

Procedures,

and

Subprograms”

on

page

134

v

“Interface

Blocks”

on

page

138

v

“Generic

Interface

Blocks”

on

page

141

v

“Main

Program”

on

page

145

v

“Modules”

on

page

146

v

“Block

Data

Program

Unit”

on

page

149

v

“Function

and

Subroutine

Subprograms”

on

page

150

v

“Intrinsic

Procedures”

on

page

152

v

“Arguments”

on

page

153

v

“Argument

Association”

on

page

156

v

“Recursion”

on

page

166

v

“Pure

Procedures”

on

page

167

v

“Elemental

Procedures”

on

page

169

Scope

A

program

unit

consists

of

a

set

of

nonoverlapping

scoping

units.

A

scoping

unit

is

that

portion

of

a

program

unit

that

has

its

own

scope

boundaries.

It

is

one

of

the

following:

v

A

derived-type

definition

v

A

procedure

interface

body

(not

including

any

derived-type

definitions

and

interface

bodies

within

it)

v

A

program

unit,

module

subprogram,

or

internal

subprogram

(not

including

derived-type

definitions,

interface

bodies,

module

subprograms,

and

internal

subprograms).

A

host

scoping

unit

is

the

scoping

unit

that

immediately

surrounds

another

scoping

unit.

For

example,

in

the

following

diagram,

the

host

scoping

unit

of

the

internal

function

C

is

the

scoping

unit

of

the

main

program

A.

Host

association

is

the

method

by

which

an

internal

subprogram,

module

subprogram,

or

derived-type

definition

accesses

names

from

its

host.

©

Copyright

IBM

Corp.

1990,

2003

127

Entities

that

have

scope

are:

v

A

name

(see

below)

v

A

label

(local

entity)

v

An

external

input/output

unit

number

(global

entity)

v

An

operator

symbol.

Intrinsic

operators

are

global

entities,

while

defined

operators

are

local

entities.

v

An

assignment

symbol

(global

entity)

If

the

scope

is

an

executable

program,

the

entity

is

called

a

global

entity.

If

the

scope

is

a

scoping

unit,

the

entity

is

called

a

local

entity.

If

the

scope

is

a

statement

or

part

of

a

statement,

the

entity

is

called

a

statement

entity.

If

the

scope

is

a

construct,

the

entity

is

called

a

construct

entity.

The

Scope

of

a

Name

Global

Entity

IBM

Extension

Global

entities

are

program

units,

external

procedures

and

common

blocks.

End

of

IBM

Extension

If

a

name

identifies

a

global

entity,

it

cannot

be

used

to

identify

any

other

global

entity

in

the

same

executable

program.

See

Conventions

for

XL

Fortran

External

Names

in

the

User’s

Guide

for

details

on

restrictions

on

names

of

global

entities.

Local

Entity

Entities

of

the

following

classes

are

local

entities

of

the

scoping

unit

in

which

they

are

defined:

1.

Named

variables

that

are

not

statement

entities,

module

procedures,

named

constants,

derived-type

definitions,

construct

names,

generic

identifiers,

statement

functions,

internal

subprograms,

dummy

procedures,

intrinsic

procedures,

or

namelist

group

names.

2.

Components

of

a

derived-type

definition

(each

derived-type

definition

has

its

own

class).

A

component

name

has

the

same

scope

as

the

type

of

which

it

is

a

component.

It

may

appear

only

within

a

component

designator

of

a

structure

of

that

type.

SUBROUTINE B
REAL B1

END SUBROUTINE B

FUNCTION C ()
REAL C1

END FUNCTION C

END PROGRAM A

PROGRAM A
INTEGER A1
CONTAINS

scope of
variable B1

scope of
variable C1

scope of
variable A1
(not including
scope of B1
and C1)

128

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

If

the

derived

type

is

defined

in

a

module

and

contains

the

PRIVATE

statement,

the

type

and

its

components

are

accessible

in

any

of

the

defining

module’s

subprograms

by

host

association.

If

the

accessing

scoping

unit

accesses

this

type

by

use

association,

that

scoping

unit

(and

any

scoping

unit

that

accesses

the

entities

of

that

scoping

unit

by

host

association)

can

access

the

derived-type

definition

but

not

its

components.

3.

Argument

keywords

(in

a

separate

class

for

each

procedure

with

an

explicit

interface).

A

dummy

argument

name

in

an

internal

procedure,

module

procedure,

or

procedure

interface

block

has

a

scope

as

an

argument

keyword

of

the

scoping

unit

of

its

host.

As

an

argument

keyword,

it

may

appear

only

in

a

procedure

reference

for

the

procedure

of

which

it

is

a

dummy

argument.

If

the

procedure

or

procedure

interface

block

is

accessible

in

another

scoping

unit

by

use

association

or

host

association,

the

argument

keyword

is

accessible

for

procedure

references

for

that

procedure

in

that

scoping

unit.

In

a

scoping

unit,

a

name

that

identifies

a

local

entity

of

one

class

may

be

used

to

identify

a

local

entity

of

another

class.

Such

a

name

must

not

be

used

to

identify

another

local

entity

of

the

same

class,

except

in

the

case

of

generic

names.

A

name

that

identifies

a

global

entity

in

a

scoping

unit

cannot

be

used

to

identify

a

local

entity

of

Class

1

in

that

scoping

unit,

except

for

a

common

block

name

or

the

name

of

an

external

function.

Components

of

a

record

structure

are

local

entities

of

class

2.

A

separate

class

exists

for

each

type.

A

name

declared

to

be

a

derived

type

using

a

record

structure

declaration

may

have

the

same

name

as

another

local

entity

of

class

1

of

that

scoping

unit

that

is

not

a

derived

type.

In

this

case,

the

structure

constructor

for

that

type

is

not

available

in

that

scope.

Similarly,

a

local

entity

of

class

1

is

accessible

via

host

association

or

use

association,

even

if

there

is

another

local

entity

of

class

1

accessible

in

that

scope,

if

v

one

of

the

two

entities

is

a

derived

type

and

the

other

is

not;

and

v

in

the

case

of

host

association,

the

derived

type

is

accessible

via

host

association.

For

example,

given

a

module

M,

a

program

unit

P,

and

an

internal

subprogram

or

module

subprogram

S

nested

in

P,

if

you

have

an

entity

named

T1

declared

in

M

that

is

accessed

by

use

association

in

P

(or

in

S),

you

can

declare

another

entity

in

P

(or

in

S,

respectively)

with

the

same

name

T1,

so

long

as

one

of

the

two

is

a

derived

type.

If

you

have

an

entity

named

T2

accessible

in

P,

and

an

entity

named

T2

declared

in

S,

then

the

T2

accessible

in

P

is

accessible

in

S

if

the

T2

in

P

is

a

derived

type.

If

the

T2

in

P

was

not

a

derived

type,

it

would

not

be

accessible

in

S

if

S

declared

another

T2

(of

derived

type

or

not).

The

structure

constructor

for

that

type

will

not

be

available

in

that

scope.

A

local

entity

of

class

1

in

a

scope

that

has

the

same

name

as

a

derived

type

accessible

in

that

scope

must

be

explicitly

declared

in

a

declaration

statement

in

that

scope.

If

two

local

entities

of

class

1,

one

of

which

is

a

derived

type,

are

accessible

in

a

scoping

unit,

any

PUBLIC

or

PRIVATE

statement

that

specifies

the

name

of

the

entities

applies

to

both

entities.

If

the

name

of

the

entities

is

specified

in

a

VOLATILE

statement,

the

entity

or

entities

declared

in

that

scope

have

the

volatile

attribute.

If

the

two

entities

are

public

entities

of

a

module,

any

rename

on

a

USE

statement

that

references

the

module

and

specifies

the

names

of

the

entities

as

the

use_name

applies

to

both

entities.

A

common

block

name

in

a

scoping

unit

can

be

the

name

of

any

local

entity

other

than

a

named

constant

or

intrinsic

procedure.

The

name

is

recognized

as

the

Program

Units

and

Procedures

129

common

block

entity

only

when

the

name

is

delimited

by

slashes

in

a

COMMON,

VOLATILE,

or

SAVE

statement.

If

it

is

not,

the

name

identifies

the

local

entity.

An

intrinsic

procedure

name

can

be

the

name

of

a

common

block

in

a

scoping

unit

that

does

not

reference

the

intrinsic

procedure.

In

this

case,

the

intrinsic

procedure

name

is

not

accessible.

An

external

function

name

can

also

be

the

function

result

name.

This

is

the

only

way

that

an

external

function

name

can

also

be

a

local

entity.

If

a

scoping

unit

contains

a

local

entity

of

Class

1

with

the

same

name

as

an

intrinsic

procedure,

the

intrinsic

procedure

is

not

accessible

in

that

scoping

unit.

An

interface

block

generic

name

can

be

the

same

as

any

of

the

procedure

names

in

the

interface

block,

or

the

same

as

any

accessible

generic

name.

It

can

be

the

same

as

any

generic

intrinsic

procedure.

See

“Resolution

of

Procedure

References”

on

page

164

for

details.

Statement

and

Construct

Entities

Statement

Entities:

The

following

items

are

statement

entities:

v

Name

of

a

statement

function

dummy

argument.

SCOPE:

Scope

of

the

statement

in

which

it

appears.
v

Name

of

a

variable

that

appears

as

the

DO

variable

of

an

implied-DO

in

a

DATA

statement

or

array

constructor.

SCOPE:

Scope

of

the

implied-DO

list.

Except

for

a

common

block

name

or

scalar

variable

name,

the

name

of

a

global

entity

or

local

entity

of

class

1

that

is

accessible

in

the

scoping

unit

of

a

statement

or

construct

must

not

be

the

name

of

a

statement

or

construct

entity

of

that

statement

or

construct.

Within

the

scope

of

a

statement

or

construct

entity,

another

statement

or

construct

entity

must

not

have

the

same

name.

The

name

of

a

variable

that

appears

as

a

dummy

argument

in

a

statement

function

statement

has

a

scope

of

the

statement

in

which

it

appears.

It

has

the

type

and

type

parameters

that

it

would

have

if

it

were

the

name

of

a

variable

in

the

scoping

unit

that

includes

the

statement

function.

If

the

name

of

a

global

or

local

entity

accessible

in

the

scoping

unit

of

a

statement

or

construct

is

the

same

as

the

name

of

a

statement

or

construct

entity

in

that

statement

or

construct,

the

name

is

interpreted

within

the

scope

of

the

statement

or

construct

entity

as

that

of

the

statement

or

construct

entity.

Elsewhere

in

the

scoping

unit,

including

parts

of

the

statement

or

construct

outside

the

scope

of

the

statement

or

construct

entity,

the

name

is

interpreted

as

that

of

the

global

or

local

entity.

If

a

statement

or

construct

entity

has

the

same

name

as

an

accessible

name

that

denotes

a

variable,

constant,

or

function,

the

statement

or

construct

entity

has

the

same

type

and

type

parameters

as

the

variable,

constant

or

function.

Otherwise,

the

type

of

the

statement

or

construct

entity

is

determined

through

the

implicit

typing

rules

in

effect.

If

the

statement

entity

is

the

DO

variable

of

an

implied-DO

in

a

DATA

statement,

the

variable

cannot

have

the

same

name

as

an

accessible

named

constant.

130

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Fortran

95

Statement

and

Construct

Entity:

Fortran

95

The

following

is

a

Fortran

95

statement

and

construct

entity:

v

Name

of

a

variable

that

appears

as

an

index_name

in

a

FORALL

statement

or

FORALL

construct.

SCOPE:

Scope

of

the

FORALL

statement

or

construct.

The

only

attributes

held

by

the

FORALL

statement

or

construct

entity

are

the

type

and

type

parameters

that

it

would

have

if

it

were

the

name

of

a

variable

in

the

scoping

unit

that

includes

the

FORALL.

It

is

type

integer.

Except

for

a

common

block

name

or

a

scalar

variable

name,

a

name

that

identifies

a

global

entity

or

a

local

entity

of

class

1,

accessible

in

the

scoping

unit

of

a

FORALL

statement

or

construct,

must

not

be

the

same

as

the

index_name.

Within

the

scope

of

a

FORALL

construct,

a

nested

FORALL

statement

or

FORALL

construct

must

not

have

the

same

index_name.

If

the

name

of

a

global

or

local

entity

accessible

in

the

scoping

unit

of

a

FORALL

statement

or

construct

is

the

same

as

the

index_name,

the

name

is

interpreted

within

the

scope

of

the

FORALL

statement

or

construct

as

that

of

the

index_name.

Elsewhere

in

the

scoping

unit,

the

name

is

interpreted

as

that

of

the

global

or

local

entity.

End

of

Fortran

95

Association

Association

exists

if

the

same

data

can

be

identified

with

different

names

in

the

same

scoping

unit,

or

with

the

same

name

or

different

names

in

different

scoping

units

of

the

same

executable

program.

Host

Association

Host

association

allows

an

internal

subprogram,

module

subprogram,

or

derived-type

definition

to

access

named

entities

that

exist

in

its

host.

Accessed

entities

have

the

same

attributes

and

are

known

by

the

same

name

(if

available)

as

they

are

in

the

host.

The

entities

are

named

objects,

derived-type

definitions,

namelist

groups,

interface

blocks

and

procedures.

A

name

that

is

specified

with

the

EXTERNAL

attribute

is

a

global

name.

Any

entity

in

the

host

scoping

unit

that

has

this

name

as

its

nongeneric

name

is

inaccessible

by

that

name

and

by

host

association.

The

following

list

of

entities

are

local

within

a

scoping

unit

when

declared

or

initialized

in

that

scoping

unit:

v

A

variable

name

in

a

COMMON

statement

or

initialized

in

a

DATA

statement

v

An

array

name

in

a

DIMENSION

statement

v

A

name

of

a

derived

type

v

An

object

name

in

a

type

declaration,

EQUIVALENCE,

POINTER,

ALLOCATABLE,

SAVE,

TARGET,

AUTOMATIC,

integer

POINTER,

STATIC,

or

VOLATILE

statement

v

A

named

constant

in

a

PARAMETER

statement

v

A

namelist

group

name

in

a

NAMELIST

statement

Program

Units

and

Procedures

131

v

A

generic

interface

name

or

a

defined

operator

v

An

intrinsic

procedure

name

in

an

INTRINSIC

statement

v

A

function

name

in

a

FUNCTION

statement,

statement

function

statement,

or

type

declaration

statement

v

A

result

name

in

a

FUNCTION

statement

or

an

ENTRY

statement

v

A

subroutine

name

in

a

SUBROUTINE

statement

v

An

entry

name

in

an

ENTRY

statement

v

A

dummy

argument

name

in

a

FUNCTION,

SUBROUTINE,

ENTRY,

or

statement

function

statement

v

The

name

of

a

named

construct

Entities

that

are

local

to

a

subprogram

are

not

accessible

in

the

host

scoping

unit.

A

local

entity

must

not

be

referenced

or

defined

before

the

DATA

statement

when:

1.

An

entity

is

local

to

a

scoping

unit

only

because

it

is

initialized

in

a

DATA

statement,

and

2.

An

entity

in

the

host

has

the

same

name

as

this

local

entity.

If

a

derived-type

name

of

a

host

is

inaccessible,

structures

of

that

type

or

subobjects

of

such

structures

are

still

accessible.

If

a

subprogram

gains

access

to

a

pointer

(or

integer

pointer)

by

host

association,

the

pointer

association

that

exists

at

the

time

the

subprogram

is

invoked

remains

current

within

the

subprogram.

This

pointer

association

can

be

changed

within

the

subprogram.

The

pointer

association

remains

current

when

the

procedure

finishes

executing,

except

when

this

causes

the

pointer

to

become

undefined,

in

which

case

the

association

status

of

the

host-associated

pointer

becomes

undefined.

An

interface

body

does

not

access

named

entities

through

host

association,

although

it

can

access

entities

by

use

association.

The

host

scoping

unit

of

an

internal

or

module

subprogram

can

contain

the

same

use-associated

entities.

Example

of

Host

Association

SUBROUTINE

MYSUB

TYPE

DATES

!

Define

DATES

INTEGER

START

INTEGER

END

END

TYPE

DATES

CONTAINS

INTEGER

FUNCTION

MYFUNC(PNAME)

TYPE

PLANTS

TYPE

(DATES)

LIFESPAN

!

Host

association

of

DATES

CHARACTER(10)

SPECIES

INTEGER

PHOTOPER

END

TYPE

PLANTS

END

FUNCTION

MYFUNC

END

SUBROUTINE

MYSUB

Use

Association

Use

association

occurs

when

a

scoping

unit

accesses

the

entities

of

a

module

with

the

USE

statement.

Use-associated

entities

can

be

renamed

for

use

in

the

local

scoping

unit.

The

association

is

in

effect

for

the

duration

of

the

executable

program.

See

“USE”

on

page

384

for

details.

132

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

MODULE

M

CONTAINS

SUBROUTINE

PRINTCHAR(X)

CHARACTER(20)

X

PRINT

*,

X

END

SUBROUTINE

END

MODULE

PROGRAM

MAIN

USE

M

!

Accesses

public

entities

of

module

M

CHARACTER(20)

::

NAME=’George’

CALL

PRINTCHAR(NAME)

!

Calls

PRINTCHAR

from

module

M

END

Pointer

Association

A

target

that

is

associated

with

a

pointer

can

be

referenced

by

a

reference

to

the

pointer.

This

is

called

pointer

association.

A

pointer

always

has

an

association

status:

Associated

v

The

ALLOCATE

statement

successfully

allocates

the

pointer,

which

has

not

been

subsequently

disassociated

or

undefined.

ALLOCATE

(P(3))

v

The

pointer

is

pointer-assigned

to

a

target

that

is

currently

associated

or

has

the

TARGET

attribute

and,

if

allocatable,

is

currently

allocated.

P

=>

T

Disassociated

v

The

pointer

is

nullified

by

a

NULLIFY

statement

or

by

the

-qinit=f90ptr

option.

See

-qinit

in

the

User’s

Guide.

NULLIFY

(P)

v

The

pointer

is

successfully

deallocated.

DEALLOCATE

(P)

v

The

pointer

is

pointer-assigned

to

a

disassociated

pointer.

NULLIFY

(Q);

P

=>

Q

Undefined

v

Initially

(unless

the

-qinit=f90ptr

option

is

specified)

v

If

its

target

was

never

allocated.

v

If

its

target

was

deallocated

other

than

through

the

pointer.

POINTER

P(:),

Q(:)

ALLOCATE

(P(3))

Q

=>

P

DEALLOCATE

(Q)

!

Deallocate

target

of

P

through

Q.

!

P

is

now

undefined.

END

v

If

the

execution

of

a

RETURN

or

END

statement

causes

the

pointer’s

target

to

become

undefined.

v

After

the

execution

of

a

RETURN

or

END

statement

in

a

procedure

where

the

pointer

was

declared

or

accessed,

except

for

objects

described

in

item

4

under

“Events

Causing

Undefinition”

on

page

60.

Definition

Status

and

Association

Status

The

definition

status

of

a

pointer

is

that

of

its

target.

If

a

pointer

is

associated

with

a

definable

target,

the

definition

status

of

the

pointer

can

be

defined

or

undefined

according

to

the

rules

for

a

variable.

Program

Units

and

Procedures

133

If

the

association

status

of

a

pointer

is

disassociated

or

undefined,

the

pointer

must

not

be

referenced

or

deallocated.

Whatever

its

association

status,

a

pointer

can

always

be

nullified,

allocated

or

pointer-assigned.

When

it

is

allocated,

its

definition

status

is

undefined.

When

it

is

pointer-assigned,

its

association

and

definition

status

are

determined

by

its

target.

So,

if

a

pointer

becomes

associated

with

a

target

that

is

defined,

the

pointer

becomes

defined.

Integer

Pointer

Association

IBM

Extension

An

integer

pointer

that

is

associated

with

a

data

object

can

be

used

to

reference

the

data

object.

This

is

called

integer

pointer

association.

Integer

pointer

association

can

only

occur

in

the

following

situations:

v

An

integer

pointer

is

assigned

the

address

of

a

variable:

POINTER

(P,A)

P=LOC(B)

!

A

and

B

become

associated

v

Multiple

pointees

are

declared

with

the

same

integer

pointer:

POINTER

(P,A),

(P,B)

!

A

and

B

are

associated

v

Multiple

integer

pointers

are

assigned

the

address

of

the

same

variable

or

the

address

of

other

variables

that

are

storage

associated:

POINTER

(P,A),

(Q,B)

P=LOC(C)

Q=LOC(C)

!

A,

B,

and

C

become

associated

v

An

integer

pointer

variable

that

appears

as

a

dummy

argument

is

assigned

the

address

of

another

dummy

argument

or

member

of

a

common

block:

POINTER

(P,A)

.

.

CALL

SUB

(P,B)

.

.

SUBROUTINE

SUB

(P,X)

POINTER

(P,Y)

P=LOC(X)

!

Main

program

variables

A

!

and

B

become

associated.

End

of

IBM

Extension

Program

Units,

Procedures,

and

Subprograms

A

program

unit

is

a

sequence

of

one

or

more

lines,

organized

as

statements,

comments,

and

INCLUDE

directives.

Specifically,

a

program

unit

can

be:

v

The

main

program

v

A

module

v

A

block

data

program

unit

v

An

external

function

subprogram

v

An

external

subroutine

subprogram

An

executable

program

is

a

collection

of

program

units

consisting

of

one

main

program

and

any

number

of

external

subprograms,

modules,

and

block

data

program

units.

134

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

A

subprogram

can

be

invoked

by

a

main

program

or

by

another

subprogram

to

perform

a

particular

activity.

When

a

procedure

is

invoked,

the

referenced

subprogram

is

executed.

An

external

or

module

subprogram

can

contain

multiple

ENTRY

statements.

The

subprogram

defines

a

procedure

for

the

SUBROUTINE

or

FUNCTION

statement,

as

well

as

one

procedure

for

each

ENTRY

statement.

An

external

procedure

is

defined

either

by

an

external

subprogram

or

by

a

program

unit

in

a

programming

language

other

than

Fortran.

Names

of

main

programs,

external

procedures,

block

data

program

units,

and

modules

are

global

entities.

Names

of

internal

and

module

procedures

are

local

entities.

Internal

Procedures

External

subprograms,

module

subprograms,

and

main

programs

can

have

internal

subprograms,

whether

the

internal

subprograms

are

functions

or

subroutines,

as

long

as

the

internal

subprograms

follow

the

CONTAINS

statement.

An

internal

procedure

is

defined

by

an

internal

subprogram.

Internal

subprograms

cannot

appear

in

other

internal

subprograms.

A

module

procedure

is

defined

by

a

module

subprogram

or

an

entry

in

a

module

subprogram.

Internal

procedures

and

module

procedures

are

the

same

as

external

procedures

except

that:

v

The

name

of

the

internal

procedure

or

module

procedure

is

not

a

global

entity

v

An

internal

subprogram

must

not

contain

an

ENTRY

statement

v

The

internal

procedure

name

must

not

be

an

argument

associated

with

a

dummy

procedure

v

The

internal

subprogram

or

module

subprogram

has

access

to

host

entities

by

host

association

Program

Units

and

Procedures

135

Interface

Concepts

The

interface

of

a

procedure

determines

the

form

of

the

procedure

reference.

The

interface

consists

of:

v

The

characteristics

of

the

procedure

v

The

name

of

the

procedure

v

The

name

and

characteristics

of

each

dummy

argument

v

The

generic

identifiers

of

the

procedure,

if

any

The

characteristics

of

a

procedure

consist

of:

v

Distinguishing

the

procedure

as

a

subroutine

or

a

function

v

Distinguishing

each

dummy

argument

either

as

a

data

object,

dummy

procedure,

or

alternate

return

specifier

The

characteristics

of

a

dummy

data

object

are

its

type,

type

parameters

(if

any),

shape,

intent,

whether

it

is

optional,

allocatable,

a

pointer,

a

target,

or

has

the

value

attribute.

Any

dependence

on

other

objects

for

type

parameter

or

array

bound

determination

is

a

characteristic.

If

a

shape,

size,

or

character

length

is

assumed,

it

is

a

characteristic.

The

characteristics

of

a

dummy

procedure

are

the

explicitness

of

its

interface,

its

procedure

characteristics

(if

the

interface

is

explicit),

and

whether

it

is

optional.

v

If

the

procedure

is

a

function,

specifying

the

characteristics

of

the

result

value:

its

type,

type

parameters

(if

any),

rank,

whether

it

is

allocatable,

and

whether

it

is

a

pointer.

For

nonpointer

array

results,

its

shape

is

a

characteristic.

Any

dependence

on

other

objects

for

type

parameters

or

array

bound

determination

is

a

characteristic.

If

the

length

of

a

character

object

is

assumed,

this

is

a

characteristic.

Migration

Tip:

Turn

your

external

procedures

into

internal

subprograms

or

put

them

into

modules.

The

explicit

interface

provides

type

checking.

FORTRAN

77

source

PROGRAM

MAIN

INTEGER

A

A=58

CALL

SUB(A)

!

C

must

be

passed

END

SUBROUTINE

SUB(A)

INTEGER

A,B,C

!

A

must

be

redeclared

C=A+B

END

SUBROUTINE

Fortran

90

or

Fortran

95

source

PROGRAM

MAIN

INTEGER

::

A=58

CALL

SUB

CONTAINS

SUBROUTINE

SUB

INTEGER

B,C

C=A+B

!

A

is

accessible

by

host

association

END

SUBROUTINE

END

136

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

If

a

procedure

is

accessible

in

a

scoping

unit,

it

has

an

interface

that

is

either

explicit

or

implicit

in

that

scoping

unit.

The

rules

are:

Entity

Interface

Dummy

procedure

Explicit

in

a

scoping

unit

if

an

interface

block

exists

or

is

accessible.

Implicit

in

all

other

cases.

External

subprogram

Explicit

in

a

scoping

unit

other

than

its

own

if

an

interface

block

exists

or

is

accessible.

Implicit

in

all

other

cases.

Recursive

procedure

with

a

result

clause

Explicit

in

the

subprogram’s

own

scoping

unit.

Module

procedure

Always

explicit.

Internal

procedure

Always

explicit.

Generic

procedure

Always

explicit.

Intrinsic

procedure

Always

explicit.

Statement

function

Always

implicit.

Internal

subprograms

cannot

appear

in

an

interface

block.

A

procedure

must

not

have

more

than

one

accessible

interface

in

a

scoping

unit.

The

interface

of

a

statement

function

cannot

be

specified

in

an

interface

block.

Explicit

Interface

A

procedure

must

have

an

explicit

interface

if:

1.

A

reference

to

the

procedure

appears

v

with

an

argument

keyword

v

as

a

defined

assignment

(for

subroutines

only)

v

in

an

expression

as

a

defined

operator

(for

functions

only)

v

as

a

reference

by

its

generic

name

v

in

a

context

that

requires

it

to

be

pure.

2.

The

procedure

has

v

a

dummy

argument

that

has

ALLOCATABLE,

OPTIONAL,

POINTER,

TARGET

or

VALUE

attribute

v

an

array-valued

result

(for

functions

only)

v

a

result

whose

length

type

parameter

is

neither

assumed

nor

constant

(for

character

functions

only)

v

a

pointer

or

allocatable

result

(for

functions

only)
3.

The

procedure

is

elemental.

Implicit

Interface

A

procedure

has

an

implicit

interface

if

its

interface

is

not

fully

known;

that

is,

it

has

no

explicit

interface.

Program

Units

and

Procedures

137

Interface

Blocks

The

interface

block

provides

a

means

of

specifying

an

explicit

interface

for

external

procedures

and

dummy

procedures.

You

can

also

use

an

interface

block

to

define

generic

identifiers.

An

interface

body

in

an

interface

block

specifies

the

explicit

specific

interface

for

an

existing

external

procedure

or

dummy

procedure.

INTERFACE_statement

See

“INTERFACE”

on

page

320

for

syntax

details

END_INTERFACE_statement

See

“END

INTERFACE”

on

page

279

for

syntax

details

MODULE_PROCEDURE_statement

See

“MODULE

PROCEDURE”

on

page

329

for

syntax

details

FUNCTION_interface_body

��

INTERFACE_statement

��

��

�

FUNCTION_interface_body

SUBROUTINE_interface_body

MODULE_PROCEDURE_statement

��

��

END_INTERFACE_statement

��

��

FUNCTION_statement

��

��

specification_part

��

��

end_function_statement

��

138

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

SUBROUTINE_interface_body

FUNCTION_statement,

SUBROUTINE_statement

For

syntax

details,

see

“FUNCTION”

on

page

298

and

“SUBROUTINE”

on

page

372.

specification_part

is

a

sequence

of

statements

from

the

statement

groups

numbered

�2�

and

�4�

in

“Order

of

Statements

and

Execution

Sequence”

on

page

19.

end_function_statement,

end_subroutine_statement

For

syntax

details

of

both

statements,

see

“END”

on

page

276.

In

an

interface

body,

you

specify

all

the

characteristics

of

the

procedure.

See

“Interface

Concepts”

on

page

136.

The

characteristics

must

be

consistent

with

those

specified

in

the

subprogram

definition,

except

that:

1.

dummy

argument

names

may

be

different.

2.

you

do

not

have

to

indicate

that

a

procedure

is

pure,

even

if

the

subprogram

that

defines

it

is

pure.

3.

you

can

associate

a

pure

actual

argument

with

a

dummy

procedure

that

is

not

pure.

4.

when

you

associate

an

intrinsic

elemental

procedure

with

a

dummy

procedure,

the

dummy

procedure

does

not

have

to

be

elemental

The

specification_part

of

an

interface

body

can

contain

statements

that

specify

attributes

or

define

values

for

data

objects

that

do

not

determine

characteristics

of

the

procedure.

Such

specification

statements

have

no

effect

on

the

interface.

Interface

blocks

do

not

specify

the

characteristics

of

module

procedures,

whose

characteristics

are

defined

in

the

module

subprogram

definitions.

An

interface

body

cannot

contain

ENTRY

statements,

DATA

statements,

FORMAT

statements,

statement

function

statements,

or

executable

statements.

You

can

specify

an

entry

interface

by

using

the

entry

name

as

the

procedure

name

in

an

interface

body.

An

interface

body

does

not

access

named

entities

by

host

association.

It

is

treated

as

if

it

had

a

host

with

the

default

implicit

rules.

See

“How

Type

Is

Determined”

on

page

57

for

a

discussion

of

the

implicit

rules.

An

interface

block

can

be

generic

or

nongeneric.

A

generic

interface

block

must

specify

a

generic

specification

in

the

INTERFACE

statement,

while

a

nongeneric

interface

block

must

not

specify

such

a

generic

specification.

See

“INTERFACE”

on

page

320

for

details.

��

SUBROUTINE_statement

��

��

specification_part

��

��

end_subroutine_statement

��

Program

Units

and

Procedures

139

The

interface

bodies

within

a

nongeneric

interface

block

can

contain

interfaces

for

both

subroutines

and

functions.

A

generic

name

specifies

a

single

name

to

reference

all

of

the

procedures

in

the

interface

block.

At

most,

one

specific

procedure

is

invoked

each

time

there

is

a

procedure

reference

with

a

generic

name.

The

MODULE

PROCEDURE

statement

is

allowed

only

if

the

interface

block

has

a

generic

specification

and

is

contained

in

a

scoping

unit

where

each

procedure

name

is

accessible

as

a

module

procedure.

A

procedure

name

used

in

a

MODULE

PROCEDURE

statement

must

not

have

been

previously

specified

in

any

MODULE

PROCEDURE

statement

in

any

accessible

interface

block

with

the

same

generic

identifier.

IBM

Extension

For

an

interface

to

a

non-Fortran

subprogram,

the

dummy

argument

list

in

the

FUNCTION

or

SUBROUTINE

statement

can

explicitly

specify

the

passing

method.

See

“Dummy

Arguments”

on

page

155

for

details.

End

of

IBM

Extension

Example

of

an

Interface

MODULE

M

CONTAINS

SUBROUTINE

S1(IARG)

IARG

=

1

END

SUBROUTINE

S1

SUBROUTINE

S2(RARG)

RARG

=

1.1

END

SUBROUTINE

S2

SUBROUTINE

S3(LARG)

LOGICAL

LARG

LARG

=

.TRUE.

END

SUBROUTINE

S3

END

USE

M

INTERFACE

SS

SUBROUTINE

SS1(IARG,JARG)

END

SUBROUTINE

MODULE

PROCEDURE

S1,S2,S3

END

INTERFACE

CALL

SS(II)

!

Calls

subroutine

S1

from

M

CALL

SS(I,J)

!

Calls

subroutine

SS1

END

SUBROUTINE

SS1(IARG,JARG)

IARG

=

2

JARG

=

3

END

SUBROUTINE

You

can

always

reference

a

procedure

through

its

specific

interface.

If

a

generic

interface

exists

for

a

procedure,

the

procedure

can

also

be

referenced

through

the

generic

interface.

Within

an

interface

body,

if

a

dummy

argument

is

intended

to

be

a

dummy

procedure,

it

must

have

the

EXTERNAL

attribute

or

there

must

be

an

interface

for

the

dummy

argument.

140

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Generic

Interface

Blocks

A

generic

interface

block

must

specify

a

generic

name,

defined

operator,

or

defined

assignment

in

an

INTERFACE

statement.

The

generic

name

is

a

single

name

with

which

to

reference

all

of

the

procedures

specified

in

the

interface

block.

It

can

be

the

same

as

any

accessible

generic

name,

or

any

of

the

procedure

names

in

the

interface

block.

If

two

or

more

generic

interfaces

that

are

accessible

in

a

scoping

unit

have

the

same

local

name,

they

are

interpreted

as

a

single

generic

interface.

Unambiguous

Generic

Procedure

References

Whenever

a

generic

procedure

reference

is

made,

only

one

specific

procedure

is

invoked.

The

following

rules

ensure

that

a

generic

reference

is

unambiguous.

If

two

procedures

in

the

same

scoping

unit

both

define

assignment

or

both

have

the

same

defined

operator

and

the

same

number

of

arguments,

you

must

specify

a

dummy

argument

that

corresponds

by

position

in

the

argument

list

to

a

dummy

argument

of

the

other

that

has

a

different

type,

kind

type

parameter,

or

rank.

Within

a

scoping

unit,

two

procedures

that

have

the

same

generic

name

must

both

be

subroutines

or

both

be

functions.

Also,

at

least

one

of

them

must

have

a

nonoptional

dummy

argument

that

both:

1.

Corresponds

by

position

in

the

argument

list

to

a

dummy

argument

that

is

either

not

present

in

the

argument

list

of

the

other

subprogram,

or

is

present

with

a

different

type,

kind

type

parameter,

or

rank.

2.

Corresponds

by

argument

keyword

to

a

dummy

argument

not

present

in

the

other

argument

list,

or

present

with

a

different

type,

kind

type

parameter,

or

rank.

When

an

interface

block

extends

an

intrinsic

procedure

(see

the

next

section),

the

above

rules

apply

as

if

the

intrinsic

procedure

consisted

of

a

collection

of

specific

procedures,

one

procedure

for

each

allowed

set

of

arguments.

IBM

Extension

Notes:

1.

Dummy

arguments

of

type

BYTE

are

considered

to

have

the

same

type

as

corresponding

1-byte

dummy

arguments

of

type

INTEGER(1),

LOGICAL(1),

and

character.

2.

When

the

-qintlog

compiler

option

is

specified,

dummy

arguments

of

type

integer

and

logical

are

considered

to

have

the

same

type

as

corresponding

dummy

arguments

of

type

integer

and

logical

with

the

same

kind

type

parameter.

3.

If

the

dummy

argument

is

only

declared

with

the

EXTERNAL

attribute

within

an

interface

body,

the

dummy

argument

must

be

the

only

dummy

argument

corresponding

by

position

to

a

procedure,

and

it

must

be

the

only

dummy

argument

corresponding

by

argument

keyword

to

a

procedure.

End

of

IBM

Extension

Example

of

a

Generic

Interface

Block

PROGRAM

MAIN

INTERFACE

A

FUNCTION

AI(X)

Program

Units

and

Procedures

141

INTEGER

AI,

X

END

FUNCTION

AI

END

INTERFACE

INTERFACE

A

FUNCTION

AR(X)

REAL

AR,

X

END

FUNCTION

AR

END

INTERFACE

INTERFACE

FUNC

FUNCTION

FUNC1(I,

EXT)

!

Here,

EXT

is

a

procedure

INTEGER

I

EXTERNAL

EXT

END

FUNCTION

FUNC1

FUNCTION

FUNC2(EXT,

I)

INTEGER

I

REAL

EXT

!

Here,

EXT

is

a

variable

END

FUNCTION

FUNC2

END

INTERFACE

EXTERNAL

MYFUNC

IRESULT=A(INTVAL)

!

Call

to

function

AI

RRESULT=A(REALVAL)

!

Call

to

function

AR

RESULT=FUNC(1,MYFUNC)

!

Call

to

function

FUNC1

END

PROGRAM

MAIN

Extending

Intrinsic

Procedures

with

Generic

Interface

Blocks

A

generic

intrinsic

procedure

can

be

extended

or

redefined.

An

extended

intrinsic

procedure

supplements

the

existing

specific

intrinsic

procedures.

A

redefined

intrinsic

procedure

replaces

an

existing

specific

intrinsic

procedure.

When

a

generic

name

is

the

same

as

a

generic

intrinsic

procedure

name

and

the

name

has

the

INTRINSIC

attribute

(or

appears

in

an

intrinsic

context),

the

generic

interface

extends

the

generic

intrinsic

procedure.

When

a

generic

name

is

the

same

as

a

generic

intrinsic

procedure

name

and

the

name

does

not

have

the

INTRINSIC

attribute

(nor

appears

in

an

intrinsic

context),

the

generic

interface

can

redefine

the

generic

intrinsic

procedure.

A

generic

interface

name

cannot

be

the

same

as

a

specific

intrinsic

procedure

name

if

the

name

has

the

INTRINSIC

attribute

(or

appears

in

an

intrinsic

context).

Example

of

Extending

and

Redefining

Intrinsic

Procedures

PROGRAM

MAIN

INTRINSIC

MAX

INTERFACE

MAX

!

Extension

to

intrinsic

MAX

FUNCTION

MAXCHAR(STRING)

CHARACTER(50)

STRING

END

FUNCTION

MAXCHAR

END

INTERFACE

INTERFACE

ABS

!

Redefines

generic

ABS

as

FUNCTION

MYABS(ARG)

!

ABS

does

not

appear

in

REAL(8)

MYABS,

ARG

!

an

INTRINSIC

statement

END

FUNCTION

MYABS

END

INTERFACE

REAL(8)

DARG,

DANS

REAL(4)

RANS

INTEGER

IANS,IARG

CHARACTER(50)

NAME

DANS

=

ABS(DARG)

!

Calls

external

MYABS

IANS

=

ABS(IARG)

!

Calls

intrinsic

IABS

DANS

=

DABS(DARG)

!

Calls

intrinsic

DABS

IANS

=

MAX(NAME)

!

Calls

external

MAXCHAR

RANS

=

MAX(1.0,2.0)

!

Calls

intrinsic

AMAX1

END

PROGRAM

MAIN

142

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Defined

Operators

A

defined

operator

is

a

user-defined

unary

or

binary

operator,

or

an

extended

intrinsic

operator

(see

“Extended

Intrinsic

and

Defined

Operations”

on

page

97).

It

must

be

defined

by

both

a

function

and

a

generic

interface

block.

1.

To

define

the

unary

operation

op

x₁:

a.

A

function

or

entry

must

exist

that

specifies

exactly

one

dummy

argument,

d₁.

b.

The

generic_spec

in

an

INTERFACE

statement

specifies

OPERATOR

(op).

c.

The

type

of

x₁

is

the

same

as

the

type

of

the

dummy

argument

d₁.

d.

The

type

parameters,

if

any,

of

x₁

must

match

those

of

d₁.

e.

Either

v

The

function

is

ELEMENTAL,

or

v

The

rank

of

x₁,

and

its

shape,

if

it

is

an

array,

match

those

of

d₁
2.

To

define

the

binary

operation

x₁

op

x₂:

a.

The

function

is

specified

with

a

FUNCTION

or

ENTRY

statement

that

specifies

two

dummy

arguments,

d₁

and

d₂.

b.

The

generic_spec

in

an

INTERFACE

block

specifies

OPERATOR

(op).

c.

The

types

of

x₁

and

x₂

are

the

same

as

those

of

the

dummy

arguments

d₁

and

d₂,

respectively.

d.

The

type

parameters,

if

any,

of

x₁

and

x₂

match

those

of

d₁

and

d₂,

respectively.

e.

Either:

v

The

function

is

ELEMENTAL

and

x₁

and

x₂

are

conformable

or,

v

The

ranks

of

x₁

and

x₂

and

their

shapes,

if

either

or

both

are

arrays,

match

those

of

d₁

and

d₂,

respectively.
3.

If

op

is

an

intrinsic

operator,

the

types

or

ranks

of

either

x₁

or

x₂

are

not

those

required

for

an

intrinsic

operation.

4.

The

generic_spec

must

not

specify

OPERATOR

for

functions

with

no

arguments

or

for

functions

with

more

than

two

arguments.

5.

Each

argument

must

be

nonoptional.

6.

The

arguments

must

be

specified

with

INTENT(IN).

7.

Each

function

specified

in

the

interface

block

cannot

have

a

result

of

assumed

character

length.

8.

If

the

operator

specified

is

an

intrinsic

operator,

the

number

of

function

arguments

must

be

consistent

with

the

intrinsic

uses

of

that

operator.

9.

A

given

defined

operator

can,

as

with

generic

names,

apply

to

more

than

one

function,

in

which

case

it

is

generic

just

like

generic

procedure

names.

For

intrinsic

operator

symbols,

the

generic

properties

include

the

intrinsic

operations

they

represent.

IBM

Extension

10.

The

following

rules

apply

only

to

extended

intrinsic

operations:

a.

The

type

of

one

of

the

arguments

can

only

be

of

type

BYTE

when

the

type

of

the

other

argument

is

of

derived

type.

b.

When

the

-qintlog

compiler

option

has

been

specified

for

non-character

operations,

and

d₁

is

numeric

or

logical,

then

d₂

must

not

be

numeric

or

logical.

c.

When

the

-qctyplss

compiler

option

has

been

specified

for

non-character

operations,

if

x₁

is

numeric

or

logical

and

x₂

is

a

character

constant,

the

intrinsic

operation

is

performed.

Program

Units

and

Procedures

143

End

of

IBM

Extension

Example

of

a

Defined

Operator

INTERFACE

OPERATOR

(.DETERMINANT.)

FUNCTION

IDETERMINANT

(ARRAY)

INTEGER,

INTENT(IN),

DIMENSION

(:,:)

::

ARRAY

INTEGER

IDETERMINANT

END

FUNCTION

END

INTERFACE

END

Defined

Assignment

A

defined

assignment

is

treated

as

a

reference

to

a

subroutine,

with

the

left-hand

side

as

the

first

argument

and

the

right-hand

side

enclosed

in

parentheses

as

the

second

argument.

1.

To

define

the

defined

assignment

x₁

=

x₂:

a.

The

subroutine

is

specified

with

a

SUBROUTINE

or

ENTRY

statement

that

specifies

two

dummy

arguments,

d₁

and

d₂.

b.

The

generic_spec

of

an

interface

block

specifies

ASSIGNMENT

(=).

c.

The

types

of

x₁

and

x₂

are

the

same

as

those

of

the

dummy

arguments

d₁

and

d₂,

respectively.

d.

The

type

parameters,

if

any,

of

x₁

and

x₂

match

those

of

d₁

and

d₂,

respectively.

e.

Either:

v

The

subroutine

is

ELEMENTAL

and

either

x₁

and

x₂

have

the

same

shape,

x₂

is

scalar,

or

v

The

ranks

of

x₁

and

x₂,

and

their

shapes,

if

either

or

both

are

arrays,

match

those

of

d₁

and

d₂,

respectively.
2.

ASSIGNMENT

must

only

be

used

for

subroutines

with

exactly

two

arguments.

3.

Each

argument

must

be

nonoptional.

4.

The

first

argument

must

have

INTENT(OUT)

or

INTENT(INOUT),

and

the

second

argument

must

have

INTENT(IN).

5.

The

types

of

the

arguments

must

not

be

both

numeric,

both

logical,

or

both

character

with

the

same

kind

parameter.

IBM

Extension

The

type

of

one

of

the

arguments

can

only

be

of

type

BYTE

when

the

type

of

the

other

argument

is

of

derived

type.

When

the

-qintlog

compiler

option

has

been

specified,

and

d₁

is

numeric

or

logical,

then

d₂

must

not

be

numeric

or

logical.

When

the

-qctyplss

compiler

option

has

been

specified,

if

x₁

is

numeric

or

logical

and

x₂

is

a

character

constant,

intrinsic

assignment

is

performed.

End

of

IBM

Extension

6.

The

ASSIGNMENT

generic

specification

specifies

that

the

assignment

operation

is

extended

or

redefined

if

both

sides

of

the

equal

sign

are

of

the

same

derived

type.

144

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Example

of

Defined

Assignment

INTERFACE

ASSIGNMENT(=)

SUBROUTINE

BIT_TO_NUMERIC

(N,B)

INTEGER,

INTENT(OUT)

::

N

LOGICAL,

INTENT(IN),

DIMENSION(:)

::

B

END

SUBROUTINE

END

INTERFACE

Main

Program

A

main

program

is

the

program

unit

that

receives

control

from

the

system

when

the

executable

program

is

invoked

at

run

time.

PROGRAM_statement

See

“PROGRAM”

on

page

347

for

syntax

details

specification_part

is

a

sequence

of

statements

from

the

statement

groups

numbered

�2�,

�3�,

and

�4�

in

“Order

of

Statements

and

Execution

Sequence”

on

page

19

execution_part

is

a

sequence

of

statements

from

the

statement

groups

numbered

�3�

and

�5�

in

“Order

of

Statements

and

Execution

Sequence”

on

page

19,

and

which

must

begin

with

a

statement

from

statement

group

�5�

internal_subprogram_part

See

“Internal

Procedures”

on

page

135

for

details

END_PROGRAM_statement

See

“END”

on

page

276

for

syntax

details

A

main

program

cannot

contain

an

ENTRY

statement,

nor

can

it

specify

an

automatic

object.

IBM

Extension

A

RETURN

statement

can

appear

in

a

main

program.

The

execution

of

a

RETURN

��

PROGRAM_statement

��

��

specification_part

��

��

execution_part

��

��

internal_subprogram_part

��

��

END_PROGRAM_statement

��

Program

Units

and

Procedures

145

statement

has

the

same

effect

as

the

execution

of

an

END

statement.

End

of

IBM

Extension

A

main

program

cannot

reference

itself,

directly

or

indirectly.

Modules

A

module

contains

specifications

and

definitions

that

can

be

accessed

from

other

program

units.

These

definitions

include

data

object

definitions,

namelist

groups,

derived-type

definitions,

procedure

interface

blocks

and

procedure

definitions.

MODULE_statement

See

“MODULE”

on

page

328

for

syntax

details

specification_part

is

a

sequence

of

statements

from

the

statement

groups

numbered

�2�,

�3�,

and

�4�

in

“Order

of

Statements

and

Execution

Sequence”

on

page

19

��

MODULE_statement

��

��

specification_part

��

��

module_subprogram_part

��

��

END_MODULE_statement

��

146

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

module_subprogram_part:

CONTAINS_statement

See

“CONTAINS”

on

page

254

for

syntax

details

END_MODULE_statement

See

“END”

on

page

276

for

syntax

details

A

module

subprogram

is

contained

in

a

module

but

is

not

an

internal

subprogram.

Module

subprograms

must

follow

a

CONTAINS

statement,

and

can

contain

internal

procedures.

A

module

procedure

is

defined

by

a

module

subprogram

or

an

entry

in

a

module

subprogram.

Executable

statements

within

a

module

can

only

be

specified

in

module

subprograms.

The

declaration

of

a

module

function

name

of

type

character

cannot

have

an

asterisk

as

a

length

specification.

specification_part

cannot

contain

statement

function

statements,

ENTRY

statements,

or

FORMAT

statements,

although

these

statements

can

appear

in

the

specification

part

of

a

module

subprogram.

Automatic

objects

and

objects

with

the

AUTOMATIC

attribute

cannot

appear

in

the

scope

of

a

module.

An

accessible

module

procedure

can

be

invoked

by

another

subprogram

in

the

module

or

by

any

scoping

unit

outside

the

module

through

use

association

(that

is,

by

using

the

USE

statement).

See

“USE”

on

page

384

for

details.

IBM

Extension

Integer

pointers

cannot

appear

in

specification_part

if

the

pointee

specifies

a

dimension

declarator

with

nonconstant

bounds.

All

objects

in

the

scope

of

a

module

retain

their

association

status,

allocation

status,

definition

status,

and

value

when

any

procedure

that

accesses

the

module

through

use

association

executes

a

RETURN

or

END

statement.

See

point

4

under

“Events

Causing

Undefinition”

on

page

60

for

more

information.

End

of

IBM

Extension

A

module

is

a

host

to

any

module

procedures

or

derived-type

definitions

it

contains,

which

can

access

entities

in

the

scope

of

the

module

through

host

association.

��

CONTAINS_statement

��

��

�

module_subprogram

��

Program

Units

and

Procedures

147

A

module

procedure

can

be

used

as

an

actual

argument

associated

with

a

dummy

procedure

argument.

The

name

of

a

module

procedure

is

local

to

the

scope

of

the

module

and

cannot

be

the

same

as

the

name

of

any

entity

in

the

module,

except

for

a

common

block

name.

Example

of

a

Module

MODULE

M

INTEGER

SOME_DATA

CONTAINS

SUBROUTINE

SUB()

!

Module

subprogram

INTEGER

STMTFNC

STMTFNC(I)

=

I

+

1

SOME_DATA

=

STMTFNC(5)

+

INNER(3)

CONTAINS

INTEGER

FUNCTION

INNER(IARG)

!

Internal

subprogram

INNER

=

IARG

*

2

END

FUNCTION

END

SUBROUTINE

SUB

END

MODULE

Migration

Tips:

v

Eliminate

common

blocks

and

INCLUDE

directives

v

Use

modules

to

hold

global

data

and

procedures

to

ensure

consistency

of

definitions

FORTRAN

77

source:

COMMON

/BLOCK/A,

B,

C,

NAME,

NUMBER

REAL

A,

B,

C

A

=

3

CALL

CALLUP(D)

PRINT

*,

NAME,

NUMBER

END

SUBROUTINE

CALLUP

(PARM)

COMMON

/BLOCK/A,

B,

C,

NAME,

NUMBER

REAL

A,

B,

C

...

NAME

=

3

NUMBER

=

4

END

Fortran

90

or

Fortran

95

source:

MODULE

FUNCS

REAL

A,

B,

C

!

Common

block

no

longer

needed

INTEGER

NAME,

NUMBER

!

Global

data

CONTAINS

SUBROUTINE

CALLUP

(PARM)

...

NAME

=

3

NUMBER

=

4

END

SUBROUTINE

END

MODULE

FUNCS

PROGRAM

MAIN

USE

FUNCS

A

=

3

CALL

CALLUP(D)

PRINT

*,

NAME,

NUMBER

END

148

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

PROGRAM

MAIN

USE

M

!

Main

program

accesses

CALL

SUB()

!

module

M

END

PROGRAM

Block

Data

Program

Unit

A

block

data

program

unit

provides

initial

values

for

objects

in

named

common

blocks.

BLOCK_DATA_statement

See

“BLOCK

DATA”

on

page

233

for

syntax

details

specification_part

is

a

sequence

of

statements

from

the

statement

groups

numbered

�2�,

�3�,

and

�4�

in

“Order

of

Statements

and

Execution

Sequence”

on

page

19

END_BLOCK_DATA_statement

See

“END”

on

page

276

for

syntax

details

In

specification_part,

you

can

specify

type

declaration,

USE,

IMPLICIT,

COMMON,

DATA,

EQUIVALENCE,

and

integer

pointer

statements,

derived-type

definitions,

and

the

allowable

attribute

specification

statements.

The

only

attributes

that

can

be

specified

include

DIMENSION,

INTRINSIC,

PARAMETER,

POINTER,

SAVE,

and

TARGET.

A

type

declaration

statement

in

a

block

data

specification-part

shall

not

contain

ALLOCATABLE

or

EXTERNAL

attribute

specifiers.

You

can

have

more

than

one

block

data

program

unit

in

an

executable

program,

but

only

one

can

be

unnamed.

You

can

also

initialize

multiple

named

common

blocks

in

a

block

data

program

unit.

Restrictions

on

common

blocks

in

block

data

program

units

are:

v

All

items

in

a

named

common

block

must

appear

in

the

COMMON

statement,

even

if

they

are

not

all

initialized.

v

The

same

named

common

block

must

not

be

referenced

in

two

different

block

data

program

units.

v

Only

nonpointer

objects

in

named

common

blocks

can

be

initialized

in

block

data

program

units.

v

Objects

in

blank

common

blocks

cannot

be

initialized.

��

BLOCK_DATA_statement

��

��

specification_part

��

��

END_BLOCK_DATA_statement

��

Program

Units

and

Procedures

149

Example

of

a

Block

Data

Program

Unit

PROGRAM

MAIN

COMMON

/L3/

C,

X(10)

COMMON

/L4/

Y(5)

END

PROGRAM

BLOCK

DATA

BDATA

COMMON

/L3/

C,

X(10)

DATA

C,

X

/1.0,

10*2.0/

!

Initializing

common

block

L3

END

BLOCK

DATA

BLOCK

DATA

!

An

unnamed

block

data

program

unit

PARAMETER

(Z=10)

DIMENSION

Y(5)

COMMON

/L4/

Y

DATA

Y

/5*Z/

END

BLOCK

DATA

Function

and

Subroutine

Subprograms

A

subprogram

is

either

a

function

or

a

subroutine,

and

is

either

an

internal,

external,

or

module

subprogram.

You

can

also

specify

a

function

in

a

statement

function

statement.

An

external

subprogram

is

a

program

unit.

subprogram_statement

See

“FUNCTION”

on

page

298

or

“SUBROUTINE”

on

page

372

for

syntax

details

specification_part

is

a

sequence

of

statements

from

the

statement

groups

numbered

�2�,

�3�,

and

�4�

in

“Order

of

Statements

and

Execution

Sequence”

on

page

19

execution_part

is

a

sequence

of

statements

from

the

statement

groups

numbered

�3�

and

�5�

in

“Order

of

Statements

and

Execution

Sequence”

on

page

19,

and

which

must

begin

with

a

statement

from

statement

group

�5�

internal_subprogram_part

See

“Internal

Procedures”

on

page

135

for

details

��

subprogram_statement

��

��

specification_part

��

��

execution_part

��

��

internal_subprogram_part

��

��

end_subprogram_statement

��

150

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

end_subprogram_statement

See

“END”

on

page

276

for

syntax

details

on

the

END

statement

for

functions

and

subroutines

An

internal

subprogram

is

declared

after

the

CONTAINS

statement

in

the

main

program,

a

module

subprogram,

or

an

external

subprogram,

but

before

the

END

statement

of

the

host

program.

The

name

of

an

internal

subprogram

must

not

be

defined

in

the

specification

section

in

the

host

scoping

unit.

An

external

procedure

has

global

scope

with

respect

to

the

executable

program.

In

the

calling

program

unit,

you

can

specify

the

interface

to

an

external

procedure

in

an

interface

block

or

you

can

define

the

external

procedure

name

with

the

EXTERNAL

attribute.

A

subprogram

can

contain

any

statement

except

PROGRAM,

BLOCK

DATA

and

MODULE

statements.

An

internal

subprogram

cannot

contain

an

ENTRY

statement

or

an

internal

subprogram.

Procedure

References

There

are

two

types

of

procedure

references:

v

A

subroutine

is

invoked

by

execution

of

a

CALL

statement

(see

“CALL”

on

page

237

for

details)

or

defined

assignment

statement.

v

A

function

is

invoked

during

evaluation

of

a

function

reference

or

defined

operation.

Function

Reference

A

function

reference

is

used

as

a

primary

in

an

expression:

Executing

a

function

reference

results

in

the

following

order

of

events:

1.

Actual

arguments

that

are

expressions

are

evaluated.

2.

Actual

arguments

are

associated

with

their

corresponding

dummy

arguments.

3.

Control

transfers

to

the

specified

function.

4.

The

function

is

executed.

5.

The

value

(or

status

or

target,

for

pointer

functions)

of

the

function

result

variable

is

available

to

the

referencing

expression.

Execution

of

a

function

reference

must

not

alter

the

value

of

any

other

data

item

within

the

statement

in

which

the

function

reference

appears.

Invocation

of

a

function

reference

in

the

logical

expression

of

a

logical

IF

statement

or

WHERE

statement

can

affect

entities

in

the

statement

that

is

executed

when

the

value

of

the

expression

is

true.

IBM

Extension

The

argument

list

built-in

functions

%VAL

and

%REF

are

supplied

to

aid

interlanguage

calls

by

allowing

arguments

to

be

passed

by

value

and

by

reference,

respectively.

They

can

be

specified

in

non-Fortran

procedure

references

and

in

a

subprogram

statement

in

an

interface

body.

(See

“%VAL

and

%REF”

on

page

157.)

��

function_name

(

)

actual_argument_spec_list

��

Program

Units

and

Procedures

151

See

Statement

Function

and

Recursion

examples

of

function

references.

End

of

IBM

Extension

On

entry

to

an

allocatable

function,

the

allocation

status

of

the

result

variable

becomes

not

currently

allocated

The

function

result

variable

may

be

allocated

and

deallocated

any

number

of

times

during

the

execution

of

the

function.

However,

it

shall

be

currently

allocated

and

have

a

defined

value

on

exit

from

the

function.

Automatic

deallocation

of

the

result

variable

does

not

occur

immediately

on

exit

from

the

function,

but

instead

occurs

after

execution

of

the

statement

in

which

the

function

reference

occurs.

Examples

of

Subprograms

and

Procedure

References

PROGRAM

MAIN

REAL

QUAD,X2,X1,X0,A,C3

QUAD=0;

A=X1*X2

X2

=

2.0

X1

=

SIN(4.5)

!

Reference

to

intrinsic

function

X0

=

1.0

CALL

Q(X2,X1,X0,QUAD)

!

Reference

to

external

subroutine

C3

=

CUBE()

!

Reference

to

internal

function

CONTAINS

REAL

FUNCTION

CUBE()

!

Internal

function

CUBE

=

A**3

END

FUNCTION

CUBE

END

SUBROUTINE

Q(A,B,C,QUAD)

!

External

subroutine

REAL

A,B,C,QUAD

QUAD

=

(-B

+

SQRT(B**2-4*A*C))

/

(2*A)

END

SUBROUTINE

Q

Examples

of

Allocatable

Function

Results

FUNCTION

INQUIRE_FILES_OPEN()

RESULT(OPENED_STATUS)

LOGICAL,ALLOCATABLE

::

OPENED_STATUS(:)

INTEGER

I,J

LOGICAL

TEST

DO

I=1000,0,–1

INQUIRE(UNIT=I,OPENED=TEST,ERR=100)

IF

(TEST)

EXIT

100

CONTINUE

END

DO

ALLOCATE(OPENED_STATUS(0:I))

DO

J=0,I

INQUIRE(UNIT=J,OPENED=OPENED_STATUS(J))

END

DO

END

FUNCTION

INQUIRE_FILES_OPEN

Intrinsic

Procedures

An

intrinsic

procedure

is

a

procedure

already

defined

by

XL

Fortran.

See

“Intrinsic

Procedures”

on

page

421

for

details.

You

can

reference

some

intrinsic

procedures

by

a

generic

name,

some

by

a

specific

name,

and

some

by

both:

A

generic

intrinsic

function

does

not

require

a

specific

argument

type

and

usually

produces

a

result

of

the

same

type

as

that

of

the

argument,

with

some

exceptions.

Generic

names

simplify

references

to

intrinsic

procedures

because

the

same

152

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

procedure

name

can

be

used

with

more

than

one

type

of

argument;

the

type

and

kind

type

parameter

of

the

arguments

determine

which

specific

function

is

used.

A

specific

intrinsic

function

requires

a

specific

argument

type

and

produces

a

result

of

a

specific

type.

A

specific

intrinsic

function

name

can

be

passed

as

an

actual

argument.

If

a

specific

intrinsic

function

has

the

same

name

as

a

generic

intrinsic

function,

the

specific

name

is

referenced.

All

references

to

a

dummy

procedure

that

are

associated

with

a

specific

intrinsic

procedure

must

use

arguments

that

are

consistent

with

the

interface

of

the

intrinsic

procedure.

Whether

or

not

you

can

pass

the

name

of

an

intrinsic

procedure

as

an

argument

depends

on

the

procedure.

You

can

use

the

specific

name

of

an

intrinsic

procedure

that

has

been

specified

with

the

INTRINSIC

attribute

as

an

actual

argument

in

a

procedure

reference.

v

An

IMPLICIT

statement

does

not

change

the

type

of

an

intrinsic

function.

v

If

an

intrinsic

name

is

specified

with

the

INTRINSIC

attribute,

the

name

is

always

recognized

as

an

intrinsic

procedure.

Conflicts

Between

Intrinsic

Procedure

Names

and

Other

Names

Because

intrinsic

procedure

names

are

recognized,

when

a

data

object

is

declared

with

the

same

name

as

an

intrinsic

procedure,

the

intrinsic

procedure

is

inaccessible.

A

generic

interface

block

can

extend

or

redefine

a

generic

intrinsic

function,

as

described

in

“Interface

Blocks”

on

page

138.

If

the

function

already

has

the

INTRINSIC

attribute,

it

is

extended;

otherwise,

it

can

be

redefined.

Arguments

Actual

Argument

Specification

arg_keyword

is

a

dummy

argument

name

in

the

explicit

interface

of

the

procedure

being

invoked

��

arg_keyword

=

argument

(1)

%VAL

(

argument

)

(2)

%REF

(

argument

)

��

Notes:

1 IBM

Extension

2 IBM

Extension

Program

Units

and

Procedures

153

argument

is

an

actual

argument

IBM

Extension

%VAL,

%REF

specifies

the

passing

method.

See

“%VAL

and

%REF”

on

page

157

for

more

information.

End

of

IBM

Extension

An

actual

argument

appears

in

the

argument

list

of

a

procedure

reference.

An

actual

argument

in

a

procedure

reference

can

be

one

of

the

following:

v

An

expression

v

A

variable

v

A

procedure

name

v

An

alternate

return

specifier

(if

the

actual

argument

is

in

a

CALL

statement),

having

the

form

*stmt_label,

where

stmt_label

is

the

statement

label

of

a

branch

target

statement

in

the

same

scoping

unit

as

the

CALL

statement.

An

actual

argument

specified

in

a

statement

function

reference

must

be

a

scalar

object.

A

procedure

name

cannot

be

the

name

of

an

internal

procedure,

statement

function,

or

the

generic

name

of

a

procedure,

unless

it

is

also

a

specific

name.

The

rules

and

restrictions

for

referencing

a

procedure

described

in

“Procedure

References”

on

page

151.

You

cannot

use

a

non-intrinsic

elemental

procedure

as

an

actual

argument

in

Fortran

95.

Argument

Keywords

Argument

keywords

allow

you

to

specify

actual

arguments

in

a

different

order

than

the

dummy

arguments.

With

argument

keywords,

any

actual

arguments

that

correspond

to

optional

dummy

arguments

can

be

omitted;

that

is,

dummy

arguments

that

merely

serve

as

placeholders

are

not

necessary.

Each

argument

keyword

must

be

the

name

of

a

dummy

argument

in

the

explicit

interface

of

the

procedure

being

referenced.

An

argument

keyword

must

not

appear

in

an

argument

list

of

a

procedure

that

has

an

implicit

interface.

In

the

argument

list,

if

an

actual

argument

is

specified

with

an

argument

keyword,

the

subsequent

actual

arguments

in

the

list

must

also

be

specified

with

argument

keywords.

An

argument

keyword

cannot

be

specified

for

label

parameters.

Label

parameters

must

appear

before

referencing

the

argument

keywords

in

that

procedure

reference.

Example

of

Argument

Keywords:

INTEGER

MYARRAY(1:10)

INTERFACE

SUBROUTINE

SORT(ARRAY,

DESCENDING,

ARRAY_SIZE)

INTEGER

ARRAY_SIZE,

ARRAY(ARRAY_SIZE)

LOGICAL,

OPTIONAL

::

DESCENDING

END

SUBROUTINE

END

INTERFACE

154

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

CALL

SORT(MYARRAY,

ARRAY_SIZE=10)

!

No

actual

argument

corresponds

to

the

!

optional

dummy

argument

DESCENDING

END

SUBROUTINE

SORT(ARRAY,

DESCENDING,

ARRAY_SIZE)

INTEGER

ARRAY_SIZE,

ARRAY(ARRAY_SIZE)

LOGICAL,

OPTIONAL

::

DESCENDING

IF

(PRESENT(DESCENDING))

THEN

.

.

.

END

SUBROUTINE

Dummy

Arguments

A

dummy

argument

is

specified

in

a

Statement

Function

statement,

FUNCTION

statement,

SUBROUTINE

statement,

or

ENTRY

statement.

Dummy

arguments

in

statement

functions,

function

subprograms,

interface

bodies,

and

subroutine

subprograms

indicate

the

types

of

actual

arguments

and

whether

each

argument

is

a

scalar

value,

array,

procedure,

or

statement

label.

A

dummy

argument

in

an

external,

module,

or

internal

subprogram

definition,

or

in

an

interface

body,

is

classified

as

one

of

the

following:

v

A

variable

name

v

A

procedure

name

v

An

asterisk

(in

subroutines

only,

to

indicate

an

alternate

return

point)

IBM

Extension

%VAL

or

%REF

can

only

be

specified

for

a

dummy

argument

in

a

FUNCTION

or

SUBROUTINE

statement

in

an

interface

block.

The

interface

must

be

for

a

non-Fortran

procedure

interface.

If

%VAL

or

%REF

appears

in

an

interface

block

for

an

external

procedure,

this

passing

method

is

implied

for

each

reference

to

that

procedure.

If

an

actual

argument

in

an

external

procedure

reference

specifies

%VAL

or

%REF,

the

same

passing

method

must

be

specified

in

the

interface

block

for

the

corresponding

dummy

argument.

See

“%VAL

and

%REF”

on

page

157

for

more

details.

End

of

IBM

Extension

A

dummy

argument

in

a

statement

function

definition

is

classified

as

a

variable

name.

A

given

name

can

appear

only

once

in

a

dummy

argument

list.

The

name

of

a

variable

that

appears

as

a

dummy

argument

in

a

statement

function

statement

has

a

scope

of

the

statement

in

which

it

appears.

It

has

the

type

that

it

��

dummy_arg_name

(1)

%VAL

(

dummy_arg_name

)

(2)

%REF

(

dummy_arg_name

)

��

Notes:

1 IBM

Extension

2 IBM

Extension

Program

Units

and

Procedures

155

would

have

if

it

were

the

name

of

a

variable

in

the

scoping

unit

that

includes

the

statement

function.

It

cannot

have

the

same

name

as

an

accessible

array.

Argument

Association

Actual

arguments

are

associated

with

dummy

arguments

when

a

function

or

subroutine

is

referenced.

In

a

procedure

reference,

the

actual

argument

list

identifies

the

correspondence

between

the

actual

arguments

provided

in

the

list

and

the

dummy

arguments

of

the

subprogram.

When

there

is

no

argument

keyword,

an

actual

argument

is

associated

with

the

dummy

argument

that

occupies

the

corresponding

position

in

the

dummy

argument

list.

The

first

actual

argument

becomes

associated

with

the

first

dummy

argument,

the

second

actual

argument

with

the

second

dummy

argument,

and

so

forth.

Each

actual

argument

must

be

associated

with

a

dummy

argument.

When

a

keyword

is

present,

the

actual

argument

is

associated

with

the

dummy

argument

whose

name

is

the

same

as

the

argument

keyword.

In

the

scoping

unit

that

contains

the

procedure

reference,

the

names

of

the

dummy

arguments

must

exist

in

an

accessible

explicit

interface.

Argument

association

within

a

subprogram

terminates

upon

execution

of

a

RETURN

or

END

statement

in

the

subprogram.

There

is

no

retention

of

argument

association

between

one

reference

of

a

subprogram

and

the

next

reference

of

the

subprogram,

unless

the

persistent

suboption

of

the

-qxlf77

compiler

option

is

specified

and

the

subprogram

contains

at

least

one

entry

procedure.

IBM

Extension

Except

when

%VAL

is

used,

the

subprogram

reserves

no

storage

for

the

dummy

argument.

It

uses

the

corresponding

actual

argument

for

calculations.

Therefore,

the

value

of

the

actual

argument

changes

when

the

dummy

argument

changes.

If

the

corresponding

actual

argument

is

an

expression

or

an

array

section

with

vector

subscripts,

the

calling

procedure

reserves

storage

for

the

actual

argument,

and

the

subprogram

must

not

define,

redefine,

or

undefine

the

dummy

argument.

If

the

actual

argument

is

specified

with

%VAL,

or

the

corresponding

dummy

argument

has

the

VALUE

attribute,

the

subprogram

does

not

have

access

to

the

storage

area

of

the

actual

argument.

End

of

IBM

Extension

Actual

arguments

must

agree

in

type

and

type

parameters

with

their

corresponding

dummy

arguments

(and

in

shape

if

the

dummy

arguments

are

pointers

or

assumed-shape),

except

for

two

cases:

a

subroutine

name

has

no

type

and

must

be

associated

with

a

dummy

procedure

name

that

is

a

subroutine,

and

an

alternate

return

specifier

has

no

type

and

must

be

associated

with

an

asterisk.

Argument

association

can

be

carried

through

more

than

one

level

of

procedure

reference.

If

a

subprogram

reference

causes

a

dummy

argument

in

the

referenced

subprogram

to

become

associated

with

another

dummy

argument

in

the

referenced

subprogram,

neither

dummy

argument

can

become

defined,

redefined,

or

undefined

during

that

subprogram.

For

example,

if

a

subroutine

definition

is:

SUBROUTINE

XYZ

(A,B)

156

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

and

it

is

referenced

by:

CALL

XYZ

(C,C)

the

dummy

arguments

A

and

B

each

become

associated

with

the

same

actual

argument

C

and,

therefore,

with

each

other.

Neither

A

nor

B

can

be

defined,

redefined,

or

undefined

during

the

execution

of

subroutine

XYZ

or

by

any

procedures

referenced

by

XYZ.

If

a

dummy

argument

becomes

associated

with

an

entity

in

a

common

block

or

an

entity

accessible

through

use

or

host

association,

the

value

of

the

entity

must

only

be

altered

through

the

use

of

the

dummy

argument

name,

while

the

entity

is

associated

with

the

dummy

argument.

If

any

part

of

a

data

object

is

defined

through

a

dummy

argument,

the

data

object

can

be

referenced

only

through

that

dummy

argument,

either

before

or

after

the

definition

occurs.

These

restrictions

also

apply

to

pointer

targets.

IBM

Extension

If

you

have

programs

that

do

not

conform

to

these

restrictions,

using

the

compiler

option

-qalias=nostd

may

be

appropriate.

See

the

-qalias

Option

in

the

User’s

Guide

for

details.

End

of

IBM

Extension

%VAL

and

%REF

IBM

Extension

To

call

subprograms

written

in

languages

other

than

Fortran

(for

example,

user-written

C

programs,

or

Mac

OS

X

operating

system

routines),

the

actual

arguments

may

need

to

be

passed

by

a

method

different

from

the

default

method

used

by

XL

Fortran.

The

default

method

passes

the

address

of

the

actual

argument

and,

if

it

is

of

type

character,

the

length.

(Use

the

-qnullterm

compiler

option

to

ensure

that

scalar

character

initialization

expressions

are

passed

with

terminating

null

strings.

See

-qnullterm

in

the

User’s

Guide

for

details.)

The

default

passing

method

can

be

changed

by

using

the

%VAL

and

%REF

built-in

functions

in

the

argument

list

of

a

CALL

statement

or

function

reference,

or

with

the

dummy

arguments

in

interface

bodies.

These

built-in

functions

specify

the

way

an

actual

argument

is

passed

to

the

external

subprogram.

%VAL

and

%REF

built-in

functions

cannot

be

used

in

the

argument

lists

of

Fortran

procedure

references,

nor

can

they

be

used

with

alternate

return

specifiers.

The

argument

list

built-in

functions

are:

%VAL

This

built-in

function

can

be

used

with

actual

arguments

that

are

CHARACTER(1),

logical,

integer,

real,

complex

expressions,

or

sequence

derived

type.

Objects

of

derived

type

cannot

contain

character

structure

components

whose

lengths

are

greater

than

1

byte,

or

arrays.

%VAL

cannot

be

used

with

actual

arguments

that

are

arrays,

procedure

names,

or

character

expressions

of

length

greater

than

1

byte.

%VAL

causes

the

actual

argument

to

be

passed

as

32-bit

or

64-bit

intermediate

values.

If

the

actual

argument

is

of

type

real

or

complex,

it

is

passed

as

one

or

more

64-bit

intermediate

values.

If

the

actual

argument

is

Program

Units

and

Procedures

157

of

integer,

logical,

or

sequence

derived

type,

it

is

passed

as

one

or

more

32-bit

intermediate

values.

An

integer

actual

argument

shorter

than

32

bits

is

sign-extended

to

a

32-bit

value,

while

a

logical

actual

argument

shorter

than

32

bits

is

padded

with

zeros

to

a

32-bit

value.

Byte

named

constants

and

variables

are

passed

as

if

they

were

INTEGER(1).

If

the

actual

argument

is

a

CHARACTER(1),

it

is

padded

on

the

left

with

zeros

to

a

32-bit

value,

regardless

of

whether

the

-qctyplss

compiler

option

is

specified.

%REF

This

built-in

function

causes

the

actual

argument

to

be

passed

by

reference;

that

is,

only

the

address

of

the

actual

argument

is

passed.

Unlike

the

default

passing

method,

%REF

does

not

pass

the

length

of

a

character

argument.

If

such

a

character

argument

is

being

passed

to

a

C

routine,

the

string

must

be

terminated

with

a

null

character

(for

example,

using

the

-qnullterm

option)

so

that

the

C

routine

can

determine

the

length

of

the

string.

Examples

of

%VAL

and

%REF

EXTERNAL

FUNC

CALL

RIGHT2(%REF(FUNC))

!

procedure

name

passed

by

reference

REAL

XVAR

CALL

RIGHT3(%VAL(XVAR))

!

real

argument

passed

by

value

IVARB=6

CALL

TPROG(%VAL(IVARB))

!

integer

argument

passed

by

value

See

“VALUE”

on

page

386

for

a

standards

conforming

alternative

to

%VAL.

See

Interlanguage

Calls

in

the

User’s

Guide

for

more

information.

End

of

IBM

Extension

Intent

of

Dummy

Arguments

With

the

INTENT

attribute,

you

can

explicitly

specify

the

intended

use

of

a

dummy

argument.

Use

of

this

attribute

may

improve

optimization

of

the

program’s

calling

procedure

when

an

explicit

interface

exists.

Also,

the

explicitness

of

argument

intent

may

provide

more

opportunities

for

error

checking.

See

“INTENT”

on

page

318

for

syntax

details.

IBM

Extension

The

following

table

outlines

XL

Fortran’s

passing

method

for

internal

procedures

(not

including

assumed-shape

dummy

arguments

and

pointer

dummy

arguments):

Table

5.

Passing

Method

and

Intent

Argument

Type

Intent(IN)

Intent(OUT)

Intent(INOUT)

No

Intent

Non-CHARACTER

Scalar

VALUE

default

default

default

CHARACTER*1

Scalar

VALUE

REFERENCE

REFERENCE

REFERENCE

CHARACTER*n

Scalar

REFERENCE

REFERENCE

REFERENCE

REFERENCE

CHARACTER*(*)

Scalar

default

default

default

default

Derived

Type

1

Scalar

VALUE

default

default

default

158

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Table

5.

Passing

Method

and

Intent

(continued)

Argument

Type

Intent(IN)

Intent(OUT)

Intent(INOUT)

No

Intent

Derived

Type

2

Scalar

default

default

default

default

Non-CHARACTER

Array

default

default

default

default

CHARACTER*1

Array

REFERENCE

REFERENCE

REFERENCE

REFERENCE

CHARACTER*n

Array

REFERENCE

REFERENCE

REFERENCE

REFERENCE

CHARACTER*(*)

Array

default

default

default

default

Derived

Type

3

Array

default

default

default

default

End

of

IBM

Extension

Optional

Dummy

Arguments

The

OPTIONAL

attribute

specifies

that

a

dummy

argument

need

not

be

associated

with

an

actual

argument

in

a

reference

to

a

procedure.

Some

advantages

of

the

OPTIONAL

attribute

include:

v

The

use

of

optional

dummy

arguments

to

override

default

behavior.

For

an

example,

see

“Example

of

Argument

Keywords”

on

page

154.

v

Additional

flexibility

in

procedure

references.

For

example,

a

procedure

could

include

optional

arguments

for

error

handlers

or

return

codes,

but

you

can

select

which

procedure

references

would

supply

the

corresponding

actual

arguments.

See

“OPTIONAL”

on

page

337

for

details

about

syntax

and

rules.

Restrictions

on

Optional

Dummy

Arguments

Not

Present

A

dummy

argument

is

present

in

an

instance

of

a

subprogram

if

it

is

associated

with

an

actual

argument,

and

the

actual

argument

is

either

a

dummy

argument

that

is

not

optional

in

the

invoking

subprogram

or

a

dummy

argument

that

is

not

present

in

the

invoking

subprogram.

A

dummy

argument

that

is

not

optional

must

be

present.

An

optional

dummy

argument

that

is

not

present

must

conform

to

the

following

rules:

v

If

it

is

a

dummy

data

object,

it

must

not

be

referenced

or

defined.

If

the

dummy

data

object

is

of

a

type

for

which

default

initialization

can

be

specified,

the

initialization

has

no

effect.

v

If

it

is

a

dummy

procedure,

it

must

not

be

invoked.

v

It

must

not

be

supplied

as

an

actual

argument

that

corresponds

to

a

nonoptional

dummy

argument,

except

as

the

argument

of

the

PRESENT

intrinsic

function.

v

A

subobject

of

an

optional

dummy

argument

that

is

not

present

must

not

be

supplied

as

an

actual

argument

that

corresponds

to

an

optional

dummy

argument.

1. A

data

object

of

derived

type

with

no

array

components

or

CHARACTER*n

components,

(where

n

>

1).

2. A

data

object

of

derived

type

with

array

components

or

CHARACTER*n

components,

(where

n

>

1).

3. A

data

object

of

derived

type

with

components

of

any

type,

size

and

rank.

Program

Units

and

Procedures

159

v

If

the

optional

dummy

argument

that

is

not

present

is

an

array,

it

must

not

be

supplied

as

an

actual

argument

to

an

elemental

procedure

unless

an

array

of

the

same

rank

is

supplied

as

an

actual

argument

that

corresponds

to

a

nonoptional

dummy

argument

of

that

elemental

procedure.

v

If

the

optional

dummy

argument

that

is

not

present

is

a

pointer,

it

must

not

be

supplied

as

an

actual

argument

that

corresponds

to

a

nonpointer

dummy

argument,

except

as

the

argument

of

the

PRESENT

intrinsic

function.

v

If

the

optional

dummy

argument

that

is

not

present

is

allocatable,

it

must

not

be

allocated,

deallocated,

or

supplied

as

an

actual

argument

corresponding

to

a

nonallocatable

dummy

argument

other

than

as

the

argument

of

the

PRESENT

intrinsic

function.

Length

of

Character

Arguments

If

the

length

of

a

character

dummy

argument

is

a

nonconstant

specification

expression,

the

object

is

a

dummy

argument

with

a

run-time

length.

If

an

object

that

is

not

a

dummy

argument

has

a

run-time

length,

it

is

an

automatic

object.

See

“Automatic

Objects”

on

page

22

for

details.

If

a

dummy

argument

has

a

length

specifier

of

an

asterisk

in

parentheses,

the

length

of

the

dummy

argument

is

“inherited”

from

the

actual

argument.

The

length

is

inherited

because

it

is

specified

outside

the

program

unit

containing

the

dummy

argument.

If

the

associated

actual

argument

is

an

array

name,

the

length

inherited

by

the

dummy

argument

is

the

length

of

an

array

element

in

the

associated

actual

argument

array.

%REF

cannot

be

specified

for

a

character

dummy

argument

with

inherited

length.

Variables

as

Dummy

Arguments

A

dummy

argument

that

is

a

variable

must

be

associated

with

an

actual

argument

that

is

a

variable

with

the

same

type

and

kind

type

parameter.

If

the

actual

argument

is

scalar,

the

corresponding

dummy

argument

must

be

scalar,

unless

the

actual

argument

is

an

element

of

an

array

that

is

not

an

assumed-shape

or

pointer

array

(or

a

substring

of

such

an

element).

If

the

actual

argument

is

allocatable,

the

corresponding

dummy

argument

must

also

be

allocatable.

If

the

procedure

is

referenced

by

a

generic

name

or

as

a

defined

operator

or

defined

assignment,

the

ranks

of

the

actual

arguments

and

corresponding

dummy

arguments

must

agree.

A

scalar

dummy

argument

can

be

associated

only

with

a

scalar

actual

argument.

Fortran

95

The

following

apply

to

dummy

arguments

used

in

elemental

subprograms:

v

All

dummy

arguments

must

be

scalar,

and

cannot

have

the

ALLOCATABLE

or

POINTER

attribute.

v

A

dummy

argument,

or

a

suboject

thereof,

cannot

be

used

in

a

specification

expression,

except

if

it

is

used

as

an

argument

to

the

BIT_SIZE,

KIND,

or

LEN

intrinsic

functions,

or

as

an

argument

to

one

of

the

numeric

inquiry

intrinsic

functions,

see

“Intrinsic

Procedures”

on

page

421.

v

A

dummy

argument

cannot

be

an

asterisk.

v

A

dummy

argument

cannot

be

a

dummy

procedure.

End

of

Fortran

95

160

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

If

a

scalar

dummy

argument

is

of

type

character,

its

length

must

be

less

than

or

equal

to

the

length

of

the

actual

argument.

The

dummy

argument

is

associated

with

the

leftmost

characters

of

the

actual

argument.

If

the

character

dummy

argument

is

an

array,

the

length

restriction

applies

to

the

entire

array

rather

than

each

array

element.

That

is,

the

lengths

of

associated

array

elements

can

vary,

although

the

whole

dummy

argument

array

cannot

be

longer

than

the

whole

actual

argument

array.

If

the

dummy

argument

is

an

assumed-shape

array,

the

actual

argument

must

not

be

an

assumed-size

array

or

a

scalar

(including

a

designator

for

an

array

element

or

an

array

element

substring).

If

the

dummy

argument

is

an

explicit-shape

or

assumed-size

array,

and

if

the

actual

argument

is

a

noncharacter

array,

the

size

of

the

dummy

argument

must

not

exceed

the

size

of

the

actual

argument

array.

Each

actual

array

element

is

associated

with

the

corresponding

dummy

array

element.

If

the

actual

argument

is

a

noncharacter

array

element

with

a

subscript

value

of

as,

the

size

of

the

dummy

argument

array

must

not

exceed

the

size

of

the

actual

argument

array

+

1

-

as.

The

dummy

argument

array

element

with

a

subscript

value

of

ds

becomes

associated

with

the

actual

argument

array

element

that

has

a

subscript

value

of

as

+

ds

-

1.

If

an

actual

argument

is

a

character

array,

character

array

element,

or

character

substring,

and

begins

at

a

character

storage

unit

acu

of

an

array,

character

storage

unit

dcu

of

an

associated

dummy

argument

array

becomes

associated

with

character

storage

unit

acu+dcu-1

of

the

actual

array

argument.

You

can

define

a

dummy

argument

that

is

a

variable

name

within

a

subprogram

if

the

associated

actual

argument

is

a

variable.

You

must

not

redefine

a

dummy

argument

that

is

a

variable

name

within

a

subprogram

if

the

associated

actual

argument

is

not

definable.

If

the

actual

argument

is

an

array

section

with

a

vector

subscript,

the

associated

dummy

argument

cannot

be

defined.

If

a

nonpointer

dummy

argument

is

associated

with

a

pointer

actual

argument,

the

actual

argument

must

be

currently

associated

with

a

target,

to

which

the

dummy

argument

becomes

argument

associated.

Any

restrictions

on

the

passing

method

apply

to

the

target

of

the

actual

argument.

If

the

dummy

argument

is

neither

a

target

nor

a

pointer,

any

pointers

associated

with

the

actual

argument

do

not

become

associated

with

the

corresponding

dummy

argument

on

invocation

of

the

procedure.

If

both

the

dummy

and

actual

arguments

are

targets,

with

the

dummy

argument

being

a

scalar

or

an

assumed-shape

array

(and

the

actual

argument

is

not

an

array

section

with

a

vector

subscript):

1.

Any

pointers

associated

with

the

actual

argument

become

associated

with

the

corresponding

dummy

argument

on

invocation

of

the

procedure.

2.

When

execution

of

the

procedure

completes,

any

pointers

associated

with

the

dummy

argument

remain

associated

with

the

actual

argument.

If

both

the

dummy

and

actual

arguments

are

targets,

with

the

dummy

argument

being

either

an

explicit-shape

array

or

an

assumed-size

array,

while

the

actual

argument

is

not

an

array

section

with

a

vector

subscript:

Program

Units

and

Procedures

161

1.

Whether

any

pointers

associated

with

the

actual

argument

become

associated

with

the

corresponding

dummy

argument

on

invocation

of

the

procedure

is

processor

dependent.

2.

When

execution

of

the

procedure

completes,

whether

any

pointers

associated

with

the

dummy

argument

remain

associated

with

the

actual

argument

is

processor

dependent.

If

the

dummy

argument

is

a

target

and

the

corresponding

actual

argument

is

not

a

target

or

is

an

array

section

with

a

vector

subscript,

any

pointers

associated

with

the

dummy

argument

become

undefined

when

execution

of

the

procedure

completes.

Allocatable

Objects

as

Dummy

Arguments

An

allocatable

dummy

argument

has

an

actual

argument

which

is

also

allocatable

associated

with

it.

If

the

allocatable

dummy

argument

is

an

array,

the

associated

actual

argument

must

also

be

an

array.

On

procedure

entry,

the

allocation

status

of

an

allocatable

dummy

argument

becomes

that

of

the

associated

actual

argument.

If

the

dummy

argument

is

INTENT(OUT)

and

the

associated

actual

argument

is

currently

allocated,

the

actual

argument

is

deallocated

on

procedure

invocation

so

that

the

dummy

argument

has

an

allocation

status

of

not

currently

allocated.

If

the

dummy

argument

is

not

INTENT(OUT)

and

the

actual

argument

is

currently

allocated,

the

value

of

the

dummy

argument

is

that

of

the

associated

actual

argument.

While

the

procedure

is

active,

an

allocatable

dummy

argument

that

does

not

have

INTENT(IN)

may

be

allocated,

deallocated,

defined,

or

become

undefined.

No

reference

to

the

associated

actual

argument

is

permitted

via

another

alias

if

any

of

these

events

occur.

On

exit

from

the

routine,

the

actual

argument

has

the

allocation

status

of

the

allocatable

dummy

argument

(there

is

no

change,

of

course,

if

the

allocatable

dummy

argument

has

INTENT(IN)).

The

usual

rules

apply

for

propagation

of

the

value

from

the

dummy

argument

to

the

actual

argument.

Automatic

deallocation

of

the

allocatable

dummy

argument

does

not

occur

as

a

result

of

execution

of

a

RETURN

or

END

statement

in

the

procedure

of

which

it

is

a

dummy

argument.

Note:

An

allocatable

dummy

argument

that

has

the

INTENT(IN)

attribute

must

not

have

its

allocation

status

altered

within

the

called

procedure.

The

main

difference

between

such

a

dummy

argument

and

a

normal

dummy

argument

is

that

it

might

be

unallocated

on

entry

(and

throughout

execution

of

the

procedure).

Example

SUBROUTINE

LOAD(ARRAY,

FILE)

REAL,

ALLOCATABLE,

INTENT(OUT)

::

ARRAY(:,

:,

:)

CHARACTER(LEN=*),

INTENT(IN)

::

FILE

INTEGER

UNIT,

N1,

N2,

N3

INTEGER,

EXTERNAL

::

GET_LUN

UNIT

=

GET_LUN()

!

Returns

an

unused

unit

number

OPEN(UNIT,

FILE=FILE,

FORM=’UNFORMATTED’)

READ(UNIT)

N1,

N2,

N3

ALLOCATE(ARRAY(N1,

N2,

N3))

162

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

READ(UNIT)

ARRAY

CLOSE(UNIT)

END

SUBROUTINE

LOAD

Pointers

as

Dummy

Arguments

If

a

dummy

argument

is

a

pointer,

the

actual

argument

must

be

a

pointer

and

their

types,

type

parameters,

and

ranks

must

match.

The

actual

argument

reference

is

to

the

pointer

itself,

not

to

its

target.

When

the

procedure

is

invoked:

v

The

dummy

argument

acquires

the

pointer

association

status

of

the

actual

argument.

v

If

the

actual

argument

is

associated,

the

dummy

argument

is

associated

with

the

same

target.

The

association

status

can

change

during

execution

of

the

procedure.

When

the

procedure

finishes

executing,

the

dummy

argument’s

association

status

becomes

undefined,

if

it

is

associated.

IBM

Extension

The

passing

method

must

be

by

reference;

that

is,

%VAL

or

VALUE

must

not

be

specified

for

the

pointer

actual

argument.

End

of

IBM

Extension

Procedures

as

Dummy

Arguments

A

dummy

argument

that

is

identified

as

a

procedure

is

called

a

dummy

procedure.

It

can

only

be

associated

with

an

actual

argument

that

is

a

specific

intrinsic

procedure,

module

procedure,

external

procedure,

or

another

dummy

procedure.

See

“Intrinsic

Procedures”

on

page

421

for

details

on

which

intrinsic

procedures

can

be

passed

as

actual

arguments.

The

dummy

procedure

and

corresponding

actual

argument

must

both

be

functions

or

both

be

subroutines.

Dummy

arguments

of

the

actual

procedure

argument

must

match

those

of

the

dummy

procedure

argument.

If

they

are

functions,

they

must

match

in

type,

type

parameters,

rank,

shape

(if

they

are

nonpointer

arrays),

and

whether

they

are

pointers.

If

the

length

of

a

function

result

is

assumed,

this

is

a

characteristic

of

the

result.

If

the

function

result

specifies

a

type

parameter

or

array

bound

that

is

not

a

constant

expression,

the

dependence

on

the

entities

in

the

expression

is

a

characteristic

of

the

result.

Dummy

procedures

that

are

subroutines

are

treated

as

if

they

have

a

type

that

is

different

from

the

intrinsic

data

types,

derived

types,

and

alternate

return

specifiers.

Such

dummy

arguments

only

match

actual

arguments

that

are

subroutines

or

dummy

procedures.

Internal

subprograms

cannot

be

associated

with

a

dummy

procedure

argument.

The

rules

and

restrictions

for

referencing

a

procedure

described

in

“Procedure

References”

on

page

151.

You

cannot

use

a

non-intrinsic

elemental

procedure

as

an

actual

argument

in

Fortran

95.

Examples

of

Procedures

as

Dummy

Arguments

PROGRAM

MYPROG

INTERFACE

SUBROUTINE

SUB

(ARG1)

EXTERNAL

ARG1

Program

Units

and

Procedures

163

INTEGER

ARG1

END

SUBROUTINE

SUB

END

INTERFACE

EXTERNAL

IFUNC,

RFUNC

REAL

RFUNC

CALL

SUB

(IFUNC)

!

Valid

reference

CALL

SUB

(RFUNC)

!

Invalid

reference

!

!

The

first

reference

to

SUB

is

valid

because

IFUNC

becomes

an

!

implicitly

declared

integer,

which

then

matches

the

explicit

!

interface.

The

second

reference

is

invalid

because

RFUNC

is

!

explicitly

declared

real,

which

does

not

match

the

explicit

!

interface.

END

PROGRAM

SUBROUTINE

ROOTS

EXTERNAL

NEG

X

=

QUAD(A,B,C,NEG)

RETURN

END

FUNCTION

QUAD(A,B,C,FUNCT)

INTEGER

FUNCT

VAL

=

FUNCT(A,B,C)

RETURN

END

FUNCTION

NEG(A,B,C)

RETURN

END

Asterisks

as

Dummy

Arguments

A

dummy

argument

that

is

an

asterisk

can

only

appear

in

the

dummy

argument

list

of

a

SUBROUTINE

statement

or

an

ENTRY

statement

in

a

subroutine

subprogram.

The

corresponding

actual

argument

must

be

an

alternate

return

specifier,

which

indicates

the

statement

label

of

a

branch

target

statement

in

the

same

scope

as

the

CALL

statement,

to

which

control

is

returned.

Example

of

an

Alternate

Return

Specifier

CALL

SUB(*10)

STOP

!

STOP

is

never

executed

10

PRINT

*,

’RETURN

1’

CONTAINS

SUBROUTINE

SUB(*)

...

RETURN

1

!

Control

returns

to

statement

with

label

10

END

SUBROUTINE

END

Resolution

of

Procedure

References

The

subprogram

name

in

a

procedure

reference

is

either

established

to

be

generic,

established

to

be

only

specific,

or

not

established.

A

subprogram

name

is

established

to

be

generic

in

a

scoping

unit

if

one

or

more

of

the

following

is

true:

v

The

scoping

unit

has

an

interface

block

with

that

name.

v

The

name

of

the

subprogram

is

the

same

as

the

name

of

a

generic

intrinsic

procedure

that

is

specified

in

the

scoping

unit

with

the

INTRINSIC

attribute.

v

The

scoping

unit

accesses

the

generic

name

from

a

module

through

use

association.

164

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

v

There

are

no

declarations

of

the

subprogram

name

in

the

scoping

unit,

but

the

name

is

established

to

be

generic

in

the

host

scoping

unit.

A

subprogram

name

is

established

to

be

only

specific

in

a

scoping

unit

when

it

has

not

been

established

to

be

generic

and

one

of

the

following

is

true:

v

An

interface

body

in

the

scoping

unit

has

the

same

name.

v

There

is

a

statement

function,

module

procedure,

or

an

internal

subprogram

in

the

scoping

unit

that

has

the

same

name.

v

The

name

of

the

subprogram

is

the

same

as

the

name

of

a

specific

intrinsic

procedure

that

is

specified

with

the

INTRINSIC

attribute

in

the

scoping

unit.

v

The

scoping

unit

contains

an

EXTERNAL

statement

with

the

subprogram

name.

v

The

scoping

unit

accesses

the

specific

name

from

a

module

through

use

association.

v

There

are

no

declarations

of

the

subprogram

name

in

the

scoping

unit,

but

the

name

is

established

to

be

specific

in

the

host

scoping

unit.

If

a

subprogram

name

is

not

established

to

be

either

generic

nor

specific,

it

is

not

established.

Rules

for

Resolving

Procedure

References

to

Names

The

following

rules

are

used

to

resolve

a

procedure

reference

to

a

name

established

to

be

generic:

1.

If

there

is

an

interface

block

with

that

name

in

the

scoping

unit

or

accessible

through

use

association,

and

the

reference

is

consistent

with

a

non-elemental

reference

to

one

of

the

specific

interfaces

of

that

interface

block,

the

reference

is

to

the

specific

procedure

associated

with

the

specific

interface.

2.

If

Rule

1

does

not

apply,

the

reference

is

to

an

intrinsic

procedure

if

the

procedure

name

in

the

scoping

unit

is

specified

with

the

INTRINSIC

attribute

or

accesses

a

module

entity

whose

name

is

specified

with

the

INTRINSIC

attribute,

and

the

reference

is

consistent

with

the

interface

of

that

intrinsic

procedure.

3.

If

neither

Rule

1

nor

Rule

2

applies,

but

the

name

is

established

to

be

generic

in

the

host

scoping

unit,

the

name

is

resolved

by

applying

Rule

1

and

Rule

2

to

the

host

scoping

unit.

For

this

rule

to

apply,

there

must

be

agreement

between

the

host

scoping

unit

and

the

scoping

unit

of

which

the

name

is

either

a

function

or

a

subroutine.

4.

If

Rule

1,

Rule

2

and

Rule

3

do

not

apply,

the

reference

must

be

to

the

generic

intrinsic

procedure

with

that

name.

The

following

rules

are

used

to

resolve

a

procedure

reference

to

a

name

established

to

be

only

specific:

1.

If

the

scoping

unit

is

a

subprogram,

and

it

contains

either

an

interface

body

with

that

name

or

the

name

has

the

EXTERNAL

attribute,

and

if

the

name

is

a

dummy

argument

of

that

subprogram,

the

dummy

argument

is

a

dummy

procedure.

The

reference

is

to

that

dummy

procedure.

2.

If

Rule

1

does

not

apply,

and

the

scoping

unit

contains

either

an

interface

body

with

that

name

or

the

name

has

the

EXTERNAL

attribute,

the

reference

is

to

an

external

subprogram.

3.

In

the

scoping

unit,

if

a

statement

function

or

internal

subprogram

has

that

name,

the

reference

is

to

that

procedure.

4.

In

the

scoping

unit,

if

the

name

has

the

INTRINSIC

attribute,

the

reference

is

to

the

intrinsic

procedure

with

that

name.

Program

Units

and

Procedures

165

5.

The

scoping

unit

contains

a

reference

to

a

name

that

is

the

name

of

a

module

procedure

that

is

accessed

through

use

association.

Because

of

possible

renaming

in

the

USE

statement,

the

name

of

the

reference

may

differ

from

the

original

procedure

name.

6.

If

none

of

these

rules

apply,

the

reference

is

resolved

by

applying

these

rules

to

the

host

scoping

unit.

The

following

rules

are

used

to

resolve

a

procedure

reference

to

a

name

that

is

not

established:

1.

If

the

scoping

unit

is

a

subprogram

and

if

the

name

is

the

name

of

a

dummy

argument

of

that

subprogram,

the

dummy

argument

is

a

dummy

procedure.

The

reference

is

to

that

dummy

procedure.

2.

If

Rule

1

does

not

apply,

and

the

name

is

the

name

of

an

intrinsic

procedure,

the

reference

is

to

that

intrinsic

procedure.

For

this

rule

to

apply,

there

must

be

agreement

between

the

intrinsic

procedure

definition

and

the

reference

that

the

name

is

either

a

function

or

subroutine.

3.

If

neither

Rule

1

nor

2

applies,

the

reference

is

to

the

external

procedure

with

that

name.

Resolving

Procedure

References

to

Generic

Names

When

resolving

a

procedure

reference

to

a

generic

name,

the

following

rules

apply:

v

If

the

reference

is

consistent

with

one

of

the

specific

interfaces

within

a

generic

interface

of

the

same

name,

and

either

appears

in

the

same

scoping

unit

in

which

the

reference

appears

or

is

made

accessible

by

a

USE

statement

in

the

scoping

unit,

then

the

reference

is

to

that

specific

procedure.

v

If

the

first

rule

fails

then,

if

the

reference

is

consistent

with

an

elemental

reference

to

one

of

the

specific

interfaces

within

a

generic

interface

of

the

same

name,

and

either

appears

in

same

scoping

unit

in

which

the

reference

appears

or

is

made

accessible

by

a

USE

statement

in

the

scoping

unit,

then

the

reference

is

to

the

specific

elemental

procedure

in

that

interface

block

that

provides

that

interface.

v

If

the

previous

two

rules

fail

then,

if

the

scoping

unit

contains

for

that

name

either

an

INTRINSIC

attribute

specification

or

the

name

is

made

accessible

from

a

module

in

which

the

corresponding

name

is

specified

to

have

the

INTRINSIC

attribute,

and

if

the

interface

of

that

intrinsic

procedure

is

consistent

with

the

reference,

the

reference

will

be

to

that

intrinsic

procedure.

v

If

the

previous

three

rules

fail

then,

if

the

scoping

unit

has

a

host

scoping

unit

in

which

the

name

is

established

to

be

generic

within

it,

and

there

is

an

agreement

between

the

units

on

whether

the

name

is

a

function

or

subroutine

name,

the

name

will

be

resolved

by

applying

these

rules

to

the

host

scoping

unit.

Recursion

A

procedure

that

can

reference

itself,

directly

or

indirectly,

is

called

a

recursive

procedure.

Such

a

procedure

can

reference

itself

indefinitely

until

a

specific

condition

is

met.

For

example,

you

can

determine

the

factorial

of

the

positive

integer

N

as

follows:

INTEGER

N,

RESULT

READ

(5,*)

N

IF

(N.GE.0)

THEN

RESULT

=

FACTORIAL(N)

END

IF

CONTAINS

RECURSIVE

FUNCTION

FACTORIAL

(N)

RESULT

(RES)

166

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

INTEGER

RES

IF

(N.EQ.0)

THEN

RES

=

1

ELSE

RES

=

N

*

FACTORIAL(N-1)

END

IF

END

FUNCTION

FACTORIAL

END

For

details

on

syntax

and

rules,

see

“FUNCTION”

on

page

298,

“SUBROUTINE”

on

page

372,

or

“ENTRY”

on

page

283.

IBM

Extension

You

can

also

call

external

procedures

recursively

when

you

specify

the

-qrecur

compiler

option,

although

XL

Fortran

disregards

this

option

if

the

procedure

specifies

either

the

RECURSIVE

or

RESULT

keyword.

End

of

IBM

Extension

Pure

Procedures

Fortran

95

Because

pure

procedures

are

free

of

side

effects,

the

compiler

is

not

constrained

to

invoke

them

in

any

particular

order.

Exceptions

to

this

are

as

follows:

v

A

pure

function,

because

a

value

is

returned.

v

A

pure

subroutine,

because

you

can

modify

dummy

arguments

with

an

INTENT

of

OUT

or

INOUT

or

modify

the

association

status

or

the

value

of

dummy

arguments

with

the

POINTER

attribute.

Pure

procedures

are

particularly

useful

in

FORALL

statements

and

constructs,

which

by

design

require

that

all

referenced

procedures

be

free

of

side

effects.

A

procedure

must

be

pure

in

the

following

contexts:

v

An

internal

procedure

of

a

pure

procedure

v

A

procedure

referenced

in

the

scalar_mask_expr

or

body

of

a

FORALL

statement

or

construct,

including

one

referenced

by

a

defined

operator

or

defined

assignment

v

A

procedure

referenced

in

a

pure

procedure

v

A

procedure

actual

argument

to

a

pure

procedure

Intrinsic

functions

(except

RAND,

an

XL

Fortran

extension)

and

the

MVBITS

subroutine

are

always

pure.

They

do

not

need

to

be

explicitly

declared

to

be

pure.

A

statement

function

is

pure

if

and

only

if

all

functions

that

it

references

are

pure.

The

specification_part

of

a

pure

function

must

specify

that

all

dummy

arguments

have

an

INTENT(IN),

except

procedure

arguments,

and

arguments

with

the

POINTER

attribute.

The

specification_part

of

a

pure

subroutine

must

specify

the

intents

of

all

dummy

arguments,

except

for

procedure

arguments,

asterisks,

and

arguments

that

have

the

POINTER

attribute.

Any

interface

body

for

such

pure

procedures

must

similarly

specify

the

intents

of

its

dummy

arguments.

The

execution_part

and

internal_subprogram_part

of

a

pure

procedure

cannot

refer

to

a

dummy

argument

with

an

INTENT(IN),

a

global

variable

(or

any

object

that

is

Program

Units

and

Procedures

167

storage

associated

with

one),

or

any

subobject

thereof,

in

contexts

that

may

cause

its

value

to

change:

that

is,

in

contexts

that

produce

side

effects.

The

execution_part

and

internal_subprogram_part

of

a

pure

function

must

not

use

a

dummy

argument,

a

global

variable,

or

an

object

that

is

storage

associated

with

a

global

variable,

or

a

subobject

thereof,

in

the

following

contexts:

v

As

variable

in

an

assignment

statement,

or

as

expression

in

an

assignment

statement

if

variable

is

of

a

derived

type

that

has

a

pointer

component

at

any

level

v

As

pointer_object

or

target

in

a

pointer

assignment

statement

v

As

a

DO

or

implied-DO

variable

v

As

an

input_item

in

a

READ

statement

v

As

an

internal

file

identifier

in

a

WRITE

statement

v

As

an

IOSTAT=

or

SIZE=

specifier

variable

in

an

input/output

statement

v

As

a

variable

in

an

ALLOCATABLE,

DEALLOCATE,

NULLIFY,

or

ASSIGN

statement

v

As

an

actual

argument

that

is

associated

with

a

dummy

argument

with

the

POINTER

attribute

or

with

an

intent

of

OUT

or

INOUT

v

As

the

argument

to

LOC

v

As

a

STAT=

specifier

v

As

a

variable

in

a

NAMELIST

which

appears

in

a

READ

statement

A

pure

procedure

must

not

specify

that

any

entity

is

VOLATILE.

In

addition,

it

must

not

contain

any

references

to

data

that

is

VOLATILE,

that

would

otherwise

be

accessible

through

use-

or

host-association.

This

includes

references

to

data

which

occur

through

NAMELIST

I/O.

Only

internal

input/output

is

permitted

in

pure

procedures.

Therefore,

the

unit

identifier

of

an

input/output

statement

must

not

be

an

asterisk

(*)

or

refer

to

an

external

unit.

The

input/output

statements

are:

v

BACKSPACE

v

CLOSE

v

ENDFILE

v

INQUIRE

v

OPEN

v

PRINT

v

READ

v

REWIND

v

WRITE

The

PAUSE

and

STOP

statements

are

not

permitted

in

pure

procedures.

There

are

two

differences

between

pure

functions

and

pure

subroutines:

1.

Subroutine

nonpointer

dummy

data

objects

may

have

any

intent,

while

function

nonpointer

dummy

data

objects

must

be

INTENT(IN).

2.

Subroutine

dummy

data

objects

with

the

POINTER

attribute

can

change

association

status

and/or

definition

status

If

a

procedure

is

not

defined

as

pure,

it

must

not

be

declared

pure

in

an

interface

body.

However,

the

converse

is

not

true:

if

a

procedure

is

defined

as

pure,

it

does

not

need

to

be

declared

pure

in

an

interface

body.

Of

course,

if

an

interface

body

does

not

declare

that

a

procedure

is

pure,

that

procedure

(when

referenced

through

Fortran

95

168

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

that

explicit

interface)

cannot

be

used

as

a

reference

where

only

pure

procedure

references

are

permitted

(for

example,

in

a

FORALL

statement).

Examples

PROGRAM

ADD

INTEGER

ARRAY(20,256)

INTERFACE

!

Interface

required

for

PURE

FUNCTION

PLUS_X(ARRAY)

!

a

pure

procedure

INTEGER,

INTENT(IN)

::

ARRAY(:)

INTEGER

::

PLUS_X(SIZE(ARRAY))

END

FUNCTION

END

INTERFACE

INTEGER

::

X

X

=

ABS(-4)

!

Intrinsic

function

!

is

always

pure

FORALL

(I=1:20,

I

/=

10)

ARRAY(I,:)

=

I

+

PLUS_X(ARRAY(I,:))

!

Procedure

references

in

!

FORALL

must

be

pure

END

FORALL

END

PROGRAM

PURE

FUNCTION

PLUS_X(ARRAY)

INTEGER,

INTENT(IN)

::

ARRAY(:)

INTEGER

::

PLUS_X(SIZE(ARRAY)),X

INTERFACE

PURE

SUBROUTINE

PLUS_Y(ARRAY)

INTEGER,

INTENT(INOUT)

::

ARRAY(:)

END

SUBROUTINE

END

INTERFACE

X=8

PLUS_X

=

ARRAY+X

CALL

PLUS_Y(PLUS_X)

END

FUNCTION

PURE

SUBROUTINE

PLUS_Y(ARRAY)

INTEGER,

INTENT(INOUT)

::

ARRAY(:)

!

Intent

must

be

specified

INTEGER

::

Y

Y=6

ARRAY

=

ARRAY+Y

END

SUBROUTINE

End

of

Fortran

95

Elemental

Procedures

Fortran

95

An

elemental

subprogram

definition

must

have

the

ELEMENTAL

prefix

specifier.

If

the

ELEMENTAL

prefix

specifier

is

used,

the

RECURSIVE

specifier

cannot

be

used.

You

cannot

use

the

-qrecur

option

when

specifying

elemental

procedures.

An

elemental

subprogram

is

a

pure

subprogram.

However,

pure

subprograms

are

not

necessarily

elemental

subprograms.

For

elemental

subprograms,

it

is

not

necessary

to

specify

both

the

ELEMENTAL

prefix

specifier

and

the

PURE

prefix

specifier;

the

PURE

prefix

specifier

is

implied

by

the

presence

of

the

ELEMENTAL

prefix

specifier.

A

standard

conforming

subprogram

definition

or

interface

body

can

have

both

the

PURE

and

ELEMENTAL

prefix

specifiers.

Fortran

95

Program

Units

and

Procedures

169

Elemental

procedures,

subprograms,

and

user-defined

elemental

procedures

must

conform

to

the

following

rules:

v

The

result

of

an

elemental

function

must

be

a

scalar,

and

must

not

have

the

ALLOCATABLE

or

POINTER

attribute.

v

The

following

apply

to

dummy

arguments

used

in

elemental

subprograms:

–

All

dummy

arguments

must

be

scalar,

and

must

not

have

the

ALLOCATABLE

or

POINTER

attribute.

–

A

dummy

argument,

or

a

subobject

thereof,

cannot

be

used

in

a

specification

expression,

except

if

it

is

used

as

an

argument

to

the

BIT_SIZE,

KIND,

or

LEN

intrinsic

functions,

or

as

an

argument

to

one

of

the

numeric

inquiry

intrinsic

functions,

see

“Intrinsic

Procedures”

on

page

421.

–

A

dummy

argument

cannot

be

an

asterisk.

–

A

dummy

argument

cannot

be

a

dummy

procedure.
v

Elemental

subprograms

must

follow

all

of

the

rules

that

apply

to

pure

subprograms,

defined

in

“Pure

Procedures”

on

page

167.

v

Elemental

subprograms

can

have

ENTRY

statements,

but

the

ENTRY

statement

cannot

have

the

ELEMENTAL

prefix.

The

procedure

defined

by

the

ENTRY

statement

is

elemental

if

the

ELEMENTAL

prefix

is

specified

in

the

SUBROUTINE

or

FUNCTION

statement.

v

Elemental

procedures

can

be

used

as

defined

operators

in

elemental

expressions,

but

they

must

follow

the

rules

for

elemental

expressions

as

described

in

“Operators

and

Expressions”

on

page

90.

A

reference

to

an

elemental

procedure

is

elemental

only

if:

v

The

reference

is

to

an

elemental

function,

one

or

more

of

the

actual

arguments

is

an

array,

and

all

array

actual

arguments

have

the

same

shape;

or

v

The

reference

is

to

an

elemental

subroutine,

and

all

actual

arguments

that

correspond

to

the

INTENT(OUT)

and

INTENT(INOUT)

dummy

arguments

are

arrays

that

have

the

same

shape.

The

remaining

actual

arguments

are

conformable

with

them.

A

reference

to

an

elemental

subprogram

is

not

elemental

if

all

of

its

arguments

are

scalar.

The

actual

arguments

in

a

reference

to

an

elemental

procedure

can

be

either

of

the

following:

v

All

scalar.

For

elemental

functions,

if

the

arguments

are

all

scalar,

the

result

is

scalar.

v

One

or

more

array-valued.

The

following

rules

apply

if

one

or

more

of

the

arguments

is

array-valued:

–

For

elemental

functions,

the

shape

of

the

result

is

the

same

as

the

shape

of

the

array

actual

argument

with

the

greatest

rank.

If

more

than

one

argument

appears

then

all

actual

arguments

must

be

conformable.

–

For

elemental

subroutines,

all

actual

arguments

associated

with

INTENT(OUT)

and

INTENT(INOUT)

dummy

arguments

must

be

arrays

of

the

same

shape,

and

the

remaining

actual

arguments

must

be

conformable

with

them.

For

elemental

references,

the

resulting

values

of

the

elements

are

the

same

as

would

be

obtained

if

the

subroutine

or

function

had

been

applied

separately

in

any

order

to

the

corresponding

elements

of

each

array

actual

argument.

Fortran

95

170

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

If

the

intrinsic

subroutineMVBITS

is

used,

the

arguments

that

correspond

to

the

TO

and

FROM

dummy

arguments

may

be

the

same

variable.

Apart

from

this,

the

actual

arguments

in

a

reference

to

an

elemental

subroutine

or

elemental

function

must

satisfy

the

restrictions

described

in

“Argument

Association”

on

page

156.

Special

rules

apply

to

generic

procedures

that

have

an

elemental

specific

procedure,

see

“Resolving

Procedure

References

to

Generic

Names”

on

page

166.

Examples

Example

1:

!

Example

of

an

elemental

function

PROGRAM

P

INTERFACE

ELEMENTAL

REAL

FUNCTION

LOGN(X,N)

REAL,

INTENT(IN)

::

X

INTEGER,

INTENT(IN)

::

N

END

FUNCTION

LOGN

END

INTERFACE

REAL

RES(100),

VAL(100,100)

...

DO

I=1,100

RES(I)

=

MAXVAL(

LOGN(VAL(I,:),2)

)

END

DO

...

END

PROGRAM

P

Fortran

95

Program

Units

and

Procedures

171

Example

2:

!

Elemental

procedure

declared

with

a

generic

interface

INTERFACE

RAND

ELEMENTAL

FUNCTION

SCALAR_RAND(x)

REAL,

INTENT(IN)

::

X

END

FUNCTION

SCALAR_RAND

FUNCTION

VECTOR_RANDOM(x)

REAL

X(:)

REAL

VECTOR_RANDOM(SIZE(x))

END

FUNCTION

VECTOR_RANDOM

END

INTERFACE

RAND

REAL

A(10,10),

AA(10,10)

!

The

actual

argument

AA

is

a

two-dimensional

array.

The

procedure

!

taking

AA

as

an

argument

is

not

declared

in

the

interface

block.

!

The

specific

procedure

SCALAR_RAND

is

then

called.

A

=

RAND(AA)

!

The

actual

argument

is

a

one-dimensional

array

section.

The

procedure

!

taking

a

one-dimensional

array

as

an

argument

is

declared

in

the

!

interface

block.

The

specific

procedure

VECTOR_RANDOM

is

then

called.

!

This

is

a

non-elemental

reference

since

VECTOR_RANDOM

is

not

elemental.

A(:,1)

=

RAND(AA(6:10,2))

END

End

of

Fortran

95

Fortran

95

172

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Understanding

XL

Fortran

Input/Output

XL

Fortran

supports

synchronous

input/output

(I/O).

Synchronous

I/O

halts

an

executing

application

until

I/O

operations

complete.

Synchronous

I/O

types

support

the

following

file

access

methods:

v

Sequential

access

v

Direct

access

v

Stream

access

Each

method

of

access

offers

benefits

and

limitations

based

on

the

I/O

concepts

of

Records,

Files,

and

Units.

This

section

also

provides

explanations

of

the

IOSTAT=

specifier

codes

that

can

result

when

using

XL

Fortran

I/O

statements.

Records

A

record

contains

a

sequence

of

characters

or

values.

XL

Fortran

supports

three

record

types:

v

formatted

v

unformatted

v

endfile

Formatted

Records

A

formatted

record

consists

of

a

sequence

of

ASCII

characters

that

can

print

in

a

readable

format.

Reading

a

formatted

record

converts

the

data

values

from

readable

characters

into

an

internal

representation.

Writing

a

formatted

record

converts

the

data

from

the

internal

representation

into

characters.

Unformatted

Records

An

unformatted

record

contains

a

sequence

of

values

in

an

internal

representation

that

can

contain

both

character

and

noncharacter

data.

An

unformatted

record

can

also

contain

no

data.

Reading

or

writing

an

unformatted

record

does

not

convert

any

data

the

record

contains

from

the

internal

representation.

Endfile

Records

An

endfile

record

occurs

at

the

end

of

a

file

connected

for

sequential

access

and

occupies

no

storage.

You

can

write

an

endfile

record

using

the

ENDFILE

statement.

You

can

also

use

a

WRITE

statement

that

executes

as

the

last

data

transfer

statement

and

meets

one

of

the

following

requirements:

v

A

BACKSPACE

or

REWIND

statement

occurs

on

the

file

or

connecting

unit.

v

The

file

closes,

meeting

one

of

the

conditions

listed

below.

–

A

CLOSE

statement.

–

An

OPEN

statement

for

the

same

unit,

which

implies

a

CLOSE

statement

for

the

previous

file.

–

Program

termination

without

an

error

condition.

Another

file

positioning

statement

must

not

occur

between

the

WRITE

statement

and

any

of

the

previous

requirements.

©

Copyright

IBM

Corp.

1990,

2003

173

Files

A

file

is

an

internal

or

external

sequence

of

records

or

file

storage

units.

You

determine

the

file

access

method

when

connecting

a

file

to

a

unit.

You

can

access

an

external

file

using

three

methods:

v

Sequential

access

v

Direct

access

v

Stream

access

You

can

only

access

an

internal

file

sequentially.

Definition

of

an

External

File

You

must

associate

an

external

file

with

an

I/O

device

such

as

a

disk,

or

terminal.

An

external

file

exists

for

a

program

when

a

program

creates

that

file,

or

the

file

is

available

to

that

program

for

reading

and

writing.

Deleting

an

external

file

ends

the

existence

of

that

file.

An

external

file

can

exist

and

contain

no

records.

IBM

Extension

To

specify

an

external

file

by

a

file

name,

you

must

designate

a

valid

operating

system

file

name.

Each

file

name

can

contain

a

maximum

of

255

characters.

If

you

specify

a

full

path

name,

it

can

contain

a

maximum

of

1023

characters.

End

of

IBM

Extension

The

preceding

I/O

statement

determines

the

position

of

an

external

file.

You

can

position

an

external

file

to:

v

The

initial

point,

which

is

the

position

immediately

before

the

first

record,

or

the

first

file

storage

unit.

v

The

terminal

point,

which

is

the

position

immediately

after

the

last

record,

or

the

last

file

storage

unit.

v

The

current

record,

when

the

file

position

is

within

a

record.

Otherwise,

there

is

no

current

record.

v

The

preceding

record,

which

is

the

record

immediately

before

the

current

record.

If

there

is

no

current

record,

the

preceding

record

is

the

record

immediately

before

the

current

file

position.

A

preceding

record

does

not

exist

when

the

file

position

is

at

its

initial

point

or

within

the

first

record

of

the

file.

v

The

next

record,

which

is

the

record

immediately

after

the

current

record.

If

there

is

no

current

record,

the

next

record

is

the

record

immediately

after

the

current

position.

The

next

record

does

not

exist

when

the

file

position

is

at

the

terminal

point

or

within

the

last

record

of

the

file.

v

An

indeterminate

position

after

an

error.

File

Access

Methods

Sequential

Access

Using

sequential

access,

records

in

a

file

are

read

or

written

based

on

the

logical

order

of

records

in

that

file.

Sequential

access

supports

both

internal

and

external

files.

External

Files:

A

file

connected

for

sequential

access

contains

records

in

the

order

they

were

written.

The

records

must

be

either

all

formatted

or

all

unformatted;

the

Files

174

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

last

record

of

the

file

must

be

an

endfile

record.

The

records

must

not

be

read

or

written

by

direct

or

stream

access

I/O

statements

during

the

time

the

file

is

connected

for

sequential

access.

Internal

Files:

An

internal

file

is

a

character

variable

that

is

not

an

array

section

with

a

vector

subscript.

You

do

not

need

to

create

internal

files.

They

always

exist,

and

are

available

to

the

application.

If

an

internal

file

is

a

scalar

character

variable,

the

file

consists

of

one

record

with

a

length

equal

to

that

of

the

scalar

variable.

If

an

internal

file

is

a

character

array,

each

element

of

the

array

is

a

record

of

the

file,

with

each

record

having

the

same

length.

An

internal

file

must

contain

only

formatted

records.

READ

and

WRITE

are

the

only

statements

that

can

specify

an

internal

file.

If

a

WRITE

statement

writes

less

than

an

entire

record,

blanks

fill

the

remainder

of

that

record.

Direct

Access

Using

direct

access,

the

records

of

an

external

file

can

be

read

or

written

in

any

order.

The

records

must

be

either

all

formatted

or

all

unformatted.

The

records

must

not

be

read

or

written

using

sequential

or

stream

access,

list-directed

formatting,

namelist

formatting,

or

a

nonadvancing

input/output

statement.

If

the

file

was

previously

connected

for

sequential

access,

the

last

record

of

the

file

is

an

endfile

record.

The

endfile

record

is

not

considered

a

part

of

the

file

connected

for

direct

access.

Each

record

in

a

file

connected

for

direct

access

has

a

record

number

that

identifies

its

order

in

the

file.

The

record

number

is

an

integer

value

that

must

be

specified

when

the

record

is

read

or

written.

Records

are

numbered

sequentially.

The

first

record

is

number

1.

Records

need

not

be

read

or

written

in

the

order

of

their

record

numbers.

For

example,

records

9,

5,

and

11

can

be

written

in

that

order

without

writing

the

intermediate

records.

All

records

in

a

file

connected

for

direct

access

must

have

the

same

length,

which

is

specified

in

the

OPEN

statement

when

the

file

is

connected.

Records

in

a

file

connected

for

direct

access

cannot

be

deleted,

but

they

can

be

rewritten

with

a

new

value.

A

record

cannot

be

read

unless

it

has

first

been

written.

Stream

Access

IBM

Extension

You

can

connect

external

files

for

stream

access

as

either

formatted

or

unformatted.

Both

forms

use

external

stream

files

composed

of

one

byte

file

storage

units.

While

a

file

connected

for

unformatted

stream

access

has

only

a

stream

structure,

files

connected

for

formatted

stream

access

have

both

a

record

and

a

stream

structure.

These

dual

structure

files

have

the

following

characteristics:

v

Some

file

storage

units

represent

record

markers.

v

The

record

structure

is

inferred

from

the

record

markers

stored

in

the

file.

v

There

is

no

theoretical

limit

on

record

length.

v

Writing

an

empty

record

without

a

record

marker

has

no

effect.

v

If

there

is

no

record

marker

at

the

end

of

a

file,

the

final

record

is

incomplete

but

not

empty.

Sequential

Access

Understanding

XL

Fortran

Input/Output

175

v

The

endfile

record

in

a

file

previously

connected

for

sequential

access

is

not

considered

part

of

the

file

when

you

connect

that

file

for

stream

access.

The

first

file

storage

unit

of

a

file

connected

for

formatted

stream

access

has

a

position

of

1.

The

position

of

each

subsequent

storage

unit

is

greater

than

the

storage

unit

immediately

before

it.

The

positions

of

successive

storage

units

are

not

always

consecutive

and

positionable

files

need

not

be

read

or

written

to

in

order

of

position.

To

determine

the

position

of

a

file

storage

unit

connected

for

formatted

stream

access,

use

the

POS=

specifier

of

the

INQUIRE

statement.

If

the

file

can

be

positioned,

you

can

use

the

value

obtained

using

the

INQUIRE

statement

to

position

that

file.

You

read

from

the

file

while

connected

to

the

file,

as

long

as

the

storage

unit

has

been

written

to

since

file

creation

and

that

the

connection

permits

a

READ

statement.

File

storage

units

of

a

file

connected

for

formatted

stream

access

can

only

be

read

or

written

by

formatted

stream

access

input/output

statements.

The

first

file

storage

unit

of

a

file

connected

for

unformatted

stream

access

has

a

position

of

1.

The

position

value

of

successive

storage

units

is

incrementally

one

greater

than

the

storage

unit

it

follows.

Positionable

files

need

not

be

read

or

written

to

in

order

of

position.

Any

storage

unit

can

be

read

from

the

file

while

connected

to

the

file,

if

the

storage

unit

has

been

written

to

since

file

creation

and

that

the

connection

permits

a

READ

statement.

File

storage

units

of

a

file

connected

for

unformatted

stream

access

can

only

be

read

or

written

by

stream

access

input/output

statements.

End

of

IBM

Extension

Units

A

unit

is

a

means

of

referring

to

an

external

file.

Programs

refer

to

external

files

by

the

unit

numbers

indicated

by

unit

specifiers

in

input/output

statements.

See

[UNIT=]

for

the

form

of

a

unit

specifier.

Connection

of

a

Unit

A

connection

refers

to

the

association

between

an

external

file

and

a

unit.

A

connection

must

occur

before

the

records

of

a

file

can

be

read

or

written.

There

are

three

ways

to

connect

a

file

to

a

unit:

v

Preconnection

v

Implicit

connection

v

Explicit

connection,

using

the

OPEN

statement

Preconnection

Preconnection

occurs

when

the

program

begins

executing.

You

can

specify

preconnection

in

I/O

statements

without

the

prior

execution

of

an

OPEN

statement.

IBM

Extension

Using

formatted

sequential

access

always

preconnects

units

0,

5

and

6

as

unnamed

files

to

the

devices

below:

v

Unit

0

to

the

standard

error

device

v

Unit

5

to

the

standard

input

device

v

Unit

6

to

the

standard

output

device

Stream

Access

176

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

The

files

retain

default

specifier

values

for

the

OPEN

statement

with

the

following

exceptions:

v

STATUS=’OLD’

v

ACTION=’READWRITE’

v

FORM=’FORMATTED’

End

of

IBM

Extension

Implicit

Connection

IBM

Extension

Implicit

connection

occurs

when

a

sequential

statement

that

is;

ENDFILE,

PRINT,

READ,

REWIND,

or

WRITE

executes

on

a

unit

not

already

connected

to

an

external

file.

The

executing

statement

connects

that

unit

to

a

file

with

a

predetermined

name.

By

default,

this

connection

is

unit

n

to

file

fort.n.

You

do

not

need

to

create

the

file

before

implicit

connection.

To

implicitly

connect

to

a

different

file

name,

see

the

UNIT_VARS

run-time

option

under

Setting

Run-Time

Options

in

the

User’s

Guide.

You

can

not

specify

unit

0

for

implicit

connection.

You

can

only

connect

a

preconnected

unit

implicitly

if

you

terminate

the

connection

between

the

unit

and

the

external

file.

In

the

next

example

a

preconnected

unit

closes

before

implicit

connection

takes

place.

Sample

Implicit

Connection

PROGRAM

TRYME

WRITE

(

6,

10

)

"Hello1"

!

"Hello1"

written

to

standard

output

CLOSE

(

6

)

WRITE

(

6,

10

)

"Hello2"

!

"Hello2"

written

to

fort.6

10

FORMAT

(A)

END

A

unit

with

an

implicit

connection

uses

the

default

specifier

values

of

the

OPEN

statement,

except

for

the

FORM=

specifier.

The

first

data

transfer

statement

determines

the

value

of

FORM=.

If

the

first

I/O

statement

uses

format

directed,

list

directed,

or

namelist

formatting,

the

value

of

the

FORM=

specifier

is

set

to

FORMATTED.

An

unformatted

I/O

statement

sets

the

specifier

to

UNFORMATTED.

End

of

IBM

Extension

Disconnection

The

CLOSE

statement

disconnects

a

file

from

a

unit.

You

can

connect

the

file

again

within

the

same

program

to

the

same

unit

or

to

a

different

unit.

You

can

connect

the

unit

again

within

the

same

program

to

the

same

file

or

a

different

file.

IBM

Extension

v

You

can

not

close

unit

0

v

You

can

not

reconnect

unit

5

to

standard

input

after

the

unit

closes

v

You

can

not

reconnect

unit

6

to

standard

output

after

the

unit

closes

End

of

IBM

Extension

Units

Understanding

XL

Fortran

Input/Output

177

Data

Transfer

Statements

The

READ

statement

obtains

data

from

an

external

or

internal

file

and

transfers

the

data

to

internal

storage.

If

you

specify

an

input

list,

values

transfer

from

the

file

to

the

data

items

you

specify.

The

WRITE

statement

transfers

data

from

internal

storage

into

an

external

or

internal

file.

The

PRINT

statement

transfers

data

from

internal

storage

into

an

external

file.

Specifying

the

–qport=typestmt

compiler

option

enables

the

TYPE

statement

which

supports

functionality

identical

to

PRINT.

If

you

specify

an

output

list

and

format

specification,

values

transfer

to

the

file

from

the

data

items

you

specify.

If

you

do

not

specify

an

output

list,

the

PRINT

statement

transfers

a

blank

record

to

the

output

device

unless

the

FORMAT

statement

it

refers

to

contains,

as

the

first

specification,

a

character

string

edit

descriptor

or

a

slash

edit

descriptor.

In

this

case,

the

records

these

specifications

indicate

transfer

to

the

output

device.

Execution

of

a

WRITE

or

PRINT

statement

for

a

file

that

does

not

exist

creates

that

file,

unless

an

error

occurs.

Zero-sized

arrays

and

implied-DO

lists

with

iteration

counts

of

zero

are

ignored

when

determining

the

next

item

to

be

processed.

Zero-length

scalar

character

items

are

not

ignored.

If

an

input/output

item

is

a

pointer,

data

transfers

between

the

file

and

the

associated

target.

During

advancing

input

from

a

file

with

a

PAD=

specifier

that

has

the

value

NO,

the

input

list

and

format

specification

must

not

require

more

characters

from

the

record

than

that

record

contains.

If

the

PAD=

specifier

has

the

value

YES,

or

if

the

input

file

is

an

internal

file,

blank

characters

are

supplied

if

the

input

list

and

format

specification

require

more

characters

from

the

record

than

the

record

contains.

IBM

Extension

If

you

want

to

pad

only

external

files

connected

for

sequential

access,

specify

the

-qxlf77=noblankpad

compiler

option.

This

compiler

option

also

sets

the

default

value

for

the

PAD=

specifier

to

NO

for

direct

and

stream

files

and

YES

for

sequential

files.

End

of

IBM

Extension

During

nonadvancing

input

from

a

file

with

a

PAD=

specifier

that

has

the

value

NO,

an

end-of-record

condition

occurs

if

the

input

list

and

format

specification

require

more

characters

from

the

record

than

the

record

contains.

If

the

PAD=

specifier

has

the

value

YES,

an

end-of-record

condition

occurs

and

blank

characters

are

supplied

if

an

input

item

and

its

corresponding

data

edit

descriptor

require

more

characters

from

the

record

than

the

record

contains.

If

the

record

is

the

last

record

of

a

stream

file,

an

end-of-file

condition

occurs.

Advancing

and

Nonadvancing

Input/Output

Advancing

I/O

positions

a

record

file

after

the

last

record

that

is

read

or

written,

unless

an

error

condition

occurs.

Data

Transfer

178

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Nonadvancing

I/O

can

position

the

file

at

a

character

position

within

the

current

record,

or

a

subsequent

record.

With

nonadvancing

I/O,

you

can

READ

or

WRITE

a

record

of

the

file

by

a

sequence

of

I/O

statements

that

each

access

a

portion

of

the

record.

You

can

also

read

variable-length

records

and

inquire

about

the

length

of

the

records.

Nonadvancing

I/O

!

Reads

digits

using

nonadvancing

input

INTEGER

COUNT

CHARACTER(1)

DIGIT

OPEN

(7)

DO

READ

(7,FMT="(A1)",ADVANCE="NO",EOR=100)

DIGIT

COUNT

=

COUNT

+

1

IF

((ICHAR(DIGIT).LT.ICHAR(’0’)).OR.(ICHAR(DIGIT).GT.ICHAR(’9’)))

THEN

PRINT

*,"Invalid

character

",

DIGIT,

"

at

record

position

",COUNT

STOP

END

IF

END

DO

100

PRINT

*,"Number

of

digits

in

record

=

",

COUNT

END

!

When

the

contents

of

fort.7

is

’1234\n’,

the

output

is:

!

Number

of

digits

in

record

=

4

File

Position

Before

and

After

Data

Transfer

For

an

explicit

connection

using

an

OPEN

statement

for

sequential

or

stream

I/O

that

specifies

the

POSITION=

specifier,

you

can

position

the

file

explicitly

at

the

beginning,

at

the

end,

where

the

position

is

on

opening.

If

the

OPEN

statement

does

not

specify

the

POSITION=

specifier:

v

If

the

STATUS=

specifier

has

the

value

NEW

or

SCRATCH,

the

file

position

is

at

the

beginning.

IBM

Extension

v

If

you

specify

STATUS=’OLD’

with

the

-qposition=appendold

compiler

option,

and

the

next

operation

that

changes

the

file

position

is

a

WRITE

statement,

then

the

file

position

is

at

the

end.

If

these

conditions

are

not

met,

the

file

position

is

at

the

beginning.

v

If

you

specify

STATUS=’UNKNOWN’

with

the

-qposition=appendunknown

compiler

option,

and

the

next

operation

is

a

WRITE

statement,

then

the

file

position

is

at

the

end.

If

all

these

conditions

are

not

met,

the

file

position

is

at

the

beginning.

After

an

implicit

OPEN,

the

file

position

is

at

the

beginning:

v

If

the

first

I/O

operation

on

the

file

is

READ,

the

application

reads

the

first

record

of

the

file.

v

If

the

first

I/O

operation

on

the

file

is

WRITE,

the

application

deletes

the

contents

of

the

file

and

writes

at

the

first

record.

End

of

IBM

Extension

Data

Transfer

Understanding

XL

Fortran

Input/Output

179

You

can

use

a

REWIND

statement

to

position

a

file

at

the

beginning.

The

preconnected

units

0,

5

and

6

are

positioned

as

they

come

from

the

parent

process

of

the

application.

The

positioning

of

a

file

prior

to

data

transfer

depends

on

the

method

of

access:

v

Sequential

access

for

an

external

file:

–

For

advancing

input,

the

file

position

is

at

the

beginning

of

the

next

record.

This

record

becomes

the

current

record.

–

Advancing

output

creates

a

new

record

and

becomes

the

last

record

of

the

file.
v

Sequential

access

for

an

internal

file:

–

File

position

is

at

the

beginning

of

the

first

record

of

the

file.

This

record

becomes

the

current

record.
v

Direct

access:

–

File

position

is

at

the

beginning

of

the

record

that

the

record

specifier

indicates.

This

record

becomes

the

current

record.
v

Stream

access:

–

File

position

is

immediately

before

the

file

storage

unit

the

POS=

specifier

indicates.

If

there

is

no

POS=

specifier,

the

file

position

remains

unchanged.

After

advancing

I/O

data

transfer,

the

file

position

is:

v

Beyond

the

endfile

record

if

an

end-of-file

condition

exists

as

a

result

of

reading

an

endfile

record.

v

Beyond

the

last

record

read

or

written

if

no

error

or

end-of-file

condition

exists.

That

last

record

becomes

the

preceding

record.

A

record

written

on

a

file

connected

for

sequential

or

formatted

stream

access

becomes

the

last

record

of

the

file.

After

nonadvancing

input

the

file

position:

v

If

no

error

condition

or

end-of-file

condition

occurs,

but

an

end-of-record

condition

occurs,

the

file

position

is

immediately

after

the

record

read.

v

If

no

error

condition,

end-of-file

condition

or

end-of-record

condition

occurs

in

a

nonadvancing

input

statement,

the

file

position

does

not

change.

v

If

no

error

condition

occurs

in

a

nonadvancing

output

statement,

the

file

position

does

not

change.

v

In

all

other

cases,

the

file

position

is

immediately

after

the

record

read

or

written

and

that

record

becomes

the

preceding

record.

If

the

file

position

is

beyond

the

endfile

record,

a

READ,

WRITE,

PRINT,

or

ENDFILE

statement

can

not

execute

if

the

compiler

option

-qxlf77=softeof

is

not

set.

A

BACKSPACE

or

REWIND

statement

can

be

used

to

reposition

the

file.

IBM

Extension

Use

the

-qxlf77=softeof

option

to

be

able

to

read

and

write

past

the

end-of-file.

End

of

IBM

Extension

For

formatted

stream

output

with

no

errors,

the

terminal

point

of

the

file

is

set

to

the

highest-numbered

position

to

which

data

was

transferred

by

the

statement.

For

unformatted

stream

output

with

no

errors,

the

file

position

is

unchanged.

If

the

file

position

exceeds

the

previous

terminal

point

of

the

file,

the

terminal

point

is

set

to

Data

Transfer

180

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

the

file

position.

Use

the

POS=

specifier

with

an

empty

output

list

to

extend

the

terminal

point

of

the

file

without

writing

data.

After

data

transfer,

if

an

error

occurs,

the

file

position

is

indeterminate.

Conditions

and

IOSTAT

Values

An

IOSTAT=

specifier

value

assigns

a

value

to

a

variable

if

an

end-of-file

condition,

end-of-record

condition

or

an

error

condition

occurs

during

an

input/output

statement.

The

IOSTAT=

specifier

reports

the

following

types

of

error

conditions:

v

Catastrophic

v

Severe

v

Recoverable

v

Conversion

v

Language

End-Of-Record

Conditions

When

an

application

encounters

an

end-of-record

condition

with

the

IOSTAT=

specifier,

it

sets

the

value

to

-4

and

branches

to

the

EOR=

label

if

that

label

is

present.

If

the

IOSTAT=

and

EOR=

specifiers

are

not

present

on

the

I/O

statement

when

an

application

encounters

an

end-of-record

condition,

the

application

stops.

Table

6.

IOSTAT

Values

for

End-Of-Record

Conditions

IOSTAT

Value

End-of-Record

Condition

Description

-4

End

of

record

encountered

on

a

nonadvancing,

format-directed

READ

of

an

external

file.

End-Of-File

Conditions

An

end-of-file

condition

can

occur

in

the

following

instances:

v

At

the

beginning

of

the

execution

of

an

input

statement.

v

During

execution

of

a

formatted

input

statement

that

requires

more

than

one

record

through

the

interaction

of

the

input

list

and

the

format.

v

During

execution

of

a

stream

input

statement.

For

stream

access,

an

end-of-file

condition

occurs

when

you

attempt

to

read

beyond

the

end

of

a

file.

An

end-of-file

condition

also

occurs

if

you

attempt

to

read

beyond

the

last

record

of

a

stream

file

connected

for

formatted

access.

An

end-of-file

condition

causes

IOSTAT=

to

be

set

to

one

of

the

values

defined

below

and

branches

to

the

the

END=

label

if

these

specifiers

are

present

on

the

input

statement.

If

the

IOSTAT=

and

END=

specifiers

are

not

present

on

the

input

statement

when

an

end-of-file

condition

is

encountered,

the

program

stops.

Table

7.

IOSTAT

Values

for

End-Of-File

Conditions

IOSTAT

Value

End-of-File

Condition

Description

-1

End

of

file

encountered

on

sequential

or

stream

READ

of

an

external

file,

or

END=

is

specified

on

a

direct

access

read

and

the

record

is

nonexistent.

-2

End

of

file

encountered

on

READ

of

an

internal

file.

Data

Transfer

Understanding

XL

Fortran

Input/Output

181

Error

Conditions

Catastrophic

Errors

Catastrophic

errors

are

system-level

errors

encountered

within

the

run-time

system

that

prevent

further

execution

of

the

program.

When

a

catastrophic

error

occurs,

a

short

(non-translated)

message

is

written

to

unit

0,

followed

by

a

call

to

the

C

library

routine

abort().

A

core

dump

can

result,

depending

on

how

you

configure

your

execution

environment.

Severe

Errors

A

severe

error

cannot

be

recovered

from,

even

if

the

ERR_RECOVERY

run-time

option

has

been

specified

with

the

value

YES.

A

severe

error

causes

the

IOSTAT=

specifier

to

be

set

to

one

of

the

values

defined

below

and

the

ERR=

label

to

be

branched

to

if

these

specifiers

are

present

on

the

input/output

statement.

If

the

IOSTAT=

and

ERR=

specifiers

are

not

present

on

the

input/output

statement

when

a

severe

error

condition

is

encountered,

the

program

stops.

Table

8.

IOSTAT

Values

for

Severe

Error

Conditions

IOSTAT

Value

Error

Description

1

END=

is

not

specified

on

a

direct

access

READ

and

the

record

is

nonexistent.

2

End

of

file

encountered

on

WRITE

of

an

internal

file.

6

File

cannot

be

found

and

STATUS=’OLD’

is

specified

on

an

OPEN

statement.

10

Read

error

on

direct

file.

11

Write

error

on

direct

file.

12

Read

error

on

sequential

or

stream

file.

13

Write

error

on

sequential

or

stream

file.

14

Error

opening

file.

15

Permanent

I/O

error

encountered

on

file.

37

Dynamic

memory

allocation

failure

-

out

of

memory.

38

REWIND

error.

39

ENDFILE

error.

40

BACKSPACE

error.

107

File

exists

and

STATUS=’NEW’

was

specified

on

an

OPEN

statement.

122

Incomplete

record

encountered

during

direct

access

READ.

130

ACTION=’READWRITE’

specified

on

an

OPEN

statement

to

connect

a

pipe.

135

The

user

program

is

making

calls

to

an

unsupported

version

of

the

XL

Fortran

run-time

environment.

139

I/O

operation

not

permitted

on

the

unit

because

the

file

was

not

opened

with

an

appropriate

value

for

the

ACTION=

specifier.

142

CLOSE

error.

144

INQUIRE

error.

152

ACCESS=’DIRECT’

is

specified

on

an

OPEN

statement

for

a

file

that

can

only

be

accessed

sequentially.

153

POSITION=’REWIND’

or

POSITION=’APPEND’

is

specified

on

an

OPEN

statement

and

the

file

is

a

pipe.

156

Invalid

value

for

RECL=

specifier

on

an

OPEN

statement.

IBM

Extension

182

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Table

8.

IOSTAT

Values

for

Severe

Error

Conditions

(continued)

IOSTAT

Value

Error

Description

159

External

file

input

could

not

be

flushed

because

the

associated

device

is

not

seekable.

165

The

record

number

of

the

next

record

that

can

be

read

or

written

is

out

of

the

range

of

the

variable

specified

with

the

NEXTREC=

specifier

of

the

INQUIRE

statement.

183

The

maximum

record

length

for

the

unit

is

out

of

the

range

of

the

scalar

variable

specified

with

the

RECL=

specifier

in

the

INQUIRE

statement.

184

The

number

of

bytes

of

data

transmitted

is

out

of

the

range

of

the

scalar

variable

specified

with

the

SIZE=

or

NUM=

specifier

in

the

I/O

statement.

186

Unit

numbers

must

be

between

0

and

2,147,483,647.

192

The

value

of

the

file

position

is

out

of

the

range

of

the

scalar

variable

specified

with

the

POS=

specifier

in

the

INQUIRE

statement.

193

The

value

of

the

file

size

is

out

of

the

range

of

the

scalar

variable

specified

with

the

SIZE=

specifier

in

the

INQUIRE

statement.

Recoverable

Errors

A

recoverable

error

is

an

error

that

can

be

recovered

from.

A

recoverable

error

causes

the

IOSTAT=

specifier

to

be

set

to

one

of

the

values

defined

below

and

the

ERR=

label

to

be

branched

to

if

these

specifiers

are

present

on

the

input/output

statement.

If

the

IOSTAT=

and

ERR=

specifiers

are

not

present

on

the

input/output

statement

and

the

ERR_RECOVERY

run-time

option

is

set

to

YES,

recovery

action

occurs

and

the

program

continues.

If

the

IOSTAT=

and

ERR=

specifiers

are

not

present

on

the

input/output

statement

and

the

ERR_RECOVERY

option

is

set

to

NO,

the

program

stops.

Table

9.

IOSTAT

Values

for

Recoverable

Error

Conditions

IOSTAT

Value

Error

Description

16

Value

of

REC=

specifier

invalid

on

direct

I/O.

17

I/O

statement

not

allowed

on

direct

file.

18

Direct

I/O

statement

on

an

unconnected

unit.

19

Unformatted

I/O

attempted

on

formatted

file.

20

Formatted

I/O

attempted

on

unformatted

file.

21

Sequential

or

stream

I/O

attempted

on

direct

file.

22

Direct

I/O

attempted

on

sequential

or

stream

file.

23

Attempt

to

connect

a

file

that

is

already

connected

to

another

unit.

24

OPEN

specifiers

do

not

match

the

connected

file’s

attributes.

25

RECL=

specifier

omitted

on

an

OPEN

statement

for

a

direct

file.

26

RECL=

specifier

on

an

OPEN

statement

is

negative.

27

ACCESS=

specifier

on

an

OPEN

statement

is

invalid.

28

FORM=

specifier

on

an

OPEN

statement

is

invalid.

29

STATUS=

specifier

on

an

OPEN

statement

is

invalid.

30

BLANK=

specifier

on

an

OPEN

statement

is

invalid.

31

FILE=

specifier

on

an

OPEN

or

INQUIRE

statement

is

invalid.

IBM

Extension

Understanding

XL

Fortran

Input/Output

183

Table

9.

IOSTAT

Values

for

Recoverable

Error

Conditions

(continued)

IOSTAT

Value

Error

Description

32

STATUS=’SCRATCH’

and

FILE=

specifier

specified

on

same

OPEN

statement.

33

STATUS=’KEEP’

specified

on

CLOSE

statement

when

file

was

opened

with

STATUS=’SCRATCH’.

34

Value

of

STATUS=

specifier

on

CLOSE

statement

is

invalid.

36

Invalid

unit

number

specified

in

an

I/O

statement.

47

A

namelist

input

item

was

specified

with

one

or

more

components

of

nonzero

rank.

48

A

namelist

input

item

specified

a

zero-sized

array.

58

Format

specification

error.

93

I/O

statement

not

allowed

on

error

unit

(unit

0).

110

Illegal

edit

descriptor

used

with

a

data

item

in

formatted

I/O.

120

The

NLWIDTH

setting

exceeds

the

length

of

a

record.

125

BLANK=

specifier

given

on

an

OPEN

statement

for

an

unformatted

file.

127

POSITION=

specifier

given

on

an

OPEN

statement

for

a

direct

file.

128

POSITION=

specifier

value

on

an

OPEN

statement

is

invalid.

129

ACTION=

specifier

value

on

an

OPEN

statement

is

invalid.

131

DELIM=

specifier

given

on

an

OPEN

statement

for

an

unformatted

file.

132

DELIM=

specifier

value

on

an

OPEN

statement

is

invalid.

133

PAD=

specifier

given

on

an

OPEN

statement

for

an

unformatted

file.

134

PAD=

specifier

value

on

an

OPEN

statement

is

invalid.

136

ADVANCE=

specifier

value

on

a

READ

statement

is

invalid.

137

ADVANCE=’NO’

is

not

specified

when

SIZE=

is

specified

on

a

READ

statement.

138

ADVANCE=’NO’

is

not

specified

when

EOR=

is

specified

on

a

READ

statement.

145

READ

or

WRITE

attempted

when

file

is

positioned

after

the

endfile

record.

163

Multiple

connections

to

a

file

located

on

a

non-random

access

device

are

not

allowed.

164

Multiple

connections

with

ACTION=’WRITE’

or

ACTION=’READWRITE’

are

not

allowed.

191

The

RECL=

specifier

is

specified

on

an

OPEN

statement

that

has

ACCESS=’STREAM’.

194

The

BACKSPACE

statement

specifies

a

unit

connected

for

unformatted

stream

I/O.

195

POS=

specifier

on

an

I/O

statement

is

less

than

one.

196

The

stream

I/O

statement

cannot

be

performed

on

the

unit

because

the

unit

is

not

connected

for

stream

access.

197

POS=

specifier

on

an

I/O

statement

for

a

unit

connected

to

a

non-seekable

file.

198

Stream

I/O

statement

on

an

unconnected

unit.

Conversion

Errors

A

conversion

error

occurs

as

a

result

of

invalid

data

or

the

incorrect

length

of

data

in

a

data

transfer

statement.

A

conversion

error

causes

the

IOSTAT=

specifier

to

be

set

to

one

of

the

values

defined

below

and

the

ERR=

label

to

be

branched

to

if

these

specifiers

are

present

on

the

input/output

statement

and

the

CNVERR

IBM

Extension

184

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

option

is

set

to

YES.

If

the

IOSTAT=

and

ERR=

specifiers

are

not

present

on

the

input/output

statement,

both

the

CNVERR

option

and

the

ERR_RECOVERY

option

are

set

to

YES,

recovery

action

is

performed

and

the

program

continues.

If

the

IOSTAT=

and

ERR=

specifiers

are

not

present

on

the

input/output

statement,

the

CNVERR

option

is

set

to

YES,

the

ERR_RECOVERY

option

is

set

to

NO,

and

the

program

stops.

If

CNVERR

is

set

to

NO,

the

ERR=

label

is

never

branched

to

but

the

IOSTAT=

specifier

may

be

set,

as

indicated

below.

Table

10.

IOSTAT

Values

for

Conversion

Error

Conditions

IOSTAT

Value

Error

Description

IOSTAT

set

if

CNVERR=NO

3

End

of

record

encountered

on

an

unformatted

file.

no

4

End

of

record

encountered

on

a

formatted

external

file

using

advancing

I/O.

no

5

End

of

record

encountered

on

an

internal

file.

no

7

Incorrect

format

of

list-directed

input

found

in

an

external

file.

yes

8

Incorrect

format

of

list-directed

input

found

in

an

internal

file.

yes

9

List-directed

or

NAMELIST

data

item

too

long

for

the

internal

file.

yes

41

Valid

logical

input

not

found

in

external

file.

no

42

Valid

logical

input

not

found

in

internal

file.

no

43

Complex

value

expected

using

list-directed

or

NAMELIST

input

in

external

file

but

not

found.

no

44

Complex

value

expected

using

list-directed

or

NAMELIST

input

in

internal

file

but

not

found.

no

45

NAMELIST

item

name

specified

with

unknown

or

invalid

derived-type

component

name

in

NAMELIST

input.

no

46

NAMELIST

item

name

specified

with

an

invalid

substring

range

in

NAMELIST

input.

no

49

List-directed

or

namelist

input

contained

an

invalid

delimited

character

string.

no

56

Invalid

digit

found

in

input

for

B,

O

or

Z

format

edit

descriptors.

no

84

NAMELIST

group

header

not

found

in

external

file.

yes

85

NAMELIST

group

header

not

found

in

internal

file.

yes

86

Invalid

NAMELIST

input

value

found

in

external

file.

no

87

Invalid

NAMELIST

input

value

found

in

internal

file.

no

88

Invalid

name

found

in

NAMELIST

input.

no

90

Invalid

character

in

NAMELIST

group

or

item

name

in

input.

no

91

Invalid

NAMELIST

input

syntax.

no

92

Invalid

subscript

list

for

NAMELIST

item

in

input.

no

94

Invalid

repeat

specifier

for

list-directed

or

NAMELIST

input

in

external

file.

no

95

Invalid

repeat

specifier

for

list-directed

or

NAMELIST

input

in

internal

file.

no

IBM

Extension

Understanding

XL

Fortran

Input/Output

185

Table

10.

IOSTAT

Values

for

Conversion

Error

Conditions

(continued)

IOSTAT

Value

Error

Description

IOSTAT

set

if

CNVERR=NO

96

Integer

overflow

in

input.

no

97

Invalid

decimal

digit

found

in

input.

no

98

Input

too

long

for

B,

O

or

Z

format

edit

descriptors.

no

121

Output

length

of

NAMELIST

item

name

or

NAMELIST

group

name

is

longer

than

the

maximum

record

length

or

the

output

width

specified

by

the

NLWIDTH

option.

yes

Fortran

90

and

Fortran

95

Language

Errors

A

Fortran

90

language

error

results

from

the

use

of

XL

Fortran

extensions

to

the

Fortran

90

language

that

cannot

be

detected

at

compile

time.

A

Fortran

90

language

error

is

considered

a

severe

error

when

the

LANGLVL

run-time

option

has

been

specified

with

the

value

90STD

and

the

ERR_RECOVERY

run-time

option

has

either

not

been

set

or

is

set

to

NO.

If

both

LANGLVL=90STD

and

ERR_RECOVERY=YES

have

been

specified,

the

error

is

considered

a

recoverable

error.

If

LANGLVL=

EXTENDED

is

specified,

the

error

condition

is

not

considered

an

error.

A

Fortran

95

language

error

results

from

the

use

of

XL

Fortran

extensions

to

the

Fortran

95

language

that

cannot

be

detected

at

compile

time.

A

Fortran

95

language

error

is

considered

a

severe

error

when

the

LANGLVL

run-time

option

has

been

specified

with

the

value

95STD

and

the

ERR_RECOVERY

run-time

option

has

either

not

been

set

or

is

set

to

NO.

If

both

LANGLVL=95STD

and

ERR_RECOVERY=YES

have

been

specified,

the

error

is

considered

a

recoverable

error.

If

LANGLVL=EXTENDED

is

specified,

the

error

condition

is

not

considered

an

error.

Table

11.

IOSTAT

Values

for

Fortran

90

and

Fortran

95

Language

Error

Conditions

IOSTAT

Value

Error

Description

53

Mismatched

edit

descriptor

and

item

type

in

formatted

I/O.

58

Format

specification

error.

140

Unit

is

not

connected

when

the

I/O

statement

is

attempted.

Only

for

READ,

WRITE,

PRINT,

REWIND,

and

ENDFILE.

141

Two

ENDFILE

statements

without

an

intervening

REWIND

or

BACKSPACE

on

the

unit.

151

The

FILE=

specifier

is

missing

and

the

STATUS=

specifier

does

not

have

a

value

of

’SCRATCH’

on

an

OPEN

statement.

187

NAMELIST

comments

are

not

allowed

by

the

Fortran

90

standard.

199

STREAM

is

not

a

valid

value

for

the

ACCESS=

specifier

on

an

OPEN

statement

in

Fortran

90

or

Fortran

95.

IBM

Extension

186

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Input/Output

Formatting

Formatted

READ,

WRITE,

and

PRINT

statements

use

formatting

information

to

direct

the

editing

(conversion)

between

internal

data

representations

and

character

representations

in

formatted

records

(see

“FORMAT”

on

page

293).

This

section

describes:

v

“Format-Directed

Formatting”

v

“Editing”

on

page

189

v

“Interaction

between

Input/Output

Lists

and

Format

Specifications”

on

page

211

v

“List-Directed

Formatting”

on

page

212

v

“Namelist

Formatting”

on

page

215

Format-Directed

Formatting

In

format-directed

formatting,

editing

is

controlled

by

edit

descriptors

in

a

format

specification.

A

format

specification

is

specified

in

a

FORMAT

statement

or

as

the

value

of

a

character

array

or

character

expression

in

a

data

transfer

statement.

Data

Edit

Descriptors

Forms

Use

Page

A

Aw

Edits

character

values

191

Bw

Bw.m

Edits

binary

values

191

Ew.d

Ew.dEe

Ew.dDe

*

Ew.dQe

*

Dw.d

ENw.d

ENw.dEe

ESw.d

ESw.dEe

Qw.d

*

Edits

real

and

complex

numbers

with

exponents

193

Fw.d

Edits

real

and

complex

numbers

without

exponents

197

Gw.d

Gw.dEe

Gw.dDe

*

Gw.dQe

*

Edits

data

fields

of

any

intrinsic

type,

with

the

output

format

adapting

to

the

type

of

the

data

and,

if

the

data

is

of

type

real,

the

magnitude

of

the

data

198

Iw

Iw.m

Edits

integer

numbers

200

Lw

Edits

logical

values

201

Ow

Ow.m

Edits

octal

values

201

Q

*

Returns

the

count

of

characters

remaining

in

an

input

record

*

203

Zw

Zw.m

Edits

hexadecimal

values

204

©

Copyright

IBM

Corp.

1990,

2003

187

Note:

*

IBM

Extensions

where:

w

specifies

the

width

of

a

field,

including

all

blanks.

It

must

be

positive

except

in

Fortran

95,

where

it

can

be

zero

for

I,

B,

O,

Z,

and

F

edit

descriptors

on

output.

m

specifies

the

number

of

digits

to

be

printed

d

specifies

the

number

of

digits

to

the

right

of

the

decimal

point

e

specifies

the

number

of

digits

in

the

exponent

field

w,

m,

d,

and

e

can

be:

v

An

unsigned

integer

literal

constant

IBM

Extension

v

A

scalar

integer

expression

enclosed

by

angle

brackets

(<

and

>).

See

“Variable

Format

Expressions”

on

page

297

for

details.

End

of

IBM

Extension

You

cannot

specify

kind

parameters

for

w,

m,

d,

or

e.

IBM

Extension

Note:

There

are

two

types

of

Q

data

edit

descriptor

(Qw.d

and

Q):

extended

precision

Q

is

the

Q

edit

descriptor

whose

syntax

is

Qw.d

character

count

Q

is

the

Q

edit

descriptor

whose

syntax

is

Q

End

of

IBM

Extension

Control

Edit

Descriptors

Forms

Use

Page

/

r

/

Specifies

the

end

of

data

transfer

on

the

current

record

205

:

Specifies

the

end

of

format

control

if

there

are

no

more

items

in

the

input/output

list

206

$

*

Suppresses

end-of-record

in

output

*

206

*

BN

Ignores

nonleading

blanks

in

numeric

input

fields

207

BZ

Interprets

nonleading

blanks

in

numeric

input

fields

as

zeros

207

kP

Specifies

a

scale

factor

for

real

and

complex

items

209

S

SS

Specifies

that

plus

signs

are

not

to

be

written

209

SP

Specifies

that

plus

signs

are

to

be

written

209

188

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Forms

Use

Page

Tc

Specifies

the

absolute

position

in

a

record

from

which,

or

to

which,

the

next

character

is

transferred

210

TLc

Specifies

the

relative

position

(backward

from

the

current

position

in

a

record)

from

which,

or

to

which,

the

next

character

is

transferred

210

TRc

Specifies

the

relative

position

(forward

from

the

current

position

in

a

record)

from

which,

or

to

which,

the

next

character

is

transferred

210

oX

Specifies

the

relative

position

(forward

from

the

current

position

in

a

record)

from

which,

or

to

which,

the

next

character

is

transferred

210

Note:

*

IBM

Extension

where:

r

is

a

repeat

specifier.

It

is

an

unsigned,

positive,

integer

literal

constant.

k

specifies

the

scale

factor

to

be

used.

It

is

an

optionally

signed,

integer

literal

constant.

c

specifies

the

character

position

in

a

record.

It

is

an

unsigned,

nonzero,

integer

literal

constant.

o

is

the

relative

character

position

in

a

record.

It

is

an

unsigned,

nonzero,

integer

literal

constant.

IBM

Extension

r,

k,

c,

and

o

can

also

be

expressed

as

an

arithmetic

expression

enclosed

by

angle

brackets

(<

and

>)

that

evaluates

into

an

integer

value.

End

of

IBM

Extension

Kind

type

parameters

cannot

be

specified

for

r,

k,

c,

or

o.

Character

String

Edit

Descriptors

Forms

Use

Page

nHstr

Outputs

a

character

string

(str)

208

’str’

″str″

Outputs

a

character

string

(str)

207

n

is

the

number

of

characters

in

a

literal

field.

It

is

an

unsigned,

positive,

integer

literal

constant.

Blanks

are

included

in

character

count.

A

kind

type

parameter

cannot

be

specified.

Editing

Editing

is

performed

on

fields.

A

field

is

the

part

of

a

record

that

is

read

on

input

or

written

on

output

when

format

control

processes

one

of

the

data

or

character

string

edit

descriptors.

The

field

width

is

the

size

of

the

field

in

characters.

Input/Output

Formatting

189

The

I,

F,

E,

EN,

ES,

B,

O,

Z,

D,

G,

and

extended

precision

Q

edit

descriptors

are

collectively

called

numeric

edit

descriptors.

They

are

used

to

format

integer,

real,

and

complex

data.

The

following

general

rules

apply

to

these

edit

descriptors:

v

On

input:

–

Leading

blanks

are

not

significant.

The

interpretation

of

other

blanks

is

controlled

by

the

BLANK=

specifier

in

the

OPEN

statement

and

the

BN

and

BZ

edit

descriptors.

A

field

of

all

blanks

is

considered

to

be

zero.

Plus

signs

are

optional,

although

they

cannot

be

specified

for

the

B,

O,

and

Z

edit

descriptors.

–

In

F,

E,

EN,

ES,

D,

G,

and

extended

precision

Q

editing,

a

decimal

point

appearing

in

the

input

field

overrides

the

portion

of

an

edit

descriptor

that

specifies

the

decimal

point

location.

The

field

can

have

more

digits

than

can

be

represented

internally.
v

On

output:

–

Characters

are

right-justified

inside

the

field.

Leading

blanks

are

supplied

if

the

editing

process

produces

fewer

characters

than

the

field

width.

If

the

number

of

characters

is

greater

than

the

field

width,

or

if

an

exponent

exceeds

its

specified

length,

the

entire

field

is

filled

with

asterisks.

–

A

negative

value

is

prefixed

with

a

minus

sign.

By

default,

a

positive

or

zero

value

is

unsigned;

it

can

be

prefixed

with

a

plus

sign,

as

controlled

by

the

S,

SP,

and

SS

edit

descriptors.

Fortran

95

–

Depending

on

whether

you

specify

the

signedzero

or

nosignedzero

suboptions

for

the

-qxlf90

compiler

option

the

following

will

result

for

the

E,

D,

Q(Extended

Precision),

F,

EN,

ES

or

G(General

Editing)

edit

descriptors:

-

when

the

signedzero

suboption

is

chosen,

and

the

internal

value

is

negative

or

a

negative

zero

on

output,

a

minus

sign

always

be

written

out

to

the

output

field,

even

if

the

output

value

is

zero.

The

Fortran

95

standard

requires

this

behavior.

IBM

Extension

Note

that

in

XL

Fortran,

a

REAL(16)

internal

value

of

zero

is

never

treated

as

a

negative

zero.

End

of

IBM

Extension

-

when

the

nosignedzero

suboption

is

chosen,

and

the

output

value

is

zero,

no

minus

sign

will

be

written

out

to

the

output

field,

even

if

the

internal

value

was

negative.

The

Fortran

90

standard

requires

this

behavior,

and

is

consistent

with

the

behavior

of

XL

Fortran.

End

of

Fortran

95

IBM

Extension

–

In

XL

Fortran,

a

NaN

(not

a

number)

is

indicated

by

“NAN”,

“+NAN”,

or

“-NAN”.

Infinity

is

indicated

by

“INF”,

“+INF”,

or

“-INF”.

End

of

IBM

Extension

190

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Notes:

1.

The

ES

and

EN

edit

descriptors

will

behave

the

same

for

both

the

signedzero

and

nosignedzero

suboptions

when

the

internal

value

is

non-zero.

That

is,

the

minus

sign

will

be

printed

out

whenever

the

value

is

negative.

2.

In

the

examples

of

edit

descriptors,

a

lowercase

b

in

the

Output

column

indicates

that

a

blank

appears

at

that

position.

Complex

Editing

A

complex

value

is

a

pair

of

separate

real

components.

Therefore,

complex

editing

is

specified

by

a

pair

of

edit

descriptors.

The

first

one

edits

the

real

part

of

the

number,

and

the

second

one

edits

the

imaginary

part

of

the

number.

The

two

edit

descriptors

can

be

the

same

or

different.

One

or

more

control

edit

descriptors

can

be

placed

between

them,

but

not

data

edit

descriptors.

Data

Edit

Descriptors

A

(Character)

Editing

Forms:

A

Aw

The

A

edit

descriptor

directs

the

editing

of

character

values.

It

can

correspond

to

an

input/output

list

item

of

type

character

or

any

other

type.

The

kind

type

parameter

of

all

characters

transferred

and

converted

is

implied

by

the

corresponding

list

item.

On

input,

if

w

is

greater

than

or

equal

to

the

length

(call

it

len)

of

the

input

list

item,

the

rightmost

len

characters

are

taken

from

the

input

field.

If

the

specified

field

width

is

less

than

len,

the

w

characters

are

left-justified,

with

(

len

-

w

)

trailing

blanks

added.

On

output,

if

w

is

greater

than

len,

the

output

field

consists

of

(

w

-

len

)

blanks

followed

by

the

len

characters

from

the

internal

representation.

If

w

is

less

than

or

equal

to

len,

the

output

field

consists

of

the

leftmost

w

characters

from

the

internal

representation.

If

w

is

not

specified,

the

width

of

the

character

field

is

the

length

of

the

corresponding

input/output

list

item.

IBM

Extension

During

formatted

stream

access,

character

output

is

split

across

more

than

one

record

if

it

contains

newline

characters.

End

of

IBM

Extension

B

(Binary)

Editing

Forms:

v

Bw

v

Bw.m

Input/Output

Formatting

191

The

B

edit

descriptor

directs

editing

between

values

of

any

type

in

internal

form

and

their

binary

representation.

(A

binary

digit

is

either

0

or

1.)

On

input,

w

binary

digits

are

edited

and

form

the

internal

representation

for

the

value

of

the

input

list

item.

The

binary

digits

in

the

input

field

correspond

to

the

rightmost

binary

digits

of

the

internal

representation

of

the

value

assigned

to

the

input

list

item.

m

has

no

effect

on

input.

On

input,

w

must

be

greater

than

zero.

Fortran

95

On

output,

w

can

be

zero.

If

w

is

zero,

the

output

field

consists

of

the

least

number

of

characters

required

to

represent

the

output

value.

End

of

Fortran

95

The

output

field

for

Bw

consists

of

zero

or

more

leading

blanks

followed

by

the

internal

value

in

a

form

identical

to

the

binary

digits

without

leading

zeros.

Note

that

a

binary

constant

always

consists

of

at

least

one

digit.

The

output

field

for

Bw.m

is

the

same

as

for

Bw,

except

that

the

digit

string

consists

of

at

least

m

digits.

If

necessary,

the

digit

string

is

padded

with

leading

zeros.

The

value

of

m

must

not

exceed

the

value

of

w

unless

w

is

zero.

If

m

is

zero

and

the

value

of

the

internal

data

is

zero,

the

output

field

consists

of

only

blank

characters,

regardless

of

the

sign

control

in

effect.

If

m

is

zero,

w

is

positive

and

the

value

of

the

internal

datum

is

zero,

the

output

field

consists

of

w

blank

characters.

If

both

w

and

m

are

zero,

and

the

value

of

the

internal

datum

is

zero,

the

output

field

consists

of

only

one

blank

character.

If

the

nooldboz

suboption

of

the

-qxlf77

compiler

option

is

specified

(the

default),

asterisks

are

printed

when

the

output

field

width

is

not

sufficient

to

contain

the

entire

output.

On

input,

the

BN

and

BZ

edit

descriptors

affect

the

B

edit

descriptor.

IBM

Extension

If

the

oldboz

suboption

of

the

-qxlf77

compiler

option

is

specified,

the

following

occurs

on

output:

v

Bw

is

treated

as

Bw.m,

with

m

assuming

the

value

that

is

the

minimum

of

w

and

the

number

of

digits

required

to

represent

the

maximum

possible

value

of

the

data

item.

v

The

output

consists

of

blanks

followed

by

at

least

m

digits.

These

are

the

rightmost

digits

of

the

number,

zero-filled

if

necessary,

until

there

are

m

digits.

If

the

number

is

too

large

to

fit

into

the

output

field,

only

the

rightmost

m

digits

are

output.

If

w

is

zero,

the

oldboz

suboption

will

be

ignored.

With

the

oldboz

suboption,

the

BN

and

BZ

edit

descriptors

do

not

affect

the

B

edit

descriptor.

End

of

IBM

Extension

192

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Examples

of

B

Editing

on

Input

Input

Format

Value

111

B3

7

110

B3

6

Examples

of

B

Editing

on

Output

Value

Format

Output

Output

(with

-qxlf77=oldboz)

(with

-qxlf77=nooldboz)

7

B3

111

111

6

B5

00110

bb110

17

B6.5

b10001

b10001

17

B4.2

0001

22

B6.5

b10110

b10110

22

B4.2

0110

0

B5.0

bbbbb

bbbbb

2

B0

10

10

E,

D,

and

Q

(Extended

Precision)

Editing

Forms:

Ew.d

Ew.d

Ee

Dw.d

Ew.d

De

Ew.d

Qe

Qw.d

The

E,

D,

and

extended

precision

Q

edit

descriptors

direct

editing

between

real

and

complex

numbers

in

internal

form

and

their

character

representations

with

exponents.

An

E,

D,

or

extended

precision

Q

edit

descriptor

can

correspond

to

an

input/output

list

item

of

type

real,

to

either

part

(real

or

imaginary)

of

an

input/output

list

item

of

type

complex,

or

to

any

other

type

in

XL

Fortran,

as

long

as

the

length

is

at

least

4

bytes.

The

form

of

the

input

field

is

the

same

as

for

F

editing.

e

has

no

effect

on

input.

The

form

of

the

output

field

for

a

scale

factor

of

0

is:

digit_string

is

a

digit

string

whose

length

is

the

d

most

significant

digits

of

the

value

after

rounding.

decimal_exponent

is

a

decimal

exponent

of

one

of

the

following

forms

(z

is

a

digit):

Edit

Descriptor

Absolute

Value

of

Exponent

(with

scale

factor

of

0)

Form

of

Exponent

Ew.d

|decimal_exponent|

≤

99

E±z1z2

Ew.d

99<|decimal_exponent|

≤

309

±z1z2z3

Ew.dEe

|decimal_exponent|

≤

(10e)-1

E±z1z2

...ze

Ew.dDe

*

|decimal_exponent|

≤

(10e)-1

*

D±z1z2

...ze

*

��

+

-

.

digit_string

decimal_exponent

0

��

Input/Output

Formatting

193

Edit

Descriptor

Absolute

Value

of

Exponent

(with

scale

factor

of

0)

Form

of

Exponent

Ew.dQe

*

|decimal_exponent|

≤

(10e)-1

*

Q±z1z2

...ze

*

Dw.d

|decimal_exponent|

≤

99

D±z1z2

Dw.d

99<|decimal_exponent|

≤

309

±z1z2z3

Qw.d

*

|decimal_exponent|

≤

99

*

Q±z1z2

*

Qw.d

*

99<|decimal_exponent|

≤

309

*

±z1z2z3

*

Note:

*

IBM

Extensions

The

scale

factor

k

(see

“P

(Scale

Factor)

Editing”

on

page

209)

controls

decimal

normalization.

If

-d<k≤0,

the

output

field

contains

|k|

leading

zeros

and

d

-

|k|

significant

digits

after

the

decimal

point.

If

0<k<d+2,

the

output

field

contains

k

significant

digits

to

the

left

of

the

decimal

point

and

d-k+1

significant

digits

to

the

right

of

the

decimal

point.

You

cannot

use

other

values

of

k.

See

the

general

information

about

numeric

editing

on

page

189

for

additional

information.

IBM

Extension

Note:

If

the

value

to

be

displayed

using

the

real

edit

descriptor

is

outside

of

the

range

of

representable

numbers,

XL

Fortran

supports

the

ANSI/IEEE

floating-point

format

by

displaying

the

following:

Table

12.

Floating-Point

Display

Display

Meaning

NAN

+NAN

Positive

Quiet

NaN

(not-a-number)

-NAN

Negative

Quiet

NaN

NAN

+NAN

Positive

Signaling

NaN

-NAN

Negative

Signaling

NaN

INF

+INF

Positive

Infinity

-INF

Negative

Infinity

End

of

IBM

Extension

Examples

of

E,

D,

and

Extended

Precision

Q

Editing

on

Input

(Assume

BN

editing

is

in

effect

for

blank

interpretation.)

Input

Format

Value

12.34

E8.4

12.34

.1234E2

E8.4

12.34

2.E10

E12.6E1

2.E10

Examples

of

E,

D,

and

Extended

Precision

Q

Editing

on

Output

Value

Format

Output

Output

(with

-qxlf77=noleadzero)

(with

-qxlf77=leadzero)

1234.56

E10.3

bb.123E+04

b0.123E+04

1234.56

D10.3

bb.123D+04

b0.123D+04

194

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Fortran

95

(with

-qxlf90=signedzero)

(with

-qxlf90=nosignedzero)

-0.001

E5.2

-0.00

b0.00

End

of

Fortran

95

EN

Editing

Forms:

v

ENw.d

v

ENw.dEe

The

EN

edit

descriptor

produces

an

output

field

in

the

form

of

a

real

number

in

engineering

notation

such

that

the

decimal

exponent

is

divisible

by

3

and

the

absolute

value

of

the

significand

is

greater

than

or

equal

to

1

and

less

than

1000,

except

when

the

output

value

is

zero.

The

scale

factor

has

no

effect

on

output.

The

EN

edit

descriptor

can

correspond

to

an

input/output

list

item

of

type

real,

to

either

part

(real

or

imaginary)

of

an

input/output

list

item

of

type

complex,

or

to

any

other

type

in

XL

Fortran,

as

long

as

the

length

is

at

least

4

bytes.

The

form

and

interpretation

of

the

input

field

is

the

same

as

for

F

editing.

The

form

of

the

output

field

is:

yyy

are

the

1

to

3

decimal

digits

representative

of

the

most

significant

digits

of

the

value

of

the

datum

after

rounding

(yyy

is

an

integer

such

that

1

≤

yyy

<

1000

or,

if

the

output

value

is

zero,

yyy

=

0).

digit_string

are

the

d

next

most

significant

digits

of

the

value

of

the

datum

after

rounding.

exp

is

a

decimal

exponent,

divisible

by

3,

of

one

of

the

following

forms

(z

is

a

digit):

Edit

Descriptor

Absolute

Value

of

Exponent

Form

of

Exponent

ENw.d

|exp|

≤

99

E±z1z2

ENw.d

99

<

|exp|

≤

309

±z1z2z3

ENw.dEe

|exp|

≤

10e−1

E±z1

...

ze

For

additional

information

on

numeric

editing,

see

“Editing”

on

page

189.

��

+

-

.

digit_string

exp

yyy

��

Input/Output

Formatting

195

Examples

of

EN

Editing

Value

Format

Output

3.14159

EN12.5

b3.14159E+00

1.41425D+5

EN15.5E4

141.42500E+0003

3.14159D-12

EN15.5E1

Fortran

95

(with

-qxlf90=signedzero)

(with

-qxlf90=nosignedzero)

-0.001

EN9.2

-1.00E-03

-1.00E-03

End

of

Fortran

95

ES

Editing

Forms:

v

ESw.d

v

ESw.dEe

The

ES

edit

descriptor

produces

an

output

field

in

the

form

of

a

real

number

in

scientific

notation

such

that

the

absolute

value

of

the

significand

is

greater

than

or

equal

to

1

and

less

than

10,

except

when

the

output

value

is

zero.

The

scale

factor

has

no

effect

on

output.

The

ES

edit

descriptor

can

correspond

to

an

input/output

list

item

of

type

real,

to

either

part

(real

or

imaginary)

of

an

input/output

list

item

of

type

complex,

or

to

any

other

type

in

XL

Fortran,

as

long

as

the

length

is

at

least

4

bytes.

The

form

and

interpretation

of

the

input

field

is

the

same

as

for

F

editing.

The

form

of

the

output

field

is:

y

is

a

decimal

digit

representative

of

the

most

significant

digit

of

the

value

of

the

datum

after

rounding.

digit_string

are

the

d

next

most

significant

digits

of

the

value

of

the

datum

after

rounding.

exp

is

a

decimal

exponent

having

one

of

the

following

forms

(z

is

a

digit):

Edit

Descriptor

Absolute

Value

of

Exponent

Form

of

Exponent

ESw.d

|exp|

≤

99

E±z1z2

ESw.d

99

<

|exp|

≤

309

±z1z2z3

ESw.dEe

|exp|

≤

10e−1

E±z1

...

ze

For

additional

information

on

numeric

editing,

see

“Editing”

on

page

189.

��

+

-

.

digit_string

exp

y

��

196

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Examples

of

ES

Editing

Value

Format

Output

31415.9

ES12.5

b3.14159E+04

14142.5D+3

ES15.5E4

bb1.41425E+0007

31415.9D-22

ES15.5E1

Fortran

95

(with

-qxlf90=signedzero)

(with

-qxlf90=nosignedzero)

-0.001

ES9.2

-1.00E-03

-1.00E-03

End

of

Fortran

95

F

(Real

without

Exponent)

Editing

Form:

Fw.d

The

F

edit

descriptor

directs

editing

between

real

and

complex

numbers

in

internal

form

and

their

character

representations

without

exponents.

The

F

edit

descriptor

can

correspond

to

an

input/output

list

item

of

type

real,

to

either

part

(real

or

imaginary)

of

an

input/output

list

item

of

type

complex,

or

to

any

other

type

in

XL

Fortran,

as

long

as

the

length

is

at

least

4

bytes.

The

input

field

for

the

F

edit

descriptor

consists

of,

in

order:

1.

An

optional

sign.

2.

A

string

of

digits

optionally

containing

a

decimal

point.

If

the

decimal

point

is

present,

it

overrides

the

d

specified

in

the

edit

descriptor.

If

the

decimal

point

is

omitted,

the

rightmost

d

digits

of

the

string

are

interpreted

as

following

the

decimal

point,

and

leading

blanks

are

converted

to

zeros

if

necessary.

3.

Optionally,

an

exponent,

having

one

of

the

following

forms:

v

A

signed

digit

string

v

E,

D,

or

Q

followed

by

zero

or

more

blanks

and

by

an

optionally

signed

digit

string.

E,

D,

and

Q

are

processed

identically.

The

output

field

for

the

F

edit

descriptor

consists

of,

in

order:

1.

Blanks,

if

necessary.

2.

A

minus

sign

if

the

internal

value

is

negative,

or

an

optional

plus

sign

if

the

internal

value

is

zero

or

positive.

3.

A

string

of

digits

that

contains

a

decimal

point

and

represents

the

magnitude

of

the

internal

value,

as

modified

by

the

scale

factor

in

effect

and

rounded

to

d

fractional

digits.

See

“P

(Scale

Factor)

Editing”

on

page

209

for

more

information.

See

“Editing”

on

page

189

for

additional

information.

On

input,

w

must

be

greater

than

zero.

Fortran

95

In

Fortran

95

on

output,

w

can

be

zero.

If

w

is

zero,

the

output

field

consists

of

the

Input/Output

Formatting

197

least

number

of

characters

required

to

represent

the

output

value.

End

of

Fortran

95

Examples

of

F

Editing

on

Input

(Assume

BN

editing

is

in

effect

for

blank

interpretation.)

Input

Format

Value

-100

F6.2

-1.0

2.9

F6.2

2.9

4.E+2

F6.2

400.0

Examples

of

F

Editing

on

Output

Value

Format

Output

Output

(with

-qxlf77=noleadzero)

(with

-qxlf77=leadzero)

+1.2

F8.4

bb1.2000

bb1.2000

.12345

F8.3

bbbb.123

bbbb0.123

-12.34

F6.2

-12.34

-12.34

Fortran

95

-12.34

F0.2

-12.34

-12.34

(with

-qxlf90=signedzero)

(with

-qxlf90=nosignedzero)

-0.001

F5.2

-0.00

b0.00

End

of

Fortran

95

G

(General)

Editing

Forms:

Gw.d

Gw.dEe

Gw.dDe

Gw.dQe

The

G

edit

descriptor

can

correspond

to

an

input/output

list

item

of

any

type.

Editing

of

integer

data

follows

the

rules

of

the

I

edit

descriptor;

editing

of

real

and

complex

data

follows

the

rules

of

the

E

or

F

edit

descriptors

(depending

on

the

magnitude

of

the

value);

editing

of

logical

data

follows

the

rules

of

the

L

edit

descriptor;

and

editing

of

character

data

follows

the

rules

of

the

A

edit

descriptor.

Generalized

Real

and

Complex

Editing

If

the

nogedit77

suboption

(the

default)

of

the

-qxlf77

option

is

specified,

the

method

of

representation

in

the

output

field

depends

on

the

magnitude

of

the

datum

being

edited.

Let

N

be

the

magnitude

of

the

internal

datum.

If

0

<

N

<

0.1−0.5×10

−d−1

or

N

≥

10

d−0.5

or

N

is

0

and

d

is

0,

Gw.d

output

editing

is

the

same

as

kPE

w.d

output

editing

and

Gw.dEe

output

editing

is

the

same

as

kPEw.dEe

output

editing,

where

kP

refers

to

the

scale

factor

(

“P

(Scale

Factor)

Editing”

on

page

209)

currently

in

effect.

If

0.1−0.5×10−d−1

≤

N

<

10d−0.5

or

N

is

identically

0

and

d

is

not

zero,

the

scale

factor

has

no

effect,

and

the

value

of

N

determines

the

editing

as

follows:

Magnitude

of

Datum

Equivalent

Conversion

N

=

0

F(w−n).(d−1),n(’b’)

(d

must

not

be

0)

0.1−0.5×10−d−1

≤

N

<

1−0.5×10−d

F(w−n).d,n(’b’)

1−0.5×10−d

≤

N

<

10−0.5×10−d+1

F(w−n).(d−1),n(’b’)

198

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Magnitude

of

Datum

Equivalent

Conversion

10−0.5×10−d+1

≤

N

<

100−0.5×10−d+2

F(w−n).(d−2),n(’b’)

...

...

10d−2−0.5×10−2

≤

N

<

10d−1−0.5×10−1

F(w−n).1,n(’b’)

10d−1−0.5×10−1

≤

N

<

10d−0.5

F(w−n).0,n(’b’)

where

b

is

a

blank.

n

is

4

for

Gw.d

and

e+2

for

Gw.dEe.

The

value

of

w-n

must

also

be

positive.

Note

that

the

scale

factor

has

no

effect

unless

the

magnitude

of

the

datum

to

be

edited

is

outside

the

range

that

permits

effective

use

of

F

editing.

IBM

Extension

If

0

<

N

<

0.1−0.5×10−d−1,

N

≥

10d−0.5,

or

N

is

0

and

d

is

0,

Gw.dDe

output

editing

is

the

same

as

kPEw.dDe

output

editing

and

Gw.dQe

output

editing

is

the

same

as

kPEw.dQe

output

editing.

End

of

IBM

Extension

On

output,

if

the

gedit77

suboption

of

the

-qxlf77

compiler

option

is

specified,

the

number

is

converted

using

either

E

or

F

editing,

depending

on

the

number.

The

field

is

padded

with

blanks

on

the

right

as

necessary.

Letting

N

be

the

magnitude

of

the

number,

editing

is

as

follows:

v

If

N<0.1

or

N≥10d:

–

Gw.d

editing

is

the

same

as

Ew.d

editing

–

Gw.dEe

editing

is

the

same

as

Ew.dEe

editing.
v

If

N≥0.1

and

N<10d:

Magnitude

of

Datum

Equivalent

Conversion

0.1

≤

N

<

1

1

≤

N

<

10

.

.

10d-2

≤

N

<

10d-1

10d-1

≤

N

<

10d

F(w-n).d,

n(’b’)

F(w-n).(d-1),

n(’b’)

.

.

F(w-n).1,

n(’b’)

F(w-n).0,

n(’b’)

Note:

While

FORTRAN

77

does

not

address

how

rounding

of

values

affects

the

output

field

form,

Fortran

90

does.

Therefore,

using

-qxlf77=gedit77

may

produce

a

different

output

form

than

-qxlf77=nogedit77

for

certain

combinations

of

values

and

G

edit

descriptors.

See

“Editing”

on

page

189

for

additional

information.

Examples

of

G

Editing

on

Output

Value

Format

Output

Output

(with

-qxlf77=gedit77)

(with

-qxlf77=nogedit77)

0.0

G10.2

bb0.00E+00

bbb0.0

0.0995

G10.2

bb0.10E+00

bb0.10

99.5

G10.2

bb100.

bb0.10E+03

Input/Output

Formatting

199

I

(Integer)

Editing

Forms:

Iw

Iw.m

The

I

edit

descriptor

directs

editing

between

integers

in

internal

form

and

character

representations

of

integers.

The

corresponding

input/output

list

item

can

be

of

type

integer

or

any

other

type

in

XL

Fortran.

w

includes

the

optional

sign.

m

must

have

a

value

that

is

less

than

or

equal

to

w,

unless

w

is

zero

in

Fortran

95.

The

input

field

for

the

I

edit

descriptor

must

be

an

optionally

signed

digit

string,

unless

it

is

all

blanks.

If

it

is

all

blanks,

the

input

field

is

considered

to

be

zeros.

m

is

useful

on

output

only.

It

has

no

effect

on

input.

On

input,

w

must

be

greater

than

zero.

Fortran

95

On

output,

w

can

be

zero.

If

w

is

zero,

the

output

field

consists

of

the

least

number

of

characters

required

to

represent

the

output

value.

End

of

Fortran

95

The

output

field

for

the

I

edit

descriptor

consists

of,

in

order:

1.

Zero

or

more

leading

blanks

2.

A

minus

sign,

if

the

internal

value

is

negative,

or

an

optional

plus

sign,

if

the

internal

value

is

zero

or

positive

3.

The

magnitude

in

the

form

of:

v

A

digit

string

without

leading

zeros

if

m

is

not

specified

v

A

digit

string

of

at

least

m

digits

if

m

is

specified

and,

if

necessary,

with

leading

zeros.

If

the

internal

value

and

m

are

both

zero,

blanks

are

written.

For

additional

information

about

numeric

editing,

see

editing.

If

m

is

zero,

w

is

positive

and

the

value

of

the

internal

datum

is

zero,

the

output

field

consists

of

w

blank

characters.

If

both

w

and

m

are

zero

and

the

value

of

the

internal

datum

is

zero,

the

output

field

consists

of

only

one

blank

character.

Examples

of

I

Editing

on

Input

(Assume

BN

editing

is

in

effect

for

blank

interpretation.)

Input

Format

Value

-123

I6

-123

123456

I7.5

123456

1234

I4

1234

Examples

of

I

Editing

on

Output

Value

Format

Output

-12

I7.6

-000012

12345

I5

12345

200

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Fortran

95

0

I6.0

bbbbbb

0

I0.0

b

2

I0

2

End

of

Fortran

95

L

(Logical)

Editing

Form:

Lw

The

L

edit

descriptor

directs

editing

between

logical

values

in

internal

form

and

their

character

representations.

The

L

edit

descriptor

can

correspond

to

an

input/output

list

item

of

type

logical,

or

any

other

type

in

XL

Fortran.

The

input

field

consists

of

optional

blanks,

followed

by

an

optional

decimal

point,

followed

by

a

T

for

true

or

an

F

for

false.

w

includes

blanks.

Any

characters

following

the

T

or

F

are

accepted

on

input

but

are

ignored;

therefore,

the

strings

.TRUE.

and

.FALSE.

are

acceptable

input

forms.

The

output

field

consists

of

T

or

F

preceded

by

(

w

-

1

)

blanks.

Examples

of

L

Editing

on

Input

Input

Format

Value

T

L4

true

.FALSE.

L7

false

Examples

of

L

Editing

on

Output

Value

Format

Output

TRUE

L4

bbbT

FALSE

L1

F

O

(Octal)

Editing

Forms:

v

Ow

v

Ow.m

The

O

edit

descriptor

directs

editing

between

values

of

any

type

in

internal

form

and

their

octal

representation.

(An

octal

digit

is

one

of

0-7.)

w

includes

blanks.

On

input,

w

octal

digits

are

edited

and

form

the

internal

representation

for

the

value

of

the

input

list

item.

The

octal

digits

in

the

input

field

correspond

to

the

rightmost

octal

digits

of

the

internal

representation

of

the

value

assigned

to

the

input

list

item.

m

has

no

effect

on

input.

On

input,

w

must

be

greater

than

zero.

Fortran

95

On

output,

w

can

be

zero.

If

w

is

zero,

the

output

field

consists

of

the

least

number

Input/Output

Formatting

201

of

characters

required

to

represent

the

output

value.

End

of

Fortran

95

The

output

field

for

Ow

consists

of

zero

or

more

leading

blanks

followed

by

the

internal

value

in

a

form

identical

to

the

octal

digits

without

leading

zeros.

Note

that

an

octal

constant

always

consists

of

at

least

one

digit.

The

output

field

for

Ow.m

is

the

same

as

for

Ow,

except

that

the

digit

string

consists

of

at

least

m

digits.

If

necessary,

the

digit

string

is

padded

with

leading

zeros.

The

value

of

m

must

not

exceed

the

value

of

w,

unless

w

is

zero.

If

m

is

zero

and

the

value

of

the

internal

datum

is

zero,

the

output

field

consists

of

only

blank

characters,

regardless

of

the

sign

control

in

effect.

If

the

nooldboz

suboption

of

the

-qxlf77

compiler

option

is

specified

(the

default),

asterisks

are

printed

when

the

output

field

width

is

not

sufficient

to

contain

the

entire

output.

On

input,

the

BN

and

BZ

edit

descriptors

affect

the

O

edit

descriptor.

IBM

Extension

If

the

oldboz

suboption

of

the

-qxlf77

compiler

option

is

specified,

the

following

occurs

on

output:

v

Ow

is

treated

as

Ow.m,

with

m

assuming

the

value

that

is

the

minimum

of

w

and

the

number

of

digits

required

to

represent

the

maximum

possible

value

of

the

data

item.

v

The

output

consists

of

blanks

followed

by

at

least

m

digits.

These

are

the

rightmost

digits

of

the

number,

zero-filled

if

necessary,

until

there

are

m

digits.

If

the

number

is

too

large

to

fit

into

the

output

field,

only

the

rightmost

m

digits

are

output.

If

w

is

zero,

the

oldboz

suboption

will

be

ignored.

With

the

oldboz

suboption,

the

BN

and

BZ

edit

descriptors

do

not

affect

the

O

edit

descriptor.

End

of

IBM

Extension

If

m

is

zero,

w

is

positive

and

the

value

of

the

internal

datum

is

zero,

the

output

field

consists

of

w

blank

characters.

If

both

w

and

m

are

zero

and

the

value

of

the

internal

datum

is

zero,

the

output

field

consists

of

only

one

blank

character.

Examples

of

O

Editing

on

Input

Input

Format

Value

123

O3

83

120

O3

80

Examples

of

O

Editing

on

Output

Value

Format

Output

Output

(with

-qxlf77=oldboz)

(with

-qxlf77=nooldboz)

80

O5

00120

bb120

83

O2

23

**

Fortran

95

0

O5.0

bbbbb

bbbbb

0

O0.0

b

b

80

O0

120

120

202

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

End

of

Fortran

95

Q

(Character

Count)

Editing

IBM

Extension

Form:

v

Q

The

character

count

Q

edit

descriptor

returns

the

number

of

characters

remaining

in

an

input

record.

The

result

can

be

used

to

control

the

rest

of

the

input.

There

also

exists

the

extended

precision

Q

edit

descriptor.

By

default,

XL

Fortran

only

recognizes

the

extended

precision

Q

edit

descriptor

described

earlier.

See

“E,

D,

and

Q

(Extended

Precision)

Editing”

on

page

193

for

more

information.

To

enable

both

Q

edit

descriptors,

you

must

specify

the

-qqcount

compiler

option.

See

-qqcount

in

the

User’s

Guide

for

more

information.

When

you

specify

the

-qqcount

compiler

option,

the

compiler

will

distinguish

between

the

two

Q

edit

descriptors

by

the

way

the

Q

edit

descriptor

is

used.

If

only

a

solitary

Q

is

found,

the

compiler

will

interpret

it

as

the

character

count

Q

edit

descriptor.

If

Qw.

or

Qw.d

is

encountered,

XL

Fortran

will

interpret

it

as

the

extended

precision

Q

edit

descriptor.

You

should

use

correct

format

specifications

with

the

proper

separators

to

ensure

that

XL

Fortran

correctly

interprets

which

Q

edit

descriptor

you

specified.

The

value

returned

as

a

result

of

the

character

count

Q

edit

descriptor

depends

on

the

length

of

the

input

record

and

on

the

current

character

position

in

that

record.

The

value

is

returned

into

a

scalar

integer

variable

on

the

READ

statement

whose

position

corresponds

to

the

position

of

the

character

count

Q

edit

descriptor

in

the

FORMAT

statement.

The

character

count

Q

edit

descriptor

can

read

records

of

the

following

file

types

and

access

modes:

v

Formatted

sequential

external

files.

A

record

of

this

file

type

is

terminated

by

a

new-line

character.

Records

in

the

same

file

have

different

lengths.

v

Formatted

sequential

internal

nonarray

files.

The

record

length

is

the

length

of

the

scalar

character

variable.

v

Formatted

sequential

internal

array

files.

The

record

length

is

the

length

of

an

element

in

the

character

array.

v

Formatted

direct

external

files.

The

record

length

is

the

length

specified

by

the

RECL=

specifier

in

the

OPEN

statement.

v

Formatted

stream

external

files.

A

record

of

this

file

type

is

terminated

by

a

new-line

character.

Records

in

the

same

file

have

different

lengths.

In

an

output

operation,

the

character

count

Q

edit

descriptor

is

ignored.

The

corresponding

output

item

is

skipped.

Examples

of

Character

Count

Q

Editing

on

Input

@PROCESS

QCOUNT

CHARACTER(50)

BUF

INTEGER(4)

NBYTES

CHARACTER(60)

STRING

...

BUF

=

’This

string

is

29

bytes

long.’

Input/Output

Formatting

203

READ(

BUF,

FMT=’(Q)’

)

NBYTES

WRITE(

,

)

NBYTES

!

NBYTES

equals

50

because

the

buffer

BUF

is

50

bytes

long.

READ(*,20)

NBYTES,

STRING

20

FORMAT(Q,A)

!

NBYTES

will

equal

the

number

of

characters

entered

by

the

user.

END

End

of

IBM

Extension

Z

(Hexadecimal)

Editing

Forms:

v

Zw

v

Zw.m

The

Z

edit

descriptor

directs

editing

between

values

of

any

type

in

internal

form

and

their

hexadecimal

representation.

(A

hexadecimal

digit

is

one

of

0-9,

A-F,

or

a-f.)

On

input,

w

hexadecimal

digits

are

edited

and

form

the

internal

representation

for

the

value

of

the

input

list

item.

The

hexadecimal

digits

in

the

input

field

correspond

to

the

rightmost

hexadecimal

digits

of

the

internal

representation

of

the

value

assigned

to

the

input

list

item.

m

has

no

effect

on

input.

Fortran

95

On

output,

w

can

be

zero.

If

w

is

zero,

the

output

field

consists

of

the

least

number

of

characters

required

to

represent

the

output

value.

End

of

Fortran

95

The

output

field

for

Zw

consists

of

zero

or

more

leading

blanks

followed

by

the

internal

value

in

a

form

identical

to

the

hexadecimal

digits

without

leading

zeros.

Note

that

a

hexadecimal

constant

always

consists

of

at

least

one

digit.

The

output

field

for

Zw.m

is

the

same

as

for

Zw,

except

that

the

digit

string

consists

of

at

least

m

digits.

If

necessary,

the

digit

string

is

padded

with

leading

zeros.

The

value

of

m

must

not

exceed

the

value

of

w,

unless

w

is

zero.

If

m

is

zero

and

the

value

of

the

internal

datum

is

zero,

the

output

field

consists

of

only

blank

characters,

regardless

of

the

sign

control

in

effect.

If

m

is

zero,

w

is

positive

and

the

value

of

the

internal

datum

is

zero,

the

output

field

consists

of

w

blank

characters.

Fortran

95

If

both

w

and

m

are

zero

and

the

value

of

the

internal

datum

is

zero,

the

output

field

consists

of

only

one

blank

character.

End

of

Fortran

95

If

the

nooldboz

suboption

of

the

-qxlf77

compiler

option

is

specified

(the

default),

asterisks

are

printed

when

the

output

field

width

is

not

sufficient

to

contain

the

entire

output.

On

input,

the

BN

and

BZ

edit

descriptors

affect

the

Z

edit

IBM

Extension

204

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

descriptor.

IBM

Extension

If

the

oldboz

suboption

of

the

-qxlf77

compiler

option

is

specified,

the

following

occurs

on

output:

v

Zw

is

treated

as

Zw.m,

with

m

assuming

the

value

that

is

the

minimum

of

w

and

the

number

of

digits

required

to

represent

the

maximum

possible

value

of

the

data

item.

v

The

output

consists

of

blanks

followed

by

at

least

m

digits.

These

are

the

rightmost

digits

of

the

number,

zero-filled

if

necessary,

until

there

are

m

digits.

If

the

number

is

too

large

to

fit

into

the

output

field,

only

the

rightmost

m

digits

are

output.

If

w

is

zero,

the

oldboz

suboption

will

be

ignored.

With

the

oldboz

suboption,

the

BN

and

BZ

edit

descriptors

do

not

affect

the

Z

edit

descriptor.

End

of

IBM

Extension

Examples

of

Z

Editing

on

Input

Input

Format

Value

0C

Z2

12

7FFF

Z4

32767

Examples

of

Z

Editing

on

Output

Value

Format

Output

Output

(with

-qxlf77=oldboz)

(with

-qxlf77=nooldboz)

-1

Z2

FF

**

12

Z4

000C

bbbC

Fortran

95

12

Z0

C

C

0

Z5.0

bbbbb

bbbbb

0

Z0.0

b

b

End

of

Fortran

95

Control

Edit

Descriptors

/

(Slash)

Editing

Forms:

v

/

v

r/

The

slash

edit

descriptor

indicates

the

end

of

data

transfer

on

the

current

record.

The

repeat

specifier

(r)

has

a

default

value

of

1.

When

you

connect

a

file

for

input

using

sequential

access,

each

slash

edit

descriptor

positions

the

file

at

the

beginning

of

the

next

record.

When

you

connect

a

file

for

output

using

sequential

access,

each

slash

edit

descriptor

creates

a

new

record

and

positions

the

file

to

write

at

the

start

of

the

new

record.

Input/Output

Formatting

205

When

you

connect

a

file

for

input

or

output

using

direct

access,

each

slash

edit

descriptor

increases

the

record

number

by

one,

and

positions

the

file

at

the

beginning

of

the

record

that

has

that

record

number.

IBM

Extension

When

you

connect

a

file

for

input

using

stream

access,

each

slash

edit

descriptor

positions

the

file

at

the

beginning

of

the

next

record,

skipping

the

remaining

portion

of

the

current

record.

On

output

to

a

file

connected

for

stream

access,

a

newly

created

empty

record

follows

the

current

record.

The

new

record

becomes

both

the

current

and

last

record

of

the

file,

with

the

file

position

coming

at

the

beginning

of

the

new

record.

End

of

IBM

Extension

Examples

of

Slash

Editing

on

Input

500

FORMAT(F6.2

/

2F6.2)

100

FORMAT(3/)

:

(Colon)

Editing

Form:

:

The

colon

edit

descriptor

terminates

format

control

if

no

more

items

are

in

the

input/output

list.

If

more

items

are

in

the

input/output

list

when

the

colon

is

encountered,

it

is

ignored.

See

“Interaction

between

Input/Output

Lists

and

Format

Specifications”

on

page

211

for

more

information.

Example

of

Colon

Editing

10

FORMAT(3(:’Array

Value’,F10.5)/)

$

(Dollar)

Editing

IBM

Extension

Form:

$

The

dollar

edit

descriptor

inhibits

an

end-of-record

for

a

sequential

or

formatted

stream

WRITE

statement.

Usually,

when

the

end

of

a

format

specification

is

reached,

data

transmission

of

the

current

record

ceases

and

the

file

is

positioned

so

that

the

next

input/output

operation

processes

a

new

record.

But,

if

a

dollar

sign

occurs

in

the

format

specification,

the

automatic

end-of-record

action

is

suppressed.

Subsequent

input/output

statements

can

continue

writing

to

the

same

record.

Example

of

Dollar

Editing

A

common

use

for

dollar

sign

editing

is

to

prompt

for

a

response

and

read

the

answer

from

the

same

line.

WRITE(*,FMT=’($,A)’)’Enter

your

age

’

READ(*,FMT=’(BN,I3)’)IAGE

WRITE(*,FMT=1000)

1000

FORMAT(’Enter

your

height:

’,$)

READ(*,FMT=’(F6.2)’)HEIGHT

End

of

IBM

Extension

206

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Apostrophe/Double

Quotation

Mark

Editing

(Character-String

Edit

Descriptor)

Forms:

v

’character

string’

v

"character

string"

The

apostrophe/double

quotation

mark

edit

descriptor

specifies

a

character

literal

constant

in

an

output

format

specification.

The

width

of

the

output

field

is

the

length

of

the

character

literal

constant.

See

“Character”

on

page

29

for

additional

information

on

character

literal

constants.

IBM

Extension

Notes:

1.

A

backslash

is

recognized,

by

default,

as

an

escape

sequence,

and

as

a

backslash

character

when

the

-qnoescape

compiler

option

is

specified.

See

escape

sequences

for

more

information.

2.

XL

Fortran

provides

support

for

multibyte

characters

within

character

constants,

Hollerith

constants,

character-string

edit

descriptors,

and

comments.

This

support

is

provided

through

the

-qmbcs

option.

Assignment

of

a

constant

containing

multibyte

characters

to

a

variable

that

is

not

large

enough

to

hold

the

entire

string

may

result

in

truncation

within

a

multibyte

character.

3.

Support

is

also

provided

for

Unicode

characters

and

filenames.

If

the

environment

variable

LANG

is

set

to

UNIVERSAL

and

the

-qmbcs

compiler

option

is

specified,

the

compiler

can

read

and

write

Unicode

characters

and

filenames.

End

of

IBM

Extension

Examples

of

Apostrophe/Double

Quotation

Mark

Editing

ITIME=8

WRITE(*,5)

ITIME

5

FORMAT(’The

value

is

--

’,I2)

!

The

value

is

--

8

WRITE(*,10)

ITIME

10

FORMAT(I2,’o’’clock’)

!

8o’clock

WRITE(*,’(I2,7Ho’’clock)’)

ITIME

!

8o’clock

WRITE(*,15)

ITIME

15

FORMAT("The

value

is

--

",I2)

!

The

value

is

--

8

WRITE(*,20)

ITIME

20

FORMAT(I2,"o’clock")

!

8o’clock

WRITE(*,’(I2,"o’’clock")’)

ITIME

!

8o’clock

BN

(Blank

Null)

and

BZ

(Blank

Zero)

Editing

Forms:

BN

BZ

The

BN

and

BZ

edit

descriptors

control

the

interpretation

of

nonleading

blanks

by

subsequently

processed

I,

F,

E,

EN,

ES,

D,

G,

B,

O,

Z,

and

extended

precision

Q

edit

descriptors.

BN

and

BZ

have

effect

only

on

input.

BN

specifies

that

blanks

in

numeric

input

fields

are

to

be

ignored,

and

remaining

characters

are

to

be

interpreted

as

though

they

were

right-justified.

A

field

of

all

blanks

has

a

value

of

zero.

Input/Output

Formatting

207

BZ

specifies

that

nonleading

blanks

in

numeric

input

fields

are

to

be

interpreted

as

zeros.

The

initial

setting

for

blank

interpretation

is

determined

by

the

BLANK=

specifier

of

the

OPEN

statement.

(See

“OPEN”

on

page

332.)

The

initial

setting

is

determined

as

follows:

v

If

BLANK=

is

not

specified,

blank

interpretation

is

the

same

as

if

BN

editing

were

specified.

v

If

BLANK=

is

specified,

blank

interpretation

is

the

same

as

if

BN

editing

were

specified

when

the

specifier

value

is

NULL,

or

the

same

as

if

BZ

editing

were

specified

when

the

specifier

value

is

ZERO.

The

initial

setting

for

blank

interpretation

takes

effect

at

the

start

of

a

formatted

READ

statement

and

stays

in

effect

until

a

BN

or

BZ

edit

descriptor

is

encountered

or

until

format

control

finishes.

Whenever

a

BN

or

BZ

edit

descriptor

is

encountered,

the

new

setting

stays

in

effect

until

another

BN

or

BZ

edit

descriptor

is

encountered,

or

until

format

control

terminates.

IBM

Extension

If

you

specify

the

oldboz

suboption

of

the

–qxlf77

compiler

option,

the

BN

and

BZ

edit

descriptors

do

not

affect

data

input

edited

with

the

B,

O,

or

Z

edit

descriptors.

Blanks

are

interpreted

as

zeros.

End

of

IBM

Extension

H

Editing

Form:

nH

str

The

H

edit

descriptor

specifies

a

character

string

(str)

and

its

length

(n)

in

an

output

format

specification.

The

string

can

consist

of

any

of

the

characters

allowed

in

a

character

literal

constant.

If

an

H

edit

descriptor

occurs

within

a

character

literal

constant,

the

constant

delimiter

character

(for

example,

apostrophe)

can

be

represented

within

str

if

two

such

characters

are

consecutive.

Otherwise,

another

delimiter

must

be

used.

The

H

edit

descriptor

must

not

be

used

on

input.

Notes:

IBM

Extension

1.

A

backslash

is

recognized,as

an

escape

character

by

default,

and

as

a

backslash

character

when

the

-qnoescape

compiler

option

is

specified.

See

page

30

for

more

information

on

escape

sequences.

2.

XL

Fortran

provides

support

for

multibyte

characters

within

character

constants,

Hollerith

constants,

character-string

edit

descriptors,

and

comments.

This

support

is

provided

through

the

-qmbcs

option.

Assignment

of

a

constant

containing

multibyte

characters

to

a

variable

that

is

not

large

enough

to

hold

the

entire

string

may

result

in

truncation

within

a

multibyte

character.

3.

Support

is

also

provided

for

Unicode

characters

and

filenames.

If

the

environment

variable

LANG

is

set

to

UNIVERSAL

and

the

-qmbcs

compiler

option

is

specified,

the

compiler

can

read

and

write

Unicode

characters

and

208

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

filenames.

End

of

IBM

Extension

Fortran

95

4.

Fortran

95

does

not

include

the

H

edit

descriptor,

although

it

was

part

of

both

FORTRAN

77

and

Fortran

90.

See

page

“Deleted

Features”

on

page

606

for

more

information.

End

of

Fortran

95

Examples

of

H

Editing

50

FORMAT(16HThe

value

is

--

,I2)

10

FORMAT(I2,7Ho’clock)

WRITE(*,’(I2,7Ho’’clock)’)

ITIME

P

(Scale

Factor)

Editing

Form:

kP

The

scale

factor,

k,

applies

to

all

subsequently

processed

F,

E,

EN,

ES,

D,

G,

and

extended

precision

Q

edit

descriptors

until

another

scale

factor

is

encountered

or

until

format

control

terminates.

The

value

of

k

is

zero

at

the

beginning

of

each

input/output

statement.

It

is

an

optionally

signed

integer

value

representing

a

power

of

ten.

On

input,

when

an

input

field

using

an

F,

E,

EN,

ES,

D,

G,

or

extended

precision

Q

edit

descriptor

contains

an

exponent,

the

scale

factor

is

ignored.

Otherwise,

the

internal

value

equals

the

external

value

multiplied

by

10(-k).

On

output:

v

In

F

editing,

the

external

value

equals

the

internal

value

multiplied

by

10k.

v

In

E,

D,

and

extended

precision

Q

editing,

the

external

decimal

field

is

multiplied

by

10k.

The

exponent

is

then

reduced

by

k.

v

In

G

editing,

fields

are

not

affected

by

the

scale

factor

unless

they

are

outside

the

range

that

can

use

F

editing.

If

the

use

of

E

editing

is

required,

the

scale

factor

has

the

same

effect

as

with

E

output

editing.

v

In

EN

and

ES

editing,

the

scale

factor

has

no

effect.

Examples

of

P

Editing

on

Input

Input

Format

Value

98.765

3P,F8.6

.98765E-1

98.765

-3P,F8.6

98765.

.98765E+2

3P,F10.5

.98765E+2

Examples

of

P

Editing

on

Output

Value

Format

Output

Output

(with

-qxlf77=noleadzero)

(with

-qxlf77=leadzero)

5.67

-3P,F7.2

bbbb.01

bbb0.01

12.34

-2P,F6.4

b.1234

0.1234

12.34

2P,E10.3

b12.34E+00

b12.34E+00

S,

SP,

and

SS

(Sign

Control)

Editing

Forms:

S

SP

Input/Output

Formatting

209

SS

The

S,

SP,

and

SS

edit

descriptors

control

the

output

of

plus

signs

by

all

subsequently

processed

I,

F,

E,

EN,

ES,

D,

G,

and

extended

precision

Q

edit

descriptors

until

another

S,

SP,

or

SS

edit

descriptor

is

encountered

or

until

format

control

terminates.

S

and

SS

specify

that

plus

signs

are

not

to

be

written.

(They

produce

identical

results.)

SP

specifies

that

plus

signs

are

to

be

written.

Examples

of

S,

SS,

and

SP

Editing

on

Output

Value

Format

Output

12.3456

S,F8.4

b12.3456

12.3456

SS,F8.4

b12.3456

12.3456

SP,F8.4

+12.3456

T,

TL,

TR,

and

X

(Positional)

Editing

Forms:

Tc

TLc

TRc

oX

The

T,

TL,

TR,

and

X

edit

descriptors

specify

the

position

where

the

transfer

of

the

next

character

to

or

from

a

record

starts.

The

T

and

TL

edit

descriptors

use

the

left

tab

limit

for

file

positioning.

Immediately

before

data

transfer

the

definition

of

the

left

tab

limit

is

the

character

position

of

the

current

record

or

the

current

position

of

the

stream

file.

The

T,

TL,

TR,

and

X

specify

the

character

position

as

follows:

v

For

Tc,

the

cth

character

position

of

the

record,

relative

to

the

left

tab

limit.

v

For

TLc,

c

characters

backward

from

the

current

position

unless

c

is

greater

than

the

difference

between

the

current

character

position

and

the

left

tab

limit.

Then,

transmission

of

the

next

character

to

or

from

the

record

occurs

at

the

left

tab

limit.

v

For

TRc,

c

characters

forward

from

the

current

position.

v

For

oX,

o

characters

forward

from

the

current

position.

The

TR

and

X

edit

descriptors

give

identical

results.

On

input,

a

TR

or

X

edit

descriptor

can

specify

a

position

beyond

the

last

character

of

the

record

if

no

characters

are

transferred

from

that

position.

On

output,

a

T,

TL,

TR,

or

X

edit

descriptor

does

not

by

itself

cause

characters

to

be

transferred.

If

characters

are

transferred

to

positions

at

or

after

the

position

specified

by

the

edit

descriptor,

positions

skipped

and

previously

unfilled

are

filled

with

blanks.

The

result

is

the

same

as

if

the

entire

record

were

initially

filled

with

blanks.

On

output,

a

T,

TL,

TR,

or

X

edit

descriptor

can

result

in

repositioning

so

that

subsequent

editing

with

other

edit

descriptors

causes

character

replacement.

IBM

Extension

The

X

edit

descriptor

can

be

specified

without

a

character

position.

It

is

treated

as

1X.

When

the

source

file

is

compiled

with

-qlanglvl=90std

or

-qlanglvl=95std,

this

210

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

extension

is

disabled

in

all

compile-time

format

specifications,

and

the

form

of

oX

is

enforced.

To

disable

this

extension

in

run-time

formats,

the

following

run-time

option

must

be

set:

XLFRTEOPTS="langlvl=90std"

or

"langlvl=95std"

;

export

XLFRTEOPTS

End

of

IBM

Extension

Examples

of

T,

TL,

and

X

Editing

on

Input

150

FORMAT(I4,T30,I4)

200

FORMAT(F6.2,5X,5(I4,TL4))

Examples

of

T,

TL,

TR,

and

X

Editing

on

Output

50

FORMAT(’Column

1’,5X,’Column

14’,TR2,’Column

25’)

100

FORMAT(’aaaaa’,TL2,’bbbbb’,5X,’ccccc’,T10,’ddddd’)

Interaction

between

Input/Output

Lists

and

Format

Specifications

The

beginning

of

format-directed

formatting

initiates

format

control.

Each

action

of

format

control

depends

on

the

next

edit

descriptor

contained

in

the

format

specification

and

on

the

next

item

in

the

input/output

list,

if

one

exists.

If

an

input/output

list

specifies

at

least

one

item,

at

least

one

data

edit

descriptor

must

exist

in

the

format

specification.

Note

that

an

empty

format

specification

(parentheses

only)

can

be

used

only

if

there

are

no

items

in

the

input/output

list

or

if

each

item

is

a

zero-sized

array.

If

this

is

the

case

and

advancing

input/output

is

in

effect,

one

input

record

is

skipped,

or

one

output

record

containing

no

characters

is

written.

For

nonadvancing

input/output,

the

file

position

is

left

unchanged.

A

format

specification

is

interpreted

from

left

to

right,

except

when

a

repeat

specification

(r)

is

present.

A

format

item

that

is

preceded

by

a

repeat

specification

is

processed

as

a

list

of

r

format

specifications

or

edit

descriptors

identical

to

the

format

specification

or

edit

descriptor

without

the

repeat

specification.

One

item

specified

by

the

input/output

list

corresponds

to

each

data

edit

descriptor.

A

list

item

of

type

complex

requires

the

interpretation

of

two

F,

E,

EN,

ES,

D,

G,

or

extended

precision

Q

edit

descriptors.

No

item

specified

by

the

input/output

list

corresponds

to

a

control

edit

descriptor

or

character

string

edit

descriptor.

Format

control

communicates

information

directly

with

the

record.

Format

control

operates

as

follows:

1.

If

a

data

edit

descriptor

is

encountered,

format

control

processes

an

input/output

list

item,

if

there

is

one,

or

terminates

the

input/output

command

if

the

list

is

empty.

If

the

list

item

processed

is

of

type

complex,

any

two

edit

descriptors

are

processed.

2.

The

colon

edit

descriptor

terminates

format

control

if

no

more

items

are

in

the

input/output

list.

If

more

items

are

in

the

input/output

list

when

the

colon

is

encountered,

it

is

ignored.

3.

If

the

end

of

the

format

specification

is

reached,

format

control

terminates

if

the

entire

input/output

list

has

been

processed,

or

control

reverts

to

the

beginning

of

the

format

item

terminated

by

the

last

preceding

right

parenthesis.

The

following

items

apply

when

the

latter

occurs:

v

The

reused

portion

of

the

format

specification

must

contain

at

least

one

data

edit

descriptor.

Input/Output

Formatting

211

v

If

reversion

is

to

a

parenthesis

that

is

preceded

by

a

repeat

specification,

the

repeat

specification

is

reused.

v

Reversion,

of

itself,

has

no

effect

on

the

scale

factor,

on

the

S,

SP,

or

SS

edit

descriptors,

or

on

the

BN

or

BZ

edit

descriptors.

v

If

format

control

reverts,

the

file

is

positioned

in

a

manner

identical

to

the

way

it

is

positioned

when

a

slash

edit

descriptor

is

processed.

IBM

Extension

During

a

read

operation,

any

unprocessed

characters

of

the

record

are

skipped

whenever

the

next

record

is

read.

A

comma

can

be

used

as

a

value

separator

for

noncharacter

data

in

an

input

record

processed

under

format-directed

formatting.

The

comma

will

override

the

format

width

specifications

when

the

comma

appears

before

the

end

of

the

field

width.

For

example,

the

format

(I10,F20.10,I4)

will

read

the

following

record

correctly:

-345,

.05E-3,

12

End

of

IBM

Extension

It

is

important

to

consider

the

maximum

size

record

allowed

on

the

input/output

medium

when

defining

a

Fortran

record

by

a

FORMAT

statement.

For

example,

if

a

Fortran

record

is

to

be

printed,

the

record

should

not

be

longer

than

the

printer’s

line

length.

List-Directed

Formatting

In

list-directed

formatting,

editing

is

controlled

by

the

types

and

lengths

of

the

data

being

read

or

written.

An

asterisk

format

identifier

specifies

list-directed

formatting.

For

example:

REAL

TOTAL1,

TOTAL2

PRINT

*,

TOTAL1,

TOTAL2

List-directed

formatting

can

only

be

used

with

sequential

and

stream

access.

The

characters

in

a

formatted

record

processed

under

list-directed

formatting

constitute

a

sequence

of

values

separated

by

value

separators:

v

A

value

has

the

form

of

a

constant

or

null

value.

v

A

value

separator

is

a

comma,

slash,

or

set

of

contiguous

blanks.

A

comma

or

slash

can

be

preceded

and

followed

by

one

or

more

blanks.

List-Directed

Input

Input

list

items

in

a

list-directed

READ

statement

are

defined

by

corresponding

values

in

records.

The

form

of

each

input

value

must

be

acceptable

for

the

type

of

the

input

list

item.

An

input

value

has

one

of

the

following

forms:

v

c

v

r

*

c

v

r

*

c

is

a

literal

constant

of

intrinsic

type

or

a

non-delimited

character

constant.

r

is

an

unsigned,

nonzero,

integer

literal

constant.

A

kind

type

parameter

must

not

be

specified

for

either

r

or

c.

The

constant

c

is

interpreted

as

though

it

had

the

same

kind

type

parameter

as

the

corresponding

list

item.

212

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

The

r

*

c

form

is

equivalent

to

r

successive

appearances

of

the

constant.

The

r

*

form

is

equivalent

to

r

successive

appearances

of

the

null

value.

A

null

value

is

represented

by

one

of

the

following:

v

Two

successive

commas,

with

zero

or

more

intervening

blanks

v

A

comma

followed

by

a

slash,

with

zero

or

more

intervening

blanks

v

An

initial

comma

in

the

record,

preceded

by

zero

or

more

blanks

IBM

Extension

Use

the

-qintlog

compiler

option

to

specify

integer

or

logical

values

for

input

items

of

either

integer

or

logical

type.

End

of

IBM

Extension

A

character

value

can

be

continued

in

as

many

records

as

required.

If

the

next

effective

item

is

of

type

character

and

the

following

are

true:

1.

The

character

constant

does

not

contain

the

value

separators

blank,

comma,

or

slash,

and

2.

The

character

constant

does

not

cross

a

record

boundary,

and

3.

The

first

nonblank

character

is

not

a

quotation

mark

or

apostrophe,

and

4.

The

leading

characters

are

not

numeric

followed

by

an

asterisk,

and

5.

The

character

constant

contains

at

least

one

character,

the

delimiting

apostrophes

or

quotation

marks

are

not

required.

If

the

delimiters

are

omitted,

the

character

constant

is

terminated

by

the

first

blank,

comma,

slash,

or

end-of-record,

and

apostrophes

and

double

quotation

marks

within

the

datum

are

not

to

be

doubled.

The

end

of

a

record:

v

Has

the

same

effect

as

a

blank

separator,

unless

the

blank

is

within

a

character

literal

constant

or

complex

literal

constant

v

Does

not

cause

insertion

of

a

blank

or

any

other

character

in

a

character

value

v

Must

not

separate

two

apostrophes

representing

an

apostrophe.

Two

or

more

consecutive

blanks

are

treated

as

a

single

blank

unless

the

blanks

are

within

a

character

value.

A

null

value

has

no

effect

on

the

definition

status

of

the

corresponding

input

list

item.

A

slash

indicates

the

end

of

the

input

list,

and

list-directed

formatting

is

terminated.

If

additional

items

remain

in

the

input

list

when

a

slash

is

encountered,

it

is

as

if

null

values

had

been

specified

for

those

items.

If

an

object

of

derived

type

occurs

in

an

input

list,

it

is

treated

as

if

all

the

structure

components

were

listed

in

the

same

order

as

in

the

definition

of

the

derived

type.

The

ultimate

components

of

the

derived

type

must

not

be

pointers

or

allocatables.

List-Directed

Output

List-directed

WRITE

and

PRINT

statements

produce

values

in

the

order

they

appear

in

an

output

list.

Values

are

written

in

a

form

that

is

valid

for

the

data

type

of

each

output

list

item.

Input/Output

Formatting

213

Except

for

complex

constants

and

character

constants,

the

end

of

a

record

must

not

occur

within

a

constant

and

blanks

must

not

appear

within

a

constant.

Integer

values

are

written

using

I

editing.

Real

values

are

written

using

E

or

F

editing.

(See

“E,

D,

and

Q

(Extended

Precision)

Editing”

or

“F

(Real

without

Exponent)

Editing”

for

more

information.)

Complex

constants

are

enclosed

in

parentheses

with

a

comma

separating

the

real

and

imaginary

parts,

each

produced

as

defined

above

for

real

constants.

The

end

of

a

record

can

occur

between

the

comma

and

the

imaginary

part

only

if

the

entire

constant

is

as

long

as

(or

longer

than)

an

entire

record.

The

only

embedded

blanks

permitted

within

a

complex

constant

are

one

blank

between

the

comma

and

the

end

of

a

record,

and

one

blank

at

the

beginning

of

the

next

record.

Logical

values

are

written

as

T

for

the

value

true

and

F

for

the

value

false.

Character

constants

produced

for

an

internal

file,

or

for

a

file

opened

without

a

DELIM=

specifier

or

with

a

DELIM=

specifier

with

a

value

of

NONE:

v

Are

not

delimited

by

apostrophes

or

quotation

marks,

v

Are

not

separated

from

each

other

by

value

separators,

v

Have

each

internal

apostrophe

or

double

quotation

mark

represented

externally

by

one

apostrophe

or

double

quotation

mark,

and

v

Have

a

blank

character

inserted

by

the

processor

for

carriage

control

at

the

beginning

of

any

record

that

begins

with

the

continuation

of

a

character

constant

from

the

preceding

record.

Undelimited

character

data

may

not

be

read

back

correctly

using

list-directed

input.

Character

constants

produced

for

a

file

opened

with

a

DELIM=

specifier

with

a

value

of

QUOTE

are

delimited

by

double

quotation

marks,

followed

by

a

value

separator,

and

have

each

internal

quote

represented

on

the

external

medium

by

two

contiguous

double

quotation

marks.

Character

constants

produced

for

a

file

opened

with

a

DELIM=

specifier

with

a

value

of

APOSTROPHE

are

delimited

by

apostrophes,

followed

by

a

value

separator,

and

have

each

internal

apostrophe

represented

on

the

external

medium

by

two

contiguous

apostrophes.

Slashes

(as

value

separators)

and

null

values

are

not

written.

Arrays

are

written

in

column-major

order.

You

can

specify

a

structure

in

an

output

list.

On

list-directed

output,

a

structure

is

treated

as

if

all

of

its

components

were

listed

in

the

same

order

as

they

are

defined

in

the

derived-type

definition.

The

ultimate

components

of

the

derived

type

must

not

be

pointers

or

allocatables.

IBM

Extension

The

following

table

shows

the

width

of

the

written

field

for

any

data

type

and

length.

The

size

of

the

record

will

be

the

sum

of

the

field

widths

plus

a

byte

to

separate

each

noncharacter

field.

214

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Table

13.

Width

of

Written

Field

Data

Type

Length

(bytes)

Maximum

Field

Width

(characters)

Fraction

(decimal

digits)

Precision/IEEE

(decimal

digits)

integer

1

2

4

8

4

6

11

20

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

real

4

8

16

17

26

43

10

18

35

7

15

31

complex

8

16

32

37

55

89

10

18

35

7

15

31

logical

1

2

4

8

1

1

1

1

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

character

n

n

n/a

n/a

End

of

IBM

Extension

Except

for

continuation

of

delimited

character

constants,

each

output

record

begins

with

a

blank

character

to

provide

carriage

control

when

the

record

is

printed.

Namelist

Formatting

In

Fortran

90,

namelist

formatting

can

only

be

used

with

sequential

access.

IBM

Extension

XL

Fortran

also

allows

namelist

formatting

to

be

used

with

internal

files

and

stream

access.

End

of

IBM

Extension

Namelist

Input

Data

The

form

of

input

for

namelist

input

is:

1.

Optional

blanks

2.

The

ampersand

(&)

character,

followed

immediately

by

the

namelist

group

name

specified

in

the

NAMELIST

statement

3.

One

or

more

blanks

4.

A

sequence

of

zero

or

more

name-value

subsequences,

separated

by

value

separators

5.

A

slash

to

terminate

the

namelist

input

Blanks

at

the

beginning

of

an

input

record

that

continues

a

delimited

character

constant

are

considered

part

of

the

constant.

IBM

Extension

If

the

NAMELIST

run-time

option

has

the

value

OLD,

input

for

a

NAMELIST

statement

consists

of:

Input/Output

Formatting

215

1.

Optional

blanks

2.

An

ampersand

(&)

or

dollar

sign

($),

followed

immediately

by

the

namelist

group

name

specified

in

the

NAMELIST

statement

3.

One

or

more

blanks

4.

A

sequence

of

zero

or

more

name-value

subsequences

separated

from

each

other

by

a

single

comma.

A

comma

may

be

specified

after

the

last

name-value

subsequence.

5.

&END

or

$END

to

signal

the

end

of

the

data

group

6.

The

first

character

of

each

input

record

must

be

blank,

including

those

records

that

continue

a

delimited

character

constant.

End

of

IBM

Extension

Fortran

95

In

Fortran

95,

comments

can

be

used

in

namelists.

Depending

on

whether

a

value

of

NEW

or

OLD

is

specified

for

the

NAMELIST

runtime

option,

different

rules

apply.

If

a

value

of

NEW

is

specified

for

the

NAMELIST

runtime

option,

the

rules

for

namelist

comments

are:

v

Except

within

a

character

literal

constant,

an

exclamation

point

(!)

after

a

value

separator,

except

a

slash,

or

in

the

first

nonblank

position

of

a

namelist

input

record

initiates

a

comment.

v

The

comment

extends

to

the

end

of

the

input

record,

and

can

contain

any

character

in

the

processor-dependent

character

set.

v

The

comment

is

ignored.

v

A

slash

within

a

namelist

comment

does

not

terminate

execution

of

the

namelist

input

statement.

End

of

Fortran

95

IBM

Extension

If

a

value

of

OLD

is

specified

for

the

NAMELIST

runtime

option,

the

rules

for

namelist

comments

are:

v

Except

within

a

character

literal

constant,

an

exclamation

point

(!)

after

a

single

comma

or

in

the

first

nonblank

position

of

a

namelist

input

record,

but

not

the

first

character

of

an

input

record,

initiates

a

comment.

v

The

comment

extends

to

the

end

of

the

input

record,

and

can

contain

any

character

in

the

processor-dependent

character

set.

v

The

comment

is

ignored.

v

A

&END

or

$END

within

a

namelist

comment

does

not

terminate

execution

of

the

namelist

input

statement.

End

of

IBM

Extension

Namelist

comments

are

not

allowed

in

stream

input.

216

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

The

form

of

a

name-value

subsequence

in

an

input

record

is:

name

is

a

variable

constant

has

the

following

forms:

r

is

an

unsigned,

nonzero,

scalar,

integer

literal

constant

specifying

the

number

of

times

the

literal_constant

is

to

occur.

r

cannot

specify

a

kind

type

parameter.

literal_constant

is

a

scalar

literal

constant

of

intrinsic

type

that

cannot

specify

a

kind

type

parameter,

or

it

is

a

null

value.

The

constant

is

treated

as

if

it

had

the

same

kind

type

parameter

as

the

corresponding

list

item.

If

literal_constant

is

of

type

character,

it

must

be

delimited

by

apostrophes

or

quotation

marks.

If

literal_constant

is

of

type

logical,

it

can

be

specified

as

T

or

F.

Any

subscripts,

strides,

and

substring

range

expressions

used

to

qualify

name

must

be

integer

literal

constants

with

no

kind

type

parameter

specified.

For

information

on

the

type

of

noncharacter

input

data,

see

“List-Directed

Input”

on

page

212.

If

name

is

neither

an

array

nor

an

object

of

derived

type,

constant_list

must

contain

only

a

single

constant.

Variable

names

specified

in

the

input

file

must

appear

in

the

namelist

list,

but

the

order

of

the

input

data

is

not

significant.

A

name

that

has

been

made

equivalent

to

name

cannot

be

substituted

for

that

name

in

the

namelist

list.

See

“NAMELIST”

on

page

330

for

details

on

what

can

appear

in

a

namelist

list.

You

can

use

one

or

more

optional

blanks

before

or

after

name,

but

name

must

not

contain

embedded

blanks.

In

each

name-value

subsequence,

the

name

must

be

the

name

of

a

namelist

group

item

with

an

optional

qualification.

The

name

with

the

optional

qualification

must

not

be

a

zero-sized

array,

zero-sized

array

section,

or

zero-length

character

string.

The

optional

qualification,

if

specified,

must

not

contain

a

vector

subscript.

If

name

is

an

array

or

array

section

without

vector

subscripts,

it

is

expanded

into

a

list

of

all

the

elements

of

the

array,

in

the

order

that

they

are

stored.

If

name

is

a

structure,

it

is

expanded

into

a

list

of

ultimate

components

of

intrinsic

type,

in

the

order

specified

in

the

derived-type

definition.

The

ultimate

components

of

the

derived

type

can

not

be

pointers

or

allocatables.

��

name

=

constant_list

��

��

r

*

literal_constant

��

Input/Output

Formatting

217

If

name

is

an

array

or

structure,

the

number

of

constants

in

constant_list

must

be

less

than

or

equal

to

the

number

of

items

specified

by

the

expansion

of

name.

If

the

number

of

constants

is

less

than

the

number

of

items,

the

remaining

items

retain

their

former

values.

A

null

value

is

specified

by:

v

The

r*

form

v

Blanks

between

two

consecutive

value

separators

following

an

equal

sign

v

Zero

or

more

blanks

preceding

the

first

value

separator

and

following

an

equal

sign

v

Two

consecutive

nonblank

value

separators

A

null

value

has

no

effect

on

the

definition

status

of

the

corresponding

input

list

item.

If

the

namelist

group

object

list

item

is

defined,

it

retains

its

previous

value;

if

it

is

undefined,

it

remains

undefined.

A

null

value

must

not

be

used

as

either

the

real

or

imaginary

part

of

a

complex

constant,

but

a

single

null

value

can

represent

an

entire

complex

constant.

The

end

of

a

record

following

a

value

separator,

with

or

without

intervening

blanks,

does

not

specify

a

null

value.

IBM

Extension

When

the

LANGLVL

run-time

option

is

set

to

EXTENDED,

XL

Fortran

allows

multiple

input

values

to

be

specified

in

conjunction

with

a

single

array

element.

The

array

element

cannot

specify

subobject

designators.

When

this

occurs,

the

values

are

assigned

to

successive

elements

of

the

array,

in

array

element

order.

For

example,

suppose

that

array

A

is

declared

as

follows:

INTEGER

A(100)

NAMELIST

/FOO/

A

READ

(5,

FOO)

and

that

the

following

input

appears

in

unit

5:

&FOO

A(3)

=

2,

10,

15,

16

/

During

execution

of

the

READ

statement,

the

value

2

is

assigned

to

A(3),

10

is

assigned

to

A(4),

15

is

assigned

to

A(5),

and

16

is

assigned

to

A(6).

If

multiple

values

are

specified

in

conjunction

with

a

single

array

element,

any

logical

constant

must

be

specified

with

a

leading

period

(for

example,

.T).

If

the

NAMELIST

run-time

option

is

specified

with

the

value

OLD,

the

BLANK=

specifier

determines

how

embedded

and

trailing

blanks

between

noncharacter

constants

are

treated.

If

the

-qmixed

compiler

option

is

specified,

the

namelist

group

name

and

list

item

names

are

treated

in

a

case-sensitive

manner.

End

of

IBM

Extension

A

slash

encountered

as

a

value

separator

during

the

execution

of

a

namelist

input

statement

causes

termination

of

execution

of

that

input

statement

after

assignment

218

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

of

the

previous

value.

If

there

are

additional

items

in

the

namelist

group

object

being

transferred,

the

effect

is

as

if

null

values

had

been

supplied

for

them.

Example

of

Namelist

Input

Data

File

NMLEXP

contains

the

following

data

before

the

READ

statement

is

executed:

Character

position:

1

2

3

1...+....0....+....0....+....0

File

contents:

&NAME1

I=5,

SMITH%P_AGE=40

/

The

above

file

contains

four

data

records.

The

program

contains

the

following:

TYPE

PERSON

INTEGER

P_AGE

CHARACTER(20)

P_NAME

END

TYPE

PERSON

TYPE(PERSON)

SMITH

NAMELIST

/NAME1/

I,J,K,SMITH

I=1

J=2

K=3

SMITH=PERSON(20,’John

Smith’)

OPEN(7,FILE=’NMLEXP’)

READ(7,NML=NAME1)

!

Only

the

value

of

I

and

P_AGE

in

SMITH

are

!

altered

(I

=

5,

SMITH%P_AGE

=

40).

!

J,

K

and

P_NAME

in

SMITH

remain

the

same.

END

Note:

In

the

previous

example,

the

data

items

appear

in

separate

data

records.

The

following

example

is

a

file

with

the

same

data

items,

but

they

are

in

one

data

record:

Character

position:

1

2

3

4

1...+....0....+....0....+....0....+....0

File

contents:

&NAME1

I=

5,

SMITH%P_AGE=40

/

Fortran

95

An

example

of

a

NAMELIST

comment

when

NAMELIST=NEW

is

specified

and

the

NAMELIST

comment

appears

after

the

value

separator

space.

&TODAY

I=12345

!

This

is

a

comment.

/

X(1)=12345,

X(3:4)=2*1.5,

I=6,

P="!ISN’T_BOB’S",

Z=(123,0)/

End

of

Fortran

95

Input/Output

Formatting

219

IBM

Extension

An

example

of

a

NAMELIST

comment

when

NAMELIST=OLD

is

specified

and

the

NAMELIST

comment

appears

after

a

comma

separator.

&TODAY

I=12345,

!

This

is

a

comment.

X(1)=12345,

X(3:4)=2*1.5,

I=6,

P="!ISN’T_BOB’S",

Z=(123,0)

&END

End

of

IBM

Extension

Namelist

Output

Data

When

output

data

is

written

using

a

namelist

list,

it

is

written

in

a

form

that

can

be

read

using

a

namelist

list

(except

for

character

data

that

is

not

delimited).

All

variables

specified

in

the

namelist

list

and

their

values

are

written

out,

each

according

to

its

type.

Character

data

is

delimited

as

specified

by

the

DELIM=

specifier.

The

fields

for

the

data

are

made

large

enough

to

contain

all

the

significant

digits.

(See

Table

13

on

page

215

for

information

on

the

fields.)

The

values

of

a

complete

array

are

written

out

in

column-major

order.

IBM

Extension

A

WRITE

statement

with

a

namelist

list

produces

a

minimum

of

three

output

records:

one

record

containing

the

namelist

name,

followed

by

one

or

more

records

containing

output

data

items,

and

a

final

record

containing

the

slash

(/)

end

marker.

An

internal

file

meant

to

receive

namelist

output

must

be

a

character

array

containing

at

least

three

elements.

More

than

three

array

elements

may

be

required,

depending

on

the

amount

of

data

transferred

in

the

WRITE

statement.

You

cannot

use

one

long

character

variable,

even

if

it

is

large

enough

to

hold

all

of

the

data.

If

the

length

of

the

array

element

to

hold

the

data

is

not

sufficient,

it

will

be

necessary

to

specify

an

array

with

more

than

three

array

elements.

End

of

IBM

Extension

If

the

NAMELIST

run-time

option

is

not

specified

or

if

NAMELIST=NEW,

the

namelist

group

name

and

namelist

item

names

are

output

in

uppercase.

IBM

Extension

If

NAMELIST=OLD

is

specified,

the

namelist

group

name

and

namelist

item

names

are

output

in

lower

case.

If

the

-qmixed

compiler

option

is

specified,

the

name

is

case

sensitive,

regardless

of

the

value

of

the

NAMELIST

run-time

option.

If

NAMELIST=OLD

is

specified,

the

end

of

the

output

record

will

be

signaled

by

&end.

If

the

NAMELIST

run-time

option

is

specified

with

the

value

OLD

and

the

DELIM=

specifier

is

not

specified,

character

data

is

delimited

by

apostrophes.

Non-delimited

character

strings

will

be

delimited

by

apostrophes

and

will

be

separated

from

each

other

by

commas.

Also,

blanks

will

not

be

added

to

the

beginning

of

a

record

that

starts

with

the

continuation

of

a

character

string

from

the

previous

record.

End

of

IBM

Extension

220

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Character

constants

produced

for

a

file

opened

without

a

DELIM=

specifier

or

with

a

DELIM=

specifier

with

a

value

of

NONE:

v

Are

not

delimited

by

apostrophes

or

quotation

marks,

v

Are

not

separated

from

each

other

by

value

separators,

v

Have

each

internal

apostrophe

or

quotation

mark

represented

externally

by

one

apostrophe

or

quotation

mark,

and

v

Have

a

blank

character

inserted

by

the

processor

for

carriage

control

at

the

beginning

of

any

record

that

begins

with

the

continuation

of

a

character

constant

from

the

preceding

record.

Nondelimited

character

data

that

has

been

written

out

cannot

be

read

as

character

data.

IBM

Extension

For

internal

files,

character

constants

are

written

with

a

value

of

APOSTROPHE

for

the

DELIM=

specifier.

End

of

IBM

Extension

Character

constants

produced

for

a

file

opened

with

a

DELIM=

specifier

with

a

value

of

QUOTE

are

delimited

by

double

quotation

marks,

are

preceded

and

followed

by

a

value

separator,

and

have

each

internal

quotation

mark

represented

on

the

external

medium

by

two

contiguous

quotation

marks.

Character

constants

produced

for

a

file

opened

with

a

DELIM=

specifier

with

a

value

of

APOSTROPHE

are

delimited

by

apostrophes,

are

preceded

and

followed

by

a

value

separator,

and

have

each

internal

apostrophe

represented

on

the

external

medium

by

two

contiguous

apostrophes.

IBM

Extension

To

restrict

namelist

output

records

to

a

given

width,

specify

the

RECL=

specifier

(in

the

OPEN

statement)

or

the

NLWIDTH

run-time

option.

See

the

User’s

Guide

for

information

on

the

NLWIDTH

run-time

option.

End

of

IBM

Extension

Except

for

continuation

of

delimited

character

constants,

each

output

record

begins

with

a

blank

character

to

provide

carriage

control

when

the

record

is

printed.

IBM

Extension

For

external

files,

by

default,

all

of

the

output

items

appear

in

a

single

output

record

wide

enough

to

contain

them.

To

have

the

record

output

on

separate

lines,

use

the

RECL=

specifier

(in

the

OPEN

statement)

or

the

NLWIDTH

run-time

option.

End

of

IBM

Extension

For

information

on

the

type

of

noncharacter

output

data,

see

“List-Directed

Output”

on

page

213.

Input/Output

Formatting

221

Example

of

Namelist

Output

Data

TYPE

PERSON

INTEGER

P_AGE

CHARACTER(20)

P_NAME

END

TYPE

PERSON

TYPE(PERSON)

SMITH

NAMELIST

/NL1/

I,J,C,SMITH

CHARACTER(5)

::

C=’BACON’

INTEGER

I,J

I=12046

J=12047

SMITH=PERSON(20,’John

Smith’)

WRITE(6,NL1)

END

After

execution

of

the

WRITE

statement

with

NAMELIST=NEW,

the

output

data

is:

1

2

3

4

1...+....0....+....0....+....0....+....0

&NL1

I=12046,

J=12047,

C=BACON,

SMITH=20,

John

Smith

/

IBM

Extension

After

execution

of

the

WRITE

statement

with

NAMELIST=OLD,

the

output

data

is:

1

2

3

4

1...+....0....+....0....+....0....+....0

&nl1

i=12046,

j=12047,

c=’BACON’,

smith=20,

’John

Smith

’

&end

End

of

IBM

Extension

222

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Statements

and

Attributes

This

section

provides

an

alphabetical

reference

to

all

XL

Fortran

statements.

The

section

for

each

statement

is

organized

to

help

you

readily

access

the

syntax

and

rules,

and

points

to

the

structure

and

uses

of

the

statement

in

The

XL

Fortran

Language.

The

following

table

lists

the

statements,

and

shows

which

ones

are

executable,

which

ones

are

specification_part

statements,

and

which

ones

can

be

used

as

the

terminal

statement

of

a

DO

or

DO

WHILE

construct.

Notes:

1.

IBM

Extension.

2.

Fortran

95.

Table

14.

Statements

Table

Statement

Name

Executable

Statement

Specification

Statement

Terminal

Statement

ALLOCATABLE

X

ALLOCATE

X

X

ASSIGN

X

X

AUTOMATIC

�1�

X

BACKSPACE

X

X

BLOCK

DATA

BYTE

�1�

X

CALL

X

X

CASE

X

CHARACTER

X

CLOSE

X

X

COMMON

X

COMPLEX

X

CONTAINS

CONTINUE

X

X

CYCLE

X

DATA

X

DEALLOCATE

X

X

Derived

Type

DIMENSION

X

DO

X

DO

WHILE

X

DOUBLE

COMPLEX

�1�

X

DOUBLE

PRECISION

X

ELSE

X

©

Copyright

IBM

Corp.

1990,

2003

223

Table

14.

Statements

Table

(continued)

Statement

Name

Executable

Statement

Specification

Statement

Terminal

Statement

ELSE

IF

X

ELSEWHERE

X

END

X

END

BLOCK

DATA

END

DO

X

X

END

IF

X

END

FORALL

�2�

X

END

FUNCTION

X

END

INTERFACE

X

END

MAP

�1�

X

END

MODULE

END

PROGRAM

X

END

SELECT

X

END

SUBROUTINE

X

END

STRUCTURE

�1�

X

END

TYPE

X

END

UNION

�1�

X

END

WHERE

X

ENDFILE

X

X

ENTRY

X

EQUIVALENCE

X

EXIT

X

EXTERNAL

X

FORALL

�2�

X

X

FORMAT

X

FUNCTION

GO

TO

(Assigned)

X

GO

TO

(Computed)

X

X

GO

TO

(Unconditional)

X

IF

(Block)

X

IF

(Arithmetic)

X

IF

(Logical)

X

X

IMPLICIT

X

INQUIRE

X

X

INTEGER

X

INTENT

X

INTERFACE

X

INTRINSIC

X

224

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Table

14.

Statements

Table

(continued)

Statement

Name

Executable

Statement

Specification

Statement

Terminal

Statement

LOGICAL

X

MAP

�1�

X

MODULE

MODULE

PROCEDURE

X

NAMELIST

X

NULLIFY

X

X

OPEN

X

X

OPTIONAL

X

PARAMETER

X

PAUSE

X

X

POINTER

(Fortran

90)

X

POINTER

(integer)

�1�

X

PRINT

X

X

PRIVATE

X

PROGRAM

PROTECTED

�1�

X

PUBLIC

X

READ

X

X

REAL

X

RECORD

X

RETURN

X

REWIND

X

X

SAVE

X

SELECT

CASE

X

SEQUENCE

X

Statement

Function

X

STATIC

�1�

X

STOP

X

SUBROUTINE

STRUCTURE

�1�

X

TARGET

X

TYPE

X

Type

Declaration

X

UNION

�1�

X

USE

X

VALUE

�1�

X

VIRTUAL

�1�

X

Statements

and

Attributes

225

Table

14.

Statements

Table

(continued)

Statement

Name

Executable

Statement

Specification

Statement

Terminal

Statement

VOLATILE

�1�

X

WHERE

X

X

WRITE

X

X

Assignment

and

pointer

assignment

statements

are

discussed

in

“Expressions

and

Assignment”

on

page

85.

Both

statements

are

executable

and

can

serve

as

terminal

statements.

Attributes

Each

attribute

has

a

corresponding

attribute

specification

statement,

and

the

syntax

diagram

provided

for

the

attribute

illustrates

this

form.

An

entity

can

also

acquire

this

attribute

from

a

type

declaration

statement

or,

in

some

cases,

through

a

default

setting.

For

example,

entity

A,

said

to

have

the

PRIVATE

attribute,

could

have

acquired

the

attribute

in

any

of

the

following

ways:

REAL,

PRIVATE

::

A

!

Type

declaration

statement

PRIVATE

::

A

!

Attribute

specification

statement

MODULE

X

PRIVATE

!

Default

setting

REAL

::

A

END

MODULE

ALLOCATABLE

Purpose

The

ALLOCATABLE

attribute

declares

allocatable

objects—

that

is,

objects

whose

space

is

dynamically

allocated

by

execution

of

an

ALLOCATE

statement

or

by

a

derived-type

assignment

statement.

If

it

is

an

array,

it

will

be

a

deferred-shape

array.

Syntax

object_name

is

the

name

of

an

allocatable

object

deferred_shape_spec

is

a

colon(:),

where

each

colon

represents

a

dimension

��

ALLOCATABLE

::

�

�

�

,

object_name

(

deferred_shape_spec_list

)

��

226

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Rules

The

object

cannot

be

a

pointee.

If

the

object

is

an

array

and

it

is

specified

elsewhere

in

the

scoping

unit

with

the

DIMENSION

attribute,

the

array

specification

must

be

a

deferred_shape_spec.

Table

15.

Attributes

Compatible

with

the

ALLOCATABLE

Attribute

v

AUTOMATIC

v

DIMENSION

v

INTENT

v

OPTIONAL

v

PRIVATE

v

PROTECTED

v

PUBLIC

v

SAVE

v

STATIC

v

TARGET

v

VOLATILE

Examples

REAL,

ALLOCATABLE

::

A(:,:)

!

Two-dimensional

array

A

declared

!

but

no

space

yet

allocated

READ

(5,*)

I,J

ALLOCATE

(A(I,J))

END

Related

Information

v

“Allocatable

Arrays”

on

page

71

v

“ALLOCATED(ARRAY)

or

ALLOCATED(SCALAR)”

on

page

432

v

“ALLOCATE”

v

“DEALLOCATE”

on

page

260

v

“Allocation

Status”

on

page

61

v

“Deferred-Shape

Arrays”

on

page

70

v

“Allocatable

Objects

as

Dummy

Arguments”

on

page

162

v

“Allocatable

Components”

on

page

41

ALLOCATE

Purpose

The

ALLOCATE

statement

dynamically

provides

storage

for

pointer

targets

and

allocatable

objects.

Syntax

stat_variable

is

a

scalar

integer

variable

allocation

��

ALLOCATE

(

allocation_list

)

,

STAT

=

stat_variable

��

ALLOCATABLE

Statements

and

Attributes

227

allocate_object

is

a

variable

name

or

structure

component.

It

must

be

a

pointer

or

an

allocatable

object.

lower_bound,

upper_bound

are

each

scalar

integer

expressions

Rules

Execution

of

an

ALLOCATE

statement

for

a

pointer

causes

the

pointer

to

become

associated

with

the

target

allocated.

For

an

allocatable

object,

the

object

becomes

definable.

The

number

of

dimensions

specified

(i.e.,

the

number

of

upper

bounds

in

allocation)

must

be

equal

to

the

rank

of

allocate_object.

When

an

ALLOCATE

statement

is

executed

for

an

array,

the

values

of

the

bounds

are

determined

at

that

time.

Subsequent

redefinition

or

undefinition

of

any

entities

in

the

bound

expressions

does

not

affect

the

array

specification.

Any

lower

bound,

if

omitted,

is

assigned

a

default

value

of

1.

If

any

lower

bound

value

exceeds

the

corresponding

upper

bound

value,

that

dimension

has

an

extent

of

0

and

allocate_object

is

zero-sized.

Any

allocate_object

or

a

specified

bound

of

an

allocate_object

does

not

depend

on

the

value

of

stat_variable,

or

on

the

value,

bounds,

allocation

status,

or

association

status

of

any

allocate_object

in

the

same

ALLOCATE

statement.

stat_variable

shall

not

be

allocated

within

the

ALLOCATE

statement

in

which

it

appears;

nor

shall

it

depend

on

the

value,

bounds,

allocation

status,

or

association

status

of

any

allocate_object

in

the

same

ALLOCATE

statement.

If

the

STAT=

specifier

is

not

present

and

an

error

condition

occurs

during

execution

of

the

statement,

the

program

terminates.

If

the

STAT=

specifier

is

present,

the

stat_variable

is

assigned

one

of

the

following

values:

IBM

Extension

Stat

value

Error

condition

0

No

error

1

Error

in

system

routine

attempting

to

do

allocation

2

An

invalid

data

object

has

been

specified

for

allocation

3

Both

error

conditions

1

and

2

have

occurred

End

of

IBM

Extension

Allocating

an

allocatable

object

that

is

already

allocated

causes

an

error

condition

in

the

ALLOCATE

statement.

��

�

allocate_object

,

(

upper_bound

)

lower_bound

:

��

ALLOCATE

228

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Pointer

allocation

creates

an

object

that

has

the

TARGET

attribute.

Additional

pointers

can

be

associated

with

this

target

(or

a

subobject

of

it)

through

pointer

assignment.

If

you

reallocate

a

pointer

that

is

already

associated

with

a

target:

v

A

new

target

is

created

and

the

pointer

becomes

associated

with

this

target

v

Any

previous

association

with

the

pointer

is

broken

v

Any

previous

target

that

had

been

created

by

allocation

and

is

not

associated

with

any

other

pointers

becomes

inaccessible

When

an

object

of

derived

type

is

created

by

an

ALLOCATE

statement,

any

allocatable

ultimate

components

have

an

allocation

status

of

not

currently

allocated.

Use

the

ALLOCATED

intrinsic

function

to

determine

if

an

allocatable

object

is

currently

allocated.

Use

the

ASSOCIATED

intrinsic

function

to

determine

the

association

status

of

a

pointer

or

whether

a

pointer

is

currently

associated

with

a

specified

target.

Examples

CHARACTER,

POINTER

::

P(:,:)

CHARACTER,

TARGET

::

C(4,4)

INTEGER,

ALLOCATABLE,

DIMENSION(:)

::

A

P

=>

C

N

=

2;

M

=

N

ALLOCATE

(P(N,M),STAT=I)

!

P

is

no

longer

associated

with

C

N

=

3

!

Target

array

for

P

maintains

2X2

shape

IF

(.NOT.ALLOCATED(A))

ALLOCATE

(A(N**2))

END

Related

Information

v

“ALLOCATABLE”

on

page

226

v

“DEALLOCATE”

on

page

260

v

“Allocation

Status”

on

page

61

v

“Pointer

Association”

on

page

133

v

“Deferred-Shape

Arrays”

on

page

70

v

“ALLOCATED(ARRAY)

or

ALLOCATED(SCALAR)”

on

page

432

v

“ASSOCIATED(POINTER,

TARGET)”

on

page

435

v

“Allocatable

Objects

as

Dummy

Arguments”

on

page

162

v

“Allocatable

Components”

on

page

41

ASSIGN

Purpose

The

ASSIGN

statement

assigns

a

statement

label

to

an

integer

variable.

Syntax

��

ASSIGN

stmt_label

TO

variable_name

��

ALLOCATE

Statements

and

Attributes

229

stmt_label

specifies

the

statement

label

of

an

executable

statement

or

a

FORMAT

statement

in

the

scoping

unit

containing

the

ASSIGN

statement

variable_name

is

the

name

of

a

scalar

INTEGER(4)

or

INTEGER(8)

variable

Rules

A

statement

containing

the

designated

statement

label

must

appear

in

the

same

scoping

unit

as

the

ASSIGN

statement.

v

If

the

statement

containing

the

statement

label

is

an

executable

statement,

you

can

use

the

label

name

in

an

assigned

GO

TO

statement

that

is

in

the

same

scoping

unit.

v

If

the

statement

containing

the

statement

label

is

a

FORMAT

statement,

you

can

use

the

label

name

as

the

format

specifier

in

a

READ,

WRITE,

or

PRINT

statement

that

is

in

the

same

scoping

unit.

You

can

redefine

an

integer

variable

defined

with

a

statement

label

value

with

the

same

or

different

statement

label

value

or

an

integer

value.

However,

you

must

define

the

variable

with

a

statement

label

value

before

you

reference

it

in

an

assigned

GO

TO

statement

or

as

a

format

identifier

in

an

input/output

statement.

The

value

of

variable_name

is

not

the

integer

constant

represented

by

the

label

itself,

and

you

cannot

use

it

as

such.

Fortran

95

The

ASSIGN

statement

has

been

deleted

from

Fortran

95.

End

of

Fortran

95

Examples

ASSIGN

30

TO

LABEL

NUM

=

40

GO

TO

LABEL

NUM

=

50

!

This

statement

is

not

executed

30

ASSIGN

1000

TO

IFMT

PRINT

IFMT,

NUM

!

IFMT

is

the

format

specifier

1000

FORMAT(1X,I4)

END

Related

Information

v

“Statement

Labels”

on

page

11

v

“GO

TO

(Assigned)”

on

page

301

v

“Deleted

Features”

on

page

606

AUTOMATIC

IBM

Extension

Purpose

The

AUTOMATIC

attribute

specifies

that

a

variable

has

a

storage

class

of

automatic;

that

is,

the

variable

is

not

defined

once

the

procedure

ends.

ASSIGN

230

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Syntax

automatic

is

a

variable

name

or

an

array

declarator

with

an

explicit-shape

specification

list

or

a

deferred-shape

specification

list

Rules

If

automatic

is

a

function

result

it

must

not

be

of

type

character

or

of

derived

type.

Function

results

that

are

pointers

or

arrays,

dummy

arguments,

statement

functions,

automatic

objects,

or

pointees

must

not

have

the

AUTOMATIC

attribute.

A

variable

with

the

AUTOMATIC

attribute

cannot

be

defined

in

the

scoping

unit

of

a

module.

A

variable

that

is

explicitly

declared

with

the

AUTOMATIC

attribute

cannot

be

a

common

block

item.

A

variable

must

not

have

the

AUTOMATIC

attribute

specified

more

than

once

in

the

same

scoping

unit.

Any

variable

declared

as

AUTOMATIC

within

the

scope

of

a

thread’s

work

will

be

local

to

that

thread.

A

variable

with

the

AUTOMATIC

attribute

cannot

be

initialized

by

a

DATA

statement

or

a

type

declaration

statement.

If

automatic

is

a

pointer,

the

AUTOMATIC

attribute

applies

to

the

pointer

itself,

not

to

any

target

that

is

(or

may

become)

associated

with

the

pointer.

Note:

An

object

with

the

AUTOMATIC

attribute

should

not

be

confused

with

an

automatic

object.

See

“Automatic

Objects”

on

page

22.

Attributes

Compatible

with

the

AUTOMATIC

Attribute

v

ALLOCATABLE

v

DIMENSION

v

POINTER

v

TARGET

v

VOLATILE

Examples

CALL

SUB

CONTAINS

SUBROUTINE

SUB

INTEGER,

AUTOMATIC

::

VAR

VAR

=

12

END

SUBROUTINE

!

VAR

becomes

undefined

END

��

AUTOMATIC

automatic_list

::

��

AUTOMATIC

Statements

and

Attributes

231

Related

Information

v

“Storage

Classes

for

Variables”

on

page

62

v

-qinitauto

Option

in

the

User’s

Guide

End

of

IBM

Extension

BACKSPACE

Purpose

The

BACKSPACE

statement

positions

an

external

file

connected

for

sequential

or

formatted

stream

access.

Syntax

u

is

an

external

unit

identifier.

The

value

of

u

must

not

be

an

asterisk

or

a

Hollerith

constant.

position_list

is

a

list

that

must

contain

one

unit

specifier

([UNIT=]u)

and

can

also

contain

one

of

each

of

the

other

valid

specifiers:

[UNIT=]

u

is

a

unit

specifier

in

which

u

must

be

an

external

unit

identifier

whose

value

is

not

an

asterisk.

An

external

unit

identifier

refers

to

an

external

file

that

is

represented

by

a

scalar

integer

expression,

whose

value

is

in

the

range

1

through

2147483647.

If

the

optional

characters

UNIT=

are

omitted,

u

must

be

the

first

item

in

position_list.

IOSTAT=

ios

is

an

input/output

status

specifier

that

specifies

the

status

of

the

input/output

operation.

ios

is

a

scalar

variable

of

type

INTEGER(4)

or

default

integer.

When

the

BACKSPACE

statement

finishes

executing,

ios

is

defined

with:

v

A

zero

value

if

no

error

condition

occurs

v

A

positive

value

if

an

error

occurs.

ERR=

stmt_label

is

an

error

specifier

that

specifies

the

statement

label

of

an

executable

statement

in

the

same

scoping

unit

to

which

control

is

to

transfer

in

the

case

of

an

error.

Coding

the

ERR=

specifier

suppresses

error

messages.

Rules

After

the

execution

of

a

BACKSPACE

statement,

the

file

position

is

before

the

current

record

if

a

current

record

exists.

If

there

is

no

current

record,

the

file

position

is

before

the

preceding

record.

If

the

file

is

at

its

initial

point,

file

position

remains

unchanged.

��

BACKSPACE

u

(

position_list

)

��

AUTOMATIC

232

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

You

cannot

backspace

over

records

that

were

written

using

list-directed

or

namelist

formatting.

For

sequential

access,

if

the

preceding

record

is

the

endfile

record,

the

file

is

positioned

before

the

endfile

record.

If

the

ERR=

and

IOSTAT=

specifiers

are

set

and

an

error

is

encountered,

transfer

is

made

to

the

statement

specified

by

the

ERR=

specifier

and

a

positive

integer

value

is

assigned

to

ios.

IBM

Extension

If

IOSTAT=

and

ERR=

are

not

specified,

v

The

program

stops

if

a

severe

error

is

encountered.

v

The

program

continues

to

the

next

statement

if

a

recoverable

error

is

encountered

and

the

ERR_RECOVERY

run-time

option

is

set

to

YES.

If

the

option

is

set

to

NO,

the

program

stops.

End

of

IBM

Extension

Examples

BACKSPACE

15

BACKSPACE

(UNIT=15,ERR=99)

...

99

PRINT

*,

"Unable

to

backspace

file."

END

Related

Information

v

“Conditions

and

IOSTAT

Values”

on

page

181

v

“Understanding

XL

Fortran

Input/Output”

on

page

173

v

Setting

Run-time

Options

in

the

User’s

Guide

BLOCK

DATA

Purpose

A

BLOCK

DATA

statement

is

the

first

statement

in

a

block

data

program

unit,

which

provides

initial

values

for

variables

in

named

common

blocks.

Syntax

block_data_name

is

the

name

of

a

block

data

program

unit

Rules

You

can

have

more

than

one

block

data

program

unit

in

an

executable

program,

but

only

one

can

be

unnamed.

��

BLOCK

DATA

block_data_name

��

BACKSPACE

Statements

and

Attributes

233

The

name

of

the

block

data

program

unit,

if

given,

must

not

be

the

same

as

an

external

subprogram,

entry,

main

program,

module,

or

common

block

in

the

executable

program.

It

also

must

not

be

the

same

as

a

local

entity

in

this

program

unit.

Examples

BLOCK

DATA

ABC

PARAMETER

(I=10)

DIMENSION

Y(5)

COMMON

/L4/

Y

DATA

Y

/5*I/

END

BLOCK

DATA

ABC

Related

Information

v

“Block

Data

Program

Unit”

on

page

149

v

“END”

on

page

276

for

details

on

the

END

BLOCK

DATA

statement

BYTE

IBM

Extension

Purpose

The

BYTE

type

declaration

statement

specifies

the

attributes

of

objects

and

functions

of

type

byte.

Each

scalar

object

has

a

length

of

1.

Initial

values

can

be

assigned

to

objects.

Syntax

where:

attr_spec

ALLOCATABLE

AUTOMATIC

DIMENSION

(array_spec)

EXTERNAL

INTENT

(intent_spec)

INTRINSIC

OPTIONAL

PARAMETER

POINTER

PRIVATE

PUBLIC

SAVE

STATIC

TARGET

VOLATILE

��

BYTE

entity_decl_list

::

,

attr_spec_list

::

��

BLOCK

DATA

234

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

attr_spec

For

detailed

information

on

rules

about

a

particular

attribute,

refer

to

the

statement

of

the

same

name.

intent_spec

is

either

IN,

OUT,

or

INOUT

::

is

the

double

colon

separator.

Use

the

double

colon

separator

when

you

specify

attributes,

=initialization_expr,

or

=>

NULL().

array_spec

is

a

list

of

dimension

bounds

entity_decl

a

is

an

object

name

or

function

name.

array_spec

cannot

be

specified

for

a

function

with

an

implicit

interface.

initial_value

provides

an

initial

value

for

the

entity

specified

by

the

immediately

preceding

name

initialization_expr

provides

an

initial

value,

by

means

of

an

initialization

expression,

for

the

entity

specified

by

the

immediately

preceding

name

=>

NULL()

provides

the

initial

value

for

the

pointer

object

Rules

Within

the

context

of

a

derived

type

definition:

v

If

=>

appears

in

a

component

initialization,

the

POINTER

attribute

must

appear

in

the

attr_spec_list.

v

If

=

appears

in

a

component

initialization,

the

POINTER

attribute

cannot

appear

in

the

component

attr_spec_list.

v

The

compiler

will

evaluate

initialization_expr

within

the

scoping

unit

of

the

type

definition.

If

=>

appears

for

a

variable,

the

object

must

have

the

POINTER

attribute.

If

initialization_expr

appears

for

a

variable,

the

object

cannot

have

the

POINTER

attribute.

Entities

in

type

declaration

statements

are

constrained

by

the

rules

of

any

attributes

specified

for

the

entities,

as

detailed

in

the

corresponding

attribute

statements.

The

type

declaration

statement

overrides

the

implicit

type

rules

in

effect.

You

can

use

a

type

declaration

statement

that

confirms

the

type

of

an

intrinsic

function.

The

��

a

(

array_spec

)

/

initial_value_list

/

=

initialization_expr

=>

NULL()

��

BYTE

(IBM

Extension)

Statements

and

Attributes

235

appearance

of

a

generic

or

specific

intrinsic

function

name

in

a

type

declaration

statement

does

not

cause

the

name

to

lose

its

intrinsic

property.

An

object

cannot

be

initialized

in

a

type

declaration

statement

if

it

is

a

dummy

argument,

an

allocatable

object,

a

function

result,

an

object

in

blank

common,

an

integer

pointer,

an

external

name,

an

intrinsic

name,

or

an

automatic

object.

Nor

can

an

object

be

initialized

if

it

has

the

AUTOMATIC

attribute.

The

object

may

be

initialized

if

it

appears

in

a

named

common

block

in

a

block

data

program

unit

or

if

it

appears

in

a

named

common

block

in

a

module.

In

Fortran

95,

a

pointer

can

be

initialized.

Pointers

can

only

be

initialized

by

the

use

of

=>

NULL().

The

specification

expression

of

an

array_spec

can

be

a

nonconstant

expression

if

the

specification

expression

appears

in

an

interface

body

or

in

the

specification

part

of

a

subprogram.

Any

object

being

declared

that

uses

this

nonconstant

expression

and

is

not

a

dummy

argument

or

a

pointee

is

called

an

automatic

object.

An

attribute

cannot

be

repeated

in

a

given

type

declaration

statement,

nor

can

an

entity

be

explicitly

given

the

same

attribute

more

than

once

in

a

scoping

unit.

initialization_expr

must

be

specified

if

the

statement

contains

the

PARAMETER

attribute.

If

initialization_expr

or

NULL()

is

specified,

and

the

entity

you

are

declaring:

v

is

a

variable,

the

variable

is

initially

defined.

Fortran

95

v

is

a

derived

type

component,

the

derived

type

has

default

initialization.

End

of

Fortran

95

a

becomes

defined

with

the

value

determined

by

initialization_expr,

in

accordance

with

the

rules

for

intrinsic

assignment.

If

the

entity

is

an

array,

its

shape

must

be

specified

either

in

the

type

declaration

statement

or

in

a

previous

specification

statement

in

the

same

scoping

unit.

A

variable

or

variable

subobject

cannot

be

initialized

more

than

once.

If

a

is

a

variable,

the

presence

of

initialization_expr

or

NULL()

implies

that

a

is

a

saved

object,

except

for

an

object

in

a

named

common

block.

The

initialization

of

an

object

could

affect

the

fundamental

storage

class

of

an

object.

An

array_spec

specified

in

the

entity_decl

takes

precedence

over

the

array_spec

in

the

DIMENSION

attribute.

An

array

function

result

that

does

not

have

the

ALLOCATABLE

or

POINTER

attribute

must

have

an

explicit-shape

array

specification.

If

the

entity

declared

is

a

function,

it

must

not

have

an

accessible

explicit

interface

unless

it

is

an

intrinsic

function.

If

T

or

F,

defined

previously

as

the

name

of

a

constant,

appears

in

a

type

declaration

statement,

it

is

no

longer

an

abbreviated

logical

constant

but

the

name

of

the

named

constant.

BYTE

(IBM

Extension)

236

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Examples

BYTE,

DIMENSION(4)

::

X=(/1,2,3,4/)

Related

Information

v

“BYTE”

on

page

32

v

“Initialization

Expressions”

on

page

87

v

“How

Type

Is

Determined”

on

page

57,

for

details

on

the

implicit

typing

rules

v

“Automatic

Objects”

on

page

22

v

“Storage

Classes

for

Variables”

on

page

62

v

“DATA”

on

page

256,

for

details

on

initial

values

End

of

IBM

Extension

CALL

Purpose

The

CALL

statement

invokes

a

subroutine

to

be

executed.

Syntax

name

is

the

name

of

an

internal,

external,

or

module

subroutine,

an

entry

in

an

external

or

module

subroutine,

an

intrinsic

subroutine,

or

a

generic

name.

Rules

Executing

a

CALL

statement

results

in

the

following

order

of

events:

1.

Actual

arguments

that

are

expressions

are

evaluated.

2.

Actual

arguments

are

associated

with

their

corresponding

dummy

arguments.

3.

Control

transfers

to

the

specified

subroutine.

4.

The

subroutine

is

executed.

5.

Control

returns

from

the

subroutine.

A

subprogram

can

call

itself

recursively,

directly

or

indirectly,

if

the

subroutine

statement

specifies

the

RECURSIVE

keyword.

IBM

Extension

An

external

subprogram

can

also

refer

to

itself

directly

or

indirectly

if

the

-qrecur

compiler

option

is

specified.

End

of

IBM

Extension

If

a

CALL

statement

includes

one

or

more

alternate

return

specifiers

among

its

arguments,

control

may

be

transferred

to

one

of

the

statement

labels

indicated,

��

CALL

name

(

)

actual_argument_spec_list

��

BYTE

(IBM

Extension)

Statements

and

Attributes

237

depending

on

the

action

specified

by

the

subroutine

in

the

RETURN

statement.

IBM

Extension

The

argument

list

built-in

functions

%VAL

and

%REF

are

supplied

to

aid

interlanguage

calls

by

allowing

arguments

to

be

passed

by

value

and

by

reference,

respectively.

They

can

only

be

specified

in

non-Fortran

procedure

references.

The

VALUE

attribute

also

allows

you

to

pass

arguments

by

value.

End

of

IBM

Extension

Examples

INTERFACE

SUBROUTINE

SUB3(D1,D2)

REAL

D1,D2

END

SUBROUTINE

END

INTERFACE

ARG1=7

;

ARG2=8

CALL

SUB3(D2=ARG2,D1=ARG1)

!

subroutine

call

with

argument

keywords

END

SUBROUTINE

SUB3(F1,F2)

REAL

F1,F2,F3,F4

F3

=

F1/F2

F4

=

F1-F2

PRINT

*,

F3,

F4

END

SUBROUTINE

Related

Information

v

“Recursion”

on

page

166

v

“%VAL

and

%REF”

on

page

157

v

“Actual

Argument

Specification”

on

page

153

v

“Asterisks

as

Dummy

Arguments”

on

page

164

CASE

Purpose

The

CASE

statement

initiates

a

CASE

statement

block

in

a

CASE

construct,

which

has

a

concise

syntax

for

selecting,

at

most,

one

of

a

number

of

statement

blocks

for

execution.

Syntax

case_selector

��

CASE

case_selector

case_construct_name

��

CALL

238

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

case_construct_name

Is

a

name

that

identifies

the

CASE

construct.

case_value

is

a

scalar

initialization

expression

of

type

integer,

character,

or

logical

low_case_value,

high_case_value

are

each

scalar

initialization

expressions

of

type

integer,

character,

or

logical

Rules

The

case

index,

determined

by

the

SELECT

CASE

statement,

is

compared

to

each

case_selector

in

a

CASE

statement.

When

a

match

occurs,

the

stmt_block

associated

with

that

CASE

statement

is

executed.

If

no

match

occurs,

no

stmt_block

is

executed.

No

two

case

value

ranges

can

overlap.

A

match

is

determined

as

follows:

case_value

DATA

TYPE:

integer,

character

or

logical

MATCH

for

integer

and

character:

case

index

=

case_value

MATCH

for

logical:

case

index

.EQV.

case_value

is

true

low_case_value

:

high_case_value

DATA

TYPE:

integer

or

character

MATCH:

low_case_value

≤

case

index

≤

high_case_value

low_case_value

:

DATA

TYPE:

integer

or

character

MATCH:

low_case_value

≤

case

index

:

high_case_value

DATA

TYPE:

integer

or

character

MATCH:

case

index

≤

high_case_value

DEFAULT

DATA

TYPE:

not

applicable

MATCH:

if

no

other

match

occurs.

There

must

be

only

one

match.

If

there

is

a

match,

the

statement

block

associated

with

the

matched

case_selector

is

executed,

completing

execution

of

the

case

construct.

If

there

is

no

match,

execution

of

the

case

construct

is

complete.

��

�

DEFAULT

,

(

case_value

)

low_case_value

:

high_case_value

low_case_value

:

:

high_case_value

��

CASE

Statements

and

Attributes

239

If

the

case_construct_name

is

specified,

it

must

match

the

name

specified

on

the

SELECT

CASE

and

END

SELECT

statements.

DEFAULT

is

the

default

case_selector.

Only

one

of

the

CASE

statements

may

have

DEFAULT

as

the

case_selector.

Each

case

value

must

be

of

the

same

data

type

as

the

case_expr,

as

defined

in

the

SELECT

CASE

statement.

If

any

typeless

constants

or

BYTE

named

constants

are

encountered

in

the

case_selectors,

they

are

converted

to

the

data

type

of

the

case_expr.

When

the

case_expr

and

the

case

values

are

of

type

character,

they

can

have

different

lengths.

If

you

specify

the

-qctyplss

compiler

option,

a

character

constant

expression

used

as

the

case_expr

remains

as

type

character.

The

character

constant

expression

will

not

be

treated

as

a

typeless

constant.

Examples

ZERO:

SELECT

CASE(N)

CASE

DEFAULT

ZERO

!

Default

CASE

statement

for

!

CASE

construct

ZERO

OTHER:

SELECT

CASE(N)

CASE(:-1)

!

CASE

statement

for

CASE

!

construct

OTHER

SIGNUM

=

-1

CASE(1:)

OTHER

SIGNUM

=

1

END

SELECT

OTHER

CASE

(0)

SIGNUM

=

0

END

SELECT

ZERO

Related

Information

v

“CASE

Construct”

on

page

119

v

“SELECT

CASE”

on

page

366

v

“END

(Construct)”

on

page

277,

for

details

on

the

END

SELECT

statement

CHARACTER

Purpose

A

CHARACTER

type

declaration

statement

specifies

the

kind,

length,

and

attributes

of

objects

and

functions

of

type

character.

Initial

values

can

be

assigned

to

objects.

Syntax

��

CHARACTER

char_selector

::

,

attr_spec_list

::

�

�

entity_decl_list

��

CASE

240

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

where:

attr_spec

ALLOCATABLE

AUTOMATIC

DIMENSION

(array_spec)

EXTERNAL

INTENT

(intent_spec)

INTRINSIC

OPTIONAL

PARAMETER

POINTER

PRIVATE

PUBLIC

SAVE

STATIC

TARGET

VOLATILE

char_selector

specifies

the

character

length.

IBM

Extension

This

is

the

number

of

characters

between

0

and

256

MB.

Values

exceeding

256

MB

are

set

to

256

MB,

while

negative

values

result

in

a

length

of

zero.

If

not

specified,

the

default

length

is

1.

The

kind

type

parameter,

if

specified,

must

be

1,

which

specifies

the

ASCII

character

representation.

End

of

IBM

Extension

type_param_value

is

a

specification

expression

or

an

asterisk

(*)

int_init_expr

is

a

scalar

integer

initialization

expression

that

must

evaluate

to

1

char_length

is

either

a

scalar

integer

literal

constant

(which

cannot

specify

a

kind

type

parameter)

or

a

type_param_value

enclosed

in

parentheses

attr_spec

For

detailed

information

on

rules

about

a

particular

attribute,

refer

to

the

statement

of

the

same

name.

��

(

LEN

=

type_param_value

,

KIND

=

int_init_expr

)

type_param_value

,

int_init_expr

KIND

=

KIND

=

int_init_expr

,

LEN

=

type_param_value

type_param_value

LEN

=

*

char_length

,

��

CHARACTER

Statements

and

Attributes

241

intent_spec

is

either

IN,

OUT,

or

INOUT

::

is

the

double

colon

separator.

Use

the

double

colon

separator

when

you

specify

attributes,

=initialization_expr,

or

=>

NULL()

.

array_spec

is

a

list

of

dimension

bounds.

entity_decl

a

is

an

object

name

or

function

name.

array_spec

cannot

be

specified

for

a

function

with

an

implicit

interface.

IBM

Extension

initial_value

provides

an

initial

value

for

the

entity

specified

by

the

immediately

preceding

name

End

of

IBM

Extension

initialization_expr

provides

an

initial

value,

by

means

of

an

initialization

expression,

for

the

entity

specified

by

the

immediately

preceding

name

Fortran

95

=>

NULL()

provides

the

initial

value

for

the

pointer

object

End

of

Fortran

95

Rules

Fortran

95

Within

the

context

of

a

derived

type

definition:

v

If

=>

appears

in

a

component

initialization,

the

POINTER

attribute

must

appear

in

the

attr_spec_list.

��

a

*

char_length

(

array_spec

)

(

array_spec

)

*

char_length

�

�

(1)

/

initial_value_list

/

=

initialization_expr

(2)

=>

NULL()

��

Notes:

1 IBM

Extension

2 Fortran

95

CHARACTER

242

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

v

If

=

appears

in

a

component

initialization,

the

POINTER

attribute

cannot

appear

in

the

component

attr_spec_list.

v

The

compiler

will

evaluate

initialization_expr

within

the

scoping

unit

of

the

type

definition.

If

=>

appears

for

a

variable,

the

object

must

have

the

POINTER

attribute.

End

of

Fortran

95

If

initialization_expr

appears

for

a

variable,

the

object

cannot

have

the

POINTER

attribute.

Entities

in

type

declaration

statements

are

constrained

by

the

rules

of

any

attributes

specified

for

the

entities,

as

detailed

in

the

corresponding

attribute

statements.

The

type

declaration

statement

overrides

the

implicit

type

rules

in

effect.

You

can

use

a

type

declaration

statement

that

confirms

the

type

of

an

intrinsic

function.

The

appearance

of

a

generic

or

specific

intrinsic

function

name

in

a

type

declaration

statement

does

not

cause

the

name

to

lose

its

intrinsic

property.

An

object

must

not

be

initially

defined

in

a

type

declaration

statement

if

it

is

a

dummy

argument,

an

allocatable

object,

a

pointer,

a

function

result,

an

object

in

blank

common,

an

integer

pointer,

an

external

name,

an

intrinsic

name,

or

an

automatic

object.

Nor

can

an

object

be

initialized

if

it

has

the

AUTOMATIC

attribute.

The

object

may

be

initialized

if:

v

it

appears

in

a

named

common

block

in

a

block

data

program

unit.

IBM

Extension

v

if

it

appears

in

a

named

common

block

in

a

module.

End

of

IBM

Extension

Fortran

95

In

Fortran

95,

a

pointer

can

be

initialized.

Pointers

can

only

be

initialized

by

the

use

of

=>

NULL().

End

of

Fortran

95

The

specification

expression

of

a

type_param_value

or

an

array_spec

can

be

a

nonconstant

expression

if

the

specification

expression

appears

in

an

interface

body

or

in

the

specification

part

of

a

subprogram.

Any

object

being

declared

that

uses

this

nonconstant

expression

and

is

not

a

dummy

argument

or

a

pointee

is

called

an

automatic

object.

An

attribute

cannot

be

repeated

in

a

given

type

declaration

statement,

nor

can

an

entity

be

explicitly

given

the

same

attribute

more

than

once

in

a

scoping

unit.

initialization_expr

must

be

specified

if

the

statement

contains

the

PARAMETER

attribute.

If

initialization_expr

or

NULL()

is

specified,

and

the

entity

you

are

declaring:

CHARACTER

Statements

and

Attributes

243

v

is

a

variable,

the

variable

is

initially

defined.

Fortran

95

v

is

a

derived

type

component,

the

derived

type

has

default

initialization.

End

of

Fortran

95

a

becomes

defined

with

the

value

determined

by

initialization_expr,

in

accordance

with

the

rules

for

intrinsic

assignment.

If

the

entity

is

an

array,

its

shape

must

be

specified

either

in

the

type

declaration

statement

or

in

a

previous

specification

statement

in

the

same

scoping

unit.

A

variable

or

variable

subobject

cannot

be

initialized

more

than

once.

If

a

is

a

variable,

the

presence

of

initialization_expr

or

NULL()

implies

that

a

is

a

saved

object,

except

for

an

object

in

a

named

common

block.

The

initialization

of

an

object

could

affect

the

fundamental

storage

class

of

an

object.

An

array_spec

specified

in

an

entity_decl

takes

precedence

over

the

array_spec

in

the

DIMENSION

attribute.

A

char_length

specified

in

an

entity_decl

takes

precedence

over

any

length

specified

in

char_selector.

An

array

function

result

that

does

not

have

the

POINTER

attribute

must

have

an

explicit-shape

array

specification.

If

the

entity

declared

is

a

function,

it

must

not

have

an

accessible

explicit

interface

unless

it

is

an

intrinsic

function.

IBM

Extension

If

T

or

F,

defined

previously

as

the

name

of

a

constant,

appears

in

a

type

declaration

statement,

it

is

no

longer

an

abbreviated

logical

constant

but

the

name

of

the

named

constant.

End

of

IBM

Extension

The

optional

comma

after

char_length

in

a

CHARACTER

type

declaration

statement

is

permitted

only

if

no

double

colon

separator

(::)

appears

in

the

statement.

If

the

CHARACTER

type

declaration

statement

is

in

the

scope

of

a

module,

block

data

program

unit,

or

main

program,

and

you

specify

the

length

of

the

entity

as

an

inherited

length,

the

entity

must

be

the

name

of

a

named

character

constant.

The

character

constant

assumes

the

length

of

its

corresponding

expression

defined

by

the

PARAMETER

attribute.

If

the

CHARACTER

type

declaration

statement

is

in

the

scope

of

a

procedure

and

the

length

of

the

entity

is

inherited,

the

entity

name

must

be

the

name

of

a

dummy

argument

or

a

named

character

constant.

If

the

statement

is

in

the

scope

of

an

external

function,

it

can

also

be

the

function

or

entry

name

in

a

FUNCTION

or

ENTRY

statement

in

the

same

program

unit.

If

the

entity

name

is

the

name

of

a

dummy

argument,

the

dummy

argument

assumes

the

length

of

the

associated

actual

argument

for

each

reference

to

the

procedure.

If

the

entity

name

is

the

name

of

a

character

constant,

the

character

constant

assumes

the

length

of

its

CHARACTER

244

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

corresponding

expression

defined

by

the

PARAMETER

attribute.

If

the

entity

name

is

a

function

or

entry

name,

the

entity

assumes

the

length

specified

in

the

calling

scoping

unit.

The

length

of

a

character

function

is

either

a

specification

expression

(which

must

be

a

constant

expression

if

the

function

type

is

not

declared

in

an

interface

block)

or

it

is

an

asterisk,

indicating

the

length

of

a

dummy

procedure

name.

The

length

cannot

be

an

asterisk

if

the

function

is

an

internal

or

module

function,

if

it

is

recursive,

or

if

it

returns

array

or

pointer

values.

Examples

CHARACTER(KIND=1,LEN=6)

APPLES

/’APPLES’/

CHARACTER(7),

TARGET

::

ORANGES

=

’ORANGES’

I=7

CALL

TEST(APPLES,I)

CONTAINS

SUBROUTINE

TEST(VARBL,I)

CHARACTER*(*),

OPTIONAL

::

VARBL

!

VARBL

inherits

a

length

of

6

CHARACTER(I)

::

RUNTIME

!

Automatic

object

with

length

of

7

END

SUBROUTINE

END

Related

Information

v

“Character”

on

page

29

v

“Initialization

Expressions”

on

page

87

v

“How

Type

Is

Determined”

on

page

57

for

details

on

the

implicit

typing

rules

v

“Array

Declarators”

on

page

67

v

“Automatic

Objects”

on

page

22

v

“Storage

Classes

for

Variables”

on

page

62

v

“DATA”

on

page

256,

for

details

on

initial

values

v

-qcharlen

Option

in

the

User’s

Guide

CLOSE

Purpose

The

CLOSE

statement

disconnects

an

external

file

from

a

unit.

Syntax

close_list

is

a

list

that

must

contain

one

unit

specifier

(UNIT=u)

and

can

also

contain

one

of

each

of

the

other

valid

specifiers.

The

valid

specifiers

are:

[UNIT=]

u

is

a

unit

specifier

in

which

u

must

be

an

external

unit

identifier

whose

value

is

not

an

asterisk.

An

external

unit

identifier

refers

to

an

external

file

that

is

represented

by

a

scalar

integer

expression,

whose

value

is

in

the

range

1

through

2147483647.

If

the

optional

characters

UNIT=

are

omitted,

u

must

be

the

first

item

in

close_list.

��

CLOSE

(

close_list

)

��

CHARACTER

Statements

and

Attributes

245

IOSTAT=

ios

is

an

input/output

status

specifier

that

specifies

the

status

of

the

input/output

operation.

ios

is

a

scalar

variable

of

type

INTEGER(4)

or

default

integer.

When

the

input/output

statement

containing

this

specifier

finishes

executing,

ios

is

defined

with:

v

A

zero

value

if

no

error

condition

occurs

v

A

positive

value

if

an

error

occurs.

ERR=

stmt_label

is

an

error

specifier

that

specifies

the

statement

label

of

an

executable

statement

in

the

same

scoping

unit

to

which

control

is

to

transfer

in

the

case

of

an

error.

Coding

the

ERR=

specifier

suppresses

error

messages.

STATUS=

char_expr

specifies

the

status

of

the

file

after

it

is

closed.

char_expr

is

a

scalar

character

expression

whose

value,

when

any

trailing

blanks

are

removed,

is

either

KEEP

or

DELETE.

v

If

KEEP

is

specified

for

a

file

that

exists,

the

file

will

continue

to

exist

after

the

CLOSE

statement.

If

KEEP

is

specified

for

a

file

that

does

not

exist,

the

file

will

not

exist

after

the

CLOSE

statement.

KEEP

must

not

be

specified

for

a

file

whose

status

prior

to

executing

the

CLOSE

statement

is

SCRATCH.

v

If

DELETE

is

specified,

the

file

will

not

exist

after

the

CLOSE

statement.

The

default

is

DELETE

if

the

file

status

is

SCRATCH;

otherwise,

the

default

is

KEEP.

Rules

A

CLOSE

statement

that

refers

to

a

unit

can

occur

in

any

program

unit

of

an

executable

program

and

need

not

occur

in

the

same

scoping

unit

as

the

OPEN

statement

referring

to

that

unit.

You

can

specify

a

unit

that

does

not

exist

or

has

no

file

connected;

the

CLOSE

statement

has

no

effect

in

this

case.

Unit

0

cannot

be

closed.

When

an

executable

program

stops

for

reasons

other

than

an

error

condition,

all

units

that

are

connected

are

closed.

Each

unit

is

closed

with

the

status

KEEP

unless

the

file

status

prior

to

completion

was

SCRATCH,

in

which

case

the

unit

is

closed

with

the

status

DELETE.

The

effect

is

as

though

a

CLOSE

statement

without

a

STATUS=

specifier

were

executed

on

each

connected

unit.

If

a

preconnected

unit

is

disconnected

by

a

CLOSE

statement,

the

rules

of

implicit

opening

apply

if

the

unit

is

later

specified

in

a

WRITE

statement

(without

having

been

explicitly

opened).

Examples

CLOSE(15)

CLOSE(UNIT=16,STATUS=’DELETE’)

Related

Information

v

“Units”

on

page

176

v

“Conditions

and

IOSTAT

Values”

on

page

181

v

“OPEN”

on

page

332

CLOSE

246

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

COMMON

Purpose

The

COMMON

statement

specifies

common

blocks

and

their

contents.

A

common

block

is

a

storage

area

that

two

or

more

scoping

units

can

share,

allowing

them

to

define

and

reference

the

same

data

and

to

share

storage

units.

Syntax

object

Rules

object

cannot

refer

to

a

dummy

argument,

automatic

object,

allocatable

object

,

an

object

of

a

derived

type

that

has

an

allocatable

ultimate

component,

pointee,

function,

function

result,

or

entry

to

a

procedure.

object

cannot

have

the

STATIC

or

AUTOMATIC

attributes.

If

an

explicit_shape_spec_list

is

present,

variable_name

must

not

have

the

POINTER

attribute.

Each

dimension

bound

must

be

a

constant

specification

expression.

This

form

specifies

that

variable_name

has

the

DIMENSION

attribute.

If

object

is

of

derived

type,

it

must

be

a

sequence

derived

type.

Given

a

sequenced

structure

where

all

the

ultimate

components

are

nonpointers,

and

are

all

of

character

type

or

all

of

type

default

integer,

default

real,

default

complex,

default

logical

or

double

precision

real,

the

structure

is

treated

as

if

its

components

are

enumerated

directly

in

the

common

block.

A

pointer

object

in

a

common

block

can

only

be

storage

associated

with

pointers

of

the

same

type,

type

parameters,

and

rank.

An

object

in

a

common

block

with

TARGET

attribute

can

be

storage

associated

with

another

object.

That

object

must

have

the

TARGET

attribute

and

have

the

same

type

and

type

parameters.

��

COMMON

object_list

/

/

common_block_name

�

�

�

/

/

object_list

,

common_block_name

��

��

variable_name

(

explicit_shape_spec_list

)

��

COMMON

Statements

and

Attributes

247

IBM

Extension

Pointers

of

type

BYTE

can

be

storage

associated

with

pointers

of

type

INTEGER(1)

and

LOGICAL(1).

Integer

and

logical

pointers

of

the

same

length

can

be

storage

associated

if

you

specify

the

-qintlog

compiler

option.

End

of

IBM

Extension

If

you

specify

common_block_name,

all

variables

specified

in

the

object_list

that

follows

are

declared

to

be

in

that

named

common

block.

If

you

omit

common_block_name,

all

variables

that

you

specify

in

the

object_list

that

follows

are

in

the

blank

common

block.

Within

a

scoping

unit,

a

common

block

name

can

appear

more

than

once

in

the

same

or

in

different

COMMON

statements.

Each

successive

appearance

of

the

same

common

block

name

continues

the

common

block

specified

by

that

name.

Common

block

names

are

global

entities.

The

variables

in

a

common

block

can

have

different

data

types.

You

can

mix

character

and

noncharacter

data

types

within

the

same

common

block.

Variable

names

in

common

blocks

can

appear

in

only

one

COMMON

statement

in

a

scoping

unit,

and

you

cannot

duplicate

them

within

the

same

COMMON

statement.

Common

Association

Within

an

executable

program,

all

nonzero-sized

named

common

blocks

with

the

same

name

have

the

same

first

storage

unit.

There

can

be

one

blank

common

block,

and

all

scoping

units

that

refer

to

nonzero-sized

blank

common

refer

to

the

same

first

storage

unit.

All

zero-sized

common

blocks

with

the

same

name

are

storage-associated

with

one

another.

All

zero-sized

blank

common

blocks

are

associated

with

one

another

and

with

the

first

storage

unit

of

any

nonzero-sized

blank

common

blocks.

Use

association

or

host

association

can

cause

these

associated

objects

to

be

accessible

in

the

same

scoping

unit.

Because

association

is

by

storage

unit,

variables

in

a

common

block

can

have

different

names

and

types

in

different

scoping

units.

Common

Block

Storage

Sequence:

Storage

units

for

variables

within

a

common

block

in

a

scoping

unit

are

assigned

in

the

order

that

their

names

appear

within

the

COMMON

statement.

You

can

extend

a

common

block

by

using

an

EQUIVALENCE

statement,

but

only

by

adding

beyond

the

last

entry,

not

before

the

first

entry.

For

example,

these

statements

specify

X:

COMMON

/X/

A,B

!

common

block

named

X

REAL

C(2)

EQUIVALENCE

(B,C)

The

contents

of

common

block

X

are

as

follows:

|

|

|

|

|

|

|

|

|

|

|

|

|

Variable

A:

|

A

|

Variable

B:

|

B

|

Array

C:

|

C(1)

|

C(2)

|

COMMON

248

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Only

COMMON

and

EQUIVALENCE

statements

that

appear

in

a

scoping

unit

contribute

to

the

common

block

storage

sequences

formed

in

that

unit,

not

including

variables

in

common

made

accessible

by

use

association

or

host

association.

An

EQUIVALENCE

statement

cannot

cause

the

storage

sequences

of

two

different

common

blocks

to

become

associated.

While

a

common

block

can

be

declared

in

the

scoping

unit

of

a

module,

it

must

not

be

declared

in

another

scoping

unit

that

accesses

entities

from

the

module

through

use

association.

Use

of

COMMON

can

lead

to

misaligned

data.

Any

use

of

misaligned

data

can

adversely

affect

the

performance

of

the

program.

Size

of

a

Common

Block:

The

size

of

a

common

block

is

equal

to

the

number

of

bytes

of

storage

needed

to

hold

all

the

variables

in

the

common

block,

including

any

extensions

resulting

from

equivalence

association.

Differences

Between

Named

and

Blank

Common

Blocks:

v

Within

an

executable

program,

there

can

be

more

than

one

named

common

block,

but

only

one

blank

common

block.

v

In

all

scoping

units

of

an

executable

program,

named

common

blocks

of

the

same

name

must

have

the

same

size,

but

blank

common

blocks

can

have

different

sizes.

(If

you

specify

blank

common

blocks

with

different

sizes

in

different

scoping

units,

the

length

of

the

longest

block

becomes

the

length

of

the

blank

common

block

in

the

executable

program.)

v

You

can

initially

define

objects

in

a

named

common

block

by

using

a

BLOCK

DATA

program

unit

containing

a

DATA

statement

or

a

type

declaration

statement.

You

cannot

initially

define

any

elements

of

a

common

block

in

a

blank

common

block.

If

a

named

common

block,

or

any

part

of

it,

is

initialized

in

more

than

one

scoping

unit,

the

initial

value

is

undefined.

To

avoid

this

problem,

use

block

data

program

units

or

modules

to

initialize

named

common

blocks;

each

named

common

block

should

be

initialized

in

only

one

block

data

program

unit

or

module

.

Examples

INTEGER

MONTH,DAY,YEAR

COMMON

/DATE/

MONTH,DAY,YEAR

REAL

R4

REAL

R8

CHARACTER(1)

C1

COMMON

/NOALIGN/

R8,C1,R4

!

R4

will

not

be

aligned

on

a

!

full-word

boundary

Related

Information

v

“Block

Data

Program

Unit”

on

page

149

v

“Explicit-Shape

Arrays”

on

page

68

v

“The

Scope

of

a

Name”

on

page

128,

for

details

on

global

entities

v

“Storage

Classes

for

Variables”

on

page

62

COMMON

Statements

and

Attributes

249

COMPLEX

Purpose

A

COMPLEX

type

declaration

statement

specifies

the

length

and

attributes

of

objects

and

functions

of

type

complex.

Initial

values

can

be

assigned

to

objects.

Syntax

where:

attr_spec

ALLOCATABLE

AUTOMATIC

DIMENSION

(array_spec)

EXTERNAL

INTENT

(intent_spec)

INTRINSIC

OPTIONAL

PARAMETER

POINTER

PRIVATE

PUBLIC

SAVE

STATIC

TARGET

VOLATILE

kind_selector

specifies

the

length

of

complex

entities:

IBM

Extension

v

If

int_initialization_expr

is

specified,

the

valid

values

are

4,

8

and

16.

These

values

represent

the

precision

and

range

of

each

part

of

the

complex

entity.

v

If

the

*int_literal_constant

form

is

specified,

the

valid

values

are

8,

16

and

32.

These

values

represent

the

length

of

the

whole

complex

entity,

and

��

COMPLEX

kind_selector

::

,

attr_spec_list

::

entity_decl_list

��

��

(

int_initialization_expr

)

KIND

=

(1)

*

int_literal_constant

��

Notes:

1 IBM

Extension.

COMPLEX

250

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

correspond

to

the

values

allowed

for

the

alternative

form.

int_literal_constant

cannot

specify

a

kind

type

parameter.

End

of

IBM

Extension

attr_spec

For

detailed

information

on

rules

about

a

particular

attribute,

refer

to

the

statement

of

the

same

name.

intent_spec

is

either

IN,

OUT,

or

INOUT

::

is

the

double

colon

separator.

Use

the

double

colon

separator

when

you

specify

attributes,

=initialization_expr,

or

=>

NULL()

.

array_spec

is

a

list

of

dimension

bounds.

entity_decl

a

is

an

object

name

or

function

name.

array_spec

cannot

be

specified

for

a

function

with

an

implicit

interface.

IBM

Extension

len

overrides

the

length

as

specified

in

kind_selector,

and

cannot

specify

a

kind

type

parameter.

The

entity

length

must

be

an

integer

literal

constant

that

represents

one

of

the

permissible

length

specifications.

End

of

IBM

Extension

IBM

Extension

��

a

(1)

(

array_spec

)

*

len

(2)

(

array_spec

)

*

len

�

�

(3)

/

initial_value_list

/

=

initialization_expr

(4)

=>

NULL()

��

Notes:

1 IBM

Extension.

2 IBM

Extension.

3 IBM

Extension.

4 Fortran

95.

COMPLEX

Statements

and

Attributes

251

initial_value

provides

an

initial

value

for

the

entity

specified

by

the

immediately

preceding

name

End

of

IBM

Extension

initialization_expr

provides

an

initial

value,

by

means

of

an

initialization

expression,

for

the

entity

specified

by

the

immediately

preceding

name

Fortran

95

=>

NULL()

provides

an

initial

value

for

the

pointer

object

End

of

Fortran

95

Rules

Fortran

95

Within

the

context

of

a

derived

type

definition:

v

If

=>

appears

in

a

component

initialization,

the

POINTER

attribute

must

appear

in

the

attr_spec_list.

v

If

=

appears

in

a

component

initialization,

the

POINTER

attribute

cannot

appear

in

the

component

attr_spec_list.

v

The

compiler

will

evaluate

initialization_expr

within

the

scoping

unit

of

the

type

definition.

If

=>

appears

for

a

variable,

the

object

must

have

the

POINTER

attribute.

End

of

Fortran

95

If

initialization_expr

appears

for

a

variable,

the

object

cannot

have

the

POINTER

attribute.

Entities

in

type

declaration

statements

are

constrained

by

the

rules

of

any

attributes

specified

for

the

entities,

as

detailed

in

the

corresponding

attribute

statements.

The

type

declaration

statement

overrides

the

implicit

type

rules

in

effect.

You

can

use

a

type

declaration

statement

that

confirms

the

type

of

an

intrinsic

function.

The

appearance

of

a

generic

or

specific

intrinsic

function

name

in

a

type

declaration

statement

does

not

cause

the

name

to

lose

its

intrinsic

property.

An

object

cannot

be

initialized

in

a

type

declaration

statement

if

it

is

a

dummy

argument,

an

allocatable

object,

a

pointer,

a

function

result,

an

object

in

blank

common,

an

integer

pointer,

an

external

name,

an

intrinsic

name,

or

an

automatic

object.

Nor

can

an

object

be

initialized

if

it

has

the

AUTOMATIC

attribute.

The

object

may

be

initialized

if:

v

it

appears

in

a

named

common

block

in

a

block

data

program

unit.

IBM

Extension

COMPLEX

252

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

v

if

it

appears

in

a

named

common

block

in

a

module.

End

of

IBM

Extension

Fortran

95

In

Fortran

95,

a

pointer

can

be

initialized.

Pointers

can

only

be

initialized

by

the

use

of

=>

NULL().

End

of

Fortran

95

The

specification

expression

of

an

array_spec

can

be

a

nonconstant

expression

if

the

specification

expression

appears

in

an

interface

body

or

in

the

specification

part

of

a

subprogram.

Any

object

being

declared

that

uses

this

nonconstant

expression

and

is

not

a

dummy

argument

or

a

pointee

is

called

an

automatic

object.

An

attribute

cannot

be

repeated

in

a

given

type

declaration

statement,

nor

can

an

entity

be

explicitly

given

the

same

attribute

more

than

once

in

a

scoping

unit.

initialization_expr

must

be

specified

if

the

statement

contains

the

PARAMETER

attribute.

If

initialization_expr

or

NULL()

is

specified,

and

the

entity

you

are

declaring:

v

is

a

variable,

the

variable

is

initially

defined.

Fortran

95

v

is

a

derived

type

component,

the

derived

type

has

default

initialization.

End

of

Fortran

95

a

becomes

defined

with

the

value

determined

by

initialization_expr,

in

accordance

with

the

rules

for

intrinsic

assignment.

If

the

entity

is

an

array,

its

shape

must

be

specified

either

in

the

type

declaration

statement

or

in

a

previous

specification

statement

in

the

same

scoping

unit.

A

variable

or

variable

subobject

cannot

be

initialized

more

than

once.

If

a

is

a

variable,

the

presence

of

initialization_expr

or

NULL()

implies

that

a

is

a

saved

object,

except

for

an

object

in

a

named

common

block.

The

initialization

of

an

object

could

affect

the

fundamental

storage

class

of

an

object.

An

array_spec

specified

in

the

entity_decl

takes

precedence

over

the

array_spec

in

the

DIMENSION

attribute.

An

array

function

result

that

does

not

have

the

ALLOCATABLE

or

POINTER

attribute

must

have

an

explicit-shape

array

specification.

If

the

entity

declared

is

a

function,

it

must

not

have

an

accessible

explicit

interface

unless

it

is

an

intrinsic

function.

IBM

Extension

If

T

or

F,

defined

previously

as

the

name

of

a

constant,

appears

in

a

type

declaration

statement,

it

is

no

longer

an

abbreviated

logical

constant

but

the

name

of

the

named

constant.

End

of

IBM

Extension

COMPLEX

Statements

and

Attributes

253

Examples

COMPLEX,

DIMENSION

(2,3)

::

ABC(3)

!

ABC

has

3

(not

6)

array

elements

Related

Information

v

“Complex”

on

page

26

v

“Initialization

Expressions”

on

page

87

v

“How

Type

Is

Determined”

on

page

57,

for

details

on

the

implicit

typing

rules

v

“Array

Declarators”

on

page

67

v

“Automatic

Objects”

on

page

22

v

“Storage

Classes

for

Variables”

on

page

62

v

“DATA”

on

page

256,

for

details

on

initial

values

CONTAINS

Purpose

The

CONTAINS

statement

separates

the

body

of

a

main

program,

external

subprogram,

or

module

subprogram

from

any

internal

subprograms

that

it

may

contain.

Similarly,

it

separates

the

specification

part

of

a

module

from

any

module

subprograms.

Syntax

Rules

When

a

CONTAINS

statement

exists,

at

least

one

subprogram

must

follow

it.

The

CONTAINS

statement

cannot

appear

in

a

block

data

program

unit

or

in

an

internal

subprogram.

Any

label

of

a

CONTAINS

statement

is

considered

part

of

the

main

program,

subprogram,

or

module

that

contains

the

CONTAINS

statement.

Examples

MODULE

A

...

CONTAINS

!

Module

subprogram

must

follow

SUBROUTINE

B(X)

...

CONTAINS

!

Internal

subprogram

must

follow

FUNCTION

C(Y)

...

END

FUNCTION

END

SUBROUTINE

END

MODULE

Related

Information

v

“Program

Units,

Procedures,

and

Subprograms”

on

page

134

��

CONTAINS

��

COMPLEX

254

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

CONTINUE

Purpose

The

CONTINUE

statement

is

an

executable

control

statement

that

takes

no

action;

it

has

no

effect.

This

statement

is

often

used

as

the

terminal

statement

of

a

loop.

Syntax

Examples

DO

100

I

=

1,N

X

=

X

+

N

100

CONTINUE

Related

Information

v

“Control

Structures”

on

page

117

CYCLE

Purpose

The

CYCLE

statement

terminates

the

current

execution

cycle

of

a

DO

or

DO

WHILE

construct.

Syntax

DO_construct_name

is

the

name

of

a

DO

or

DO

WHILE

construct

Rules

The

CYCLE

statement

is

placed

within

a

DO

or

DO

WHILE

construct

and

belongs

to

the

particular

DO

or

DO

WHILE

construct

specified

by

DO_construct_name

or,

if

not

specified,

to

the

DO

or

DO

WHILE

construct

that

immediately

surrounds

it.

The

statement

terminates

only

the

current

cycle

of

the

construct

that

it

belongs

to.

When

the

CYCLE

statement

is

executed,

the

current

execution

cycle

of

the

DO

or

DO

WHILE

construct

is

terminated.

Any

executable

statements

after

the

CYCLE

statement,

including

any

terminating

labeled

action

statement,

will

not

be

executed.

For

DO

constructs,

program

execution

continues

with

incrementation

processing,

if

any.

For

DO

WHILE

constructs,

program

execution

continues

with

loop

control

processing.

A

CYCLE

statement

can

have

a

statement

label.

However,

it

cannot

be

used

as

a

labeled

action

statement

that

terminates

a

DO

construct.

��

CONTINUE

��

��

CYCLE

DO_construct_name

��

CONTINUE

Statements

and

Attributes

255

Examples

LOOP1:

DO

I

=

1,

20

N

=

N

+

1

IF

(N

>

NMAX)

CYCLE

LOOP1

!

cycle

to

LOOP1

LOOP2:

DO

WHILE

(K==1)

IF

(K

>

KMAX)

CYCLE

!

cycle

to

LOOP2

K

=

K

+

1

END

DO

LOOP2

LOOP3:

DO

J

=

1,

10

N

=

N

+

1

IF

(N

>

NMAX)

CYCLE

LOOP1

!

cycle

to

LOOP1

CYCLE

LOOP3

!

cycle

to

LOOP3

END

DO

LOOP3

END

DO

LOOP1

END

Related

Information

v

“DO”

on

page

263

v

“DO

WHILE”

on

page

265

DATA

Purpose

The

DATA

statement

provides

initial

values

for

variables.

Syntax

data_object

is

a

variable

or

an

implied-DO

list.

Any

subscript

or

substring

expression

must

be

an

initialization

expression.

implied-DO

list

do_object

is

an

array

element,

scalar

structure

component,

substring,

or

implied-DO

list

do_variable

is

a

named

scalar

integer

variable

called

the

implied-DO

variable.

This

variable

is

a

statement

entity.

��

�

,

DATA

data_object_list

/

initial_value_list

/

��

��

(

do_object_list

,

do_variable

=

integer_expr1

,

integer_expr2

,

integer_expr3

)

��

CYCLE

256

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

integer_expr1,

integer_expr2,

and

integer_expr3

are

each

scalar

integer

expressions.

The

primaries

of

an

expression

can

only

contain

constants

or

implied-DO

variables

of

other

implied-DO

lists

that

have

this

implied-DO

list

within

their

ranges.

Each

operation

must

be

intrinsic.

initial_value

r

is

a

nonnegative

scalar

integer

constant.

If

r

is

a

named

constant,

it

must

have

been

declared

previously

in

the

scoping

unit

or

made

accessible

by

use

or

host

association.

Fortran

95

r

is

also

a

nonnegative

scalar

integer

subobject

of

a

constant.

Similar

to

the

above

paragraph,

if

it

is

a

subobject

of

a

named

constant,

it

must

have

been

declared

previously

in

the

scoping

unit

or

made

accessible

by

use

or

host

association.

End

of

Fortran

95

If

r

is

a

subobject

of

a

constant,

any

subscript

in

it

is

an

initialization

expression.

If

r

is

omitted,

the

default

value

is

1.

The

form

r*data_value

is

equivalent

to

r

successive

appearances

of

the

data

value.

data_value

is

a

scalar

constant,

signed

integer

literal

constant,

signed

real

literal

constant,

structure

constructor,

scalar

subobject

of

a

constant,

or

NULL().

Rules

Specifying

a

non-pointer

array

object

as

a

data_object

is

the

same

as

specifying

a

list

of

all

the

elements

in

the

array

object

in

the

order

they

are

stored.

Fortran

95

An

array

with

pointer

attribute

has

only

one

corresponding

initial

value

which

is

NULL().

End

of

Fortran

95

Each

data_object_list

must

specify

the

same

number

of

items

as

its

corresponding

initial_value_list.

There

is

a

one-to-one

correspondence

between

the

items

in

these

two

lists.

This

correspondence

establishes

the

initial

value

of

each

data_object.

Fortran

95

For

pointer

initialization,

if

the

data_value

is

NULL()

then

the

corresponding

data_object

must

have

pointer

attribute.

If

the

data_object

has

pointer

attribute

then

��

r

*

data_value

��

DATA

Statements

and

Attributes

257

the

corresponding

data_value

must

be

NULL().

End

of

Fortran

95

The

definition

of

each

data_object

by

its

corresponding

initial_value

must

follow

the

rules

for

intrinsic

assignment,

except

as

noted

under

“Using

Typeless

Constants”

on

page

54.

If

initial_value

is

a

structure

constructor,

each

component

must

be

an

initialization

expression.

If

data_object

is

a

variable,

any

substring,

subscript,

or

stride

expressions

must

be

initialization

expressions.

If

data_value

is

a

named

constant

or

a

subobject

of

a

named

constant,

the

named

constant

must

have

been

previously

declared

in

the

scoping

unit,

or

made

accessible

by

host

or

use

association.

If

data_value

is

a

structure

constructor,

the

derived

type

must

have

been

previously

declared

in

the

scoping

unit,

or

made

accessible

by

host

or

use

association.

Zero-sized

arrays,

implied-DO

lists

with

iteration

counts

of

zero,

and

values

with

a

repeat

factor

of

zero

contribute

no

variables

to

the

expanded

initial_value_list,

although

a

zero-length

scalar

character

variable

contributes

one

variable

to

the

list.

You

can

use

an

implied-DO

list

in

a

DATA

statement

to

initialize

array

elements,

scalar

structure

components

and

substrings.

The

implied-DO

list

is

expanded

into

a

sequence

of

scalar

structure

components,

array

elements,

or

substrings,

under

the

control

of

the

implied-DO

variable.

Array

elements

and

scalar

structure

components

must

not

have

constant

parents.

Each

scalar

structure

component

must

contain

at

least

one

component

reference

that

specifies

a

subscript

list.

The

range

of

an

implied-DO

list

is

the

do_object_list.

The

iteration

count

and

the

values

of

the

implied-DO

variable

are

established

from

integer_expr1,

integer_expr2,

and

integer_expr3,

the

same

as

for

a

DO

statement.

When

the

implied-DO

list

is

executed,

it

specifies

the

items

in

the

do_object_list

once

for

each

iteration

of

the

implied-DO

list,

with

the

appropriate

substitution

of

values

for

any

occurrence

of

the

implied-DO

variables.

If

the

implied-DO

variable

has

an

iteration

count

of

0,

no

variables

are

added

to

the

expanded

sequence.

Each

subscript

expression

in

a

do_object

can

only

contain

constants

or

implied-DO

variables

of

implied-DO

lists

that

have

the

subscript

expression

within

their

ranges.

Each

operation

must

be

intrinsic.

IBM

Extension

To

initialize

list

items

of

type

logical

with

logical

constants,

you

can

also

use

the

abbreviated

forms

(T

for

.TRUE.

and

F

for

.FALSE.).

If

T

or

F

is

a

constant

name

that

was

defined

previously

with

the

PARAMETER

attribute,

XL

Fortran

recognizes

it

as

the

named

constant

and

assigns

its

value

to

the

corresponding

list

item

in

the

DATA

statement.

End

of

IBM

Extension

In

a

block

data

program

unit,

you

can

use

a

DATA

statement

or

type

declaration

statement

to

provide

an

initial

value

for

a

variable

in

a

named

common

block.

DATA

258

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

In

an

internal

or

module

subprogram,

if

the

data_object

is

the

same

name

as

an

entity

in

the

host,

and

the

data_object

is

not

declared

in

any

other

specification

statement

in

the

internal

subprogram,

the

data_object

must

not

be

referenced

or

defined

before

the

DATA

statement.

A

DATA

statement

cannot

provide

an

initial

value

for:

v

An

automatic

object.

v

A

dummy

argument.

v

A

pointee.

v

A

variable

in

a

blank

common

block.

v

The

result

variable

of

a

function.

v

A

data

object

whose

storage

class

is

automatic.

v

A

variable

that

has

the

ALLOCATABLE

attribute.

You

must

not

initialize

a

variable

more

than

once

in

an

executable

program.

If

you

associate

two

or

more

variables,

you

can

only

initialize

one

of

the

data

objects.

Examples

Example

1:

INTEGER

Z(100),EVEN_ODD(0:9)

LOGICAL

FIRST_TIME

CHARACTER*10

CHARARR(1)

DATA

FIRST_TIME

/

.TRUE.

/

DATA

Z

/

100*

0

/

!

Implied-DO

list

DATA

(EVEN_ODD(J),J=0,8,2)

/

5

*

0

/

&

&

,(EVEN_ODD(J),J=1,9,2)

/

5

*

1

/

!

Nested

example

DIMENSION

TDARR(3,4)

!

Initializes

a

two-dimensional

array

DATA

((TDARR(I,J),J=1,4),I=1,3)

/12

*

0/

!

Character

substring

example

DATA

(CHARARR(J)(1:3),J=1,1)

/’aaa’/

DATA

(CHARARR(J)(4:7),J=1,1)

/’bbbb’/

DATA

(CHARARR(J)(8:10),J=1,1)

/’ccc’/

!

CHARARR(1)

contains

’aaabbbbccc’

Example

2:

TYPE

DT

INTEGER

::

COUNT(2)

END

TYPE

DT

TYPE(DT),

PARAMETER,

DIMENSION(3)

::

SPARM

=

DT

(

(/3,5/)

)

INTEGER

::

A(5)

DATA

A

/SPARM(2)%COUNT(2)

*

10/

Related

Information

v

“Data

Types

and

Data

Objects”

on

page

21

v

“Executing

a

DO

Statement”

on

page

123

v

“Statement

and

Construct

Entities”

on

page

130

DATA

Statements

and

Attributes

259

DEALLOCATE

Purpose

The

DEALLOCATE

statement

dynamically

deallocates

allocatable

objects

and

pointer

targets.

A

specified

pointer

becomes

disassociated,

while

any

other

pointers

associated

with

the

target

become

undefined.

Syntax

object

is

a

pointer

or

an

allocatable

object

stat_variable

is

a

scalar

integer

variable

Rules

An

allocatable

object

that

appears

in

a

DEALLOCATE

statement

must

be

currently

allocated.

An

allocatable

object

with

the

TARGET

attribute

cannot

be

deallocated

through

an

associated

pointer.

Deallocation

of

such

an

object

causes

the

association

status

of

any

associated

pointer

to

become

undefined.

An

allocatable

object

that

has

an

undefined

allocation

status

cannot

be

subsequently

referenced,

defined,

allocated,

or

deallocated.

Successful

execution

of

a

DEALLOCATE

statement

causes

the

allocation

status

of

an

allocatable

object

to

become

not

allocated.

When

a

variable

of

derived

type

is

deallocated,

any

allocated

subobject

with

the

ALLOCATABLE

attribute

is

also

deallocated.

When

an

intrinsic

assignment

statement

is

executed,

any

allocated

subobject

of

the

variable

is

deallocated

before

the

assignment

takes

place.

A

pointer

that

appears

in

a

DEALLOCATE

statement

must

be

associated

with

a

whole

target

that

was

created

with

an

ALLOCATE

statement.

Deallocation

of

a

pointer

target

causes

the

association

status

of

any

other

pointer

associated

with

all

or

part

of

the

target

to

become

undefined.

Tips

Use

the

DEALLOCATE

statement

instead

of

the

NULLIFY

statement

if

no

other

pointer

is

associated

with

the

allocated

memory.

Deallocate

memory

that

a

pointer

function

has

allocated.

If

the

STAT=

specifier

is

not

present

and

an

error

condition

occurs

during

execution

of

the

statement,

the

program

terminates.

If

the

STAT=

specifier

is

present,

stat_variable

is

assigned

one

of

the

following

values:

��

DEALLOCATE

(

allocate_object_list

)

,

STAT

=

stat_variable

��

DEALLOCATE

260

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

IBM

Extension

Stat

value

Error

condition

0

No

error

1

Error

in

system

routine

attempting

to

do

deallocation

2

An

invalid

data

object

has

been

specified

for

deallocation

3

Both

error

conditions

1

and

2

have

occurred

End

of

IBM

Extension

An

allocate_object

must

not

depend

on

the

value,

bounds,

allocation

status,

or

association

status

of

another

allocate_object

in

the

same

DEALLOCATE

statement;

nor

does

it

depend

on

the

value

of

the

stat_variable

in

the

same

DEALLOCATE

statement.

stat_variable

must

not

be

deallocated

within

the

same

DEALLOCATE

statement.

The

variable

must

not

depend

on

the

value,

bounds,

allocation

status,

or

association

status

of

any

allocate_object

in

the

same

DEALLOCATE

statement.

Examples

INTEGER,

ALLOCATABLE

::

A(:,:)

INTEGER

X,Y

...
ALLOCATE

(A(X,Y))

...
DEALLOCATE

(A,STAT=I)

END

Related

Information

v

“ALLOCATE”

on

page

227

v

“ALLOCATABLE”

on

page

226

v

“Allocation

Status”

on

page

61

v

“Pointer

Association”

on

page

133

v

“Deferred-Shape

Arrays”

on

page

70

v

“Allocatable

Objects

as

Dummy

Arguments”

on

page

162

v

“Allocatable

Components”

on

page

41

Derived

Type

Purpose

The

Derived

Type

statement

is

the

first

statement

of

a

derived-type

definition.

Syntax

DEALLOCATE

Statements

and

Attributes

261

access_spec

is

either

PRIVATE

or

PUBLIC

type_name

is

the

name

of

the

derived

type

Rules

access_spec

can

only

be

specified

if

the

derived-type

definition

is

within

the

specification

part

of

a

module.

type_name

cannot

be

the

same

as

the

name

of

any

intrinsic

type,

except

BYTE

and

DOUBLECOMPLEX,

or

the

name

of

any

other

accessible

derived

type.

If

a

label

is

specified

on

the

Derived

Type

statement,

the

label

belongs

to

the

scoping

unit

of

the

derived-type

definition.

If

the

corresponding

END

TYPE

statement

specifies

a

name,

it

must

be

the

same

as

type_name.

Examples

MODULE

ABC

TYPE,

PRIVATE

::

SYSTEM

!

Derived

type

SYSTEM

can

only

be

accessed

SEQUENCE

!

within

module

ABC

REAL

::

PRIMARY

REAL

::

SECONDARY

CHARACTER(20),

DIMENSION(5)

::

STAFF

END

TYPE

END

MODULE

Related

Information

v

“Derived

Types”

on

page

33

v

“END

TYPE”

on

page

280

v

“SEQUENCE”

on

page

367

v

“PRIVATE”

on

page

346

DIMENSION

Purpose

The

DIMENSION

attribute

specifies

the

name

and

dimensions

of

an

array.

Syntax

��

TYPE

type_name

::

,

access_spec

��

Derived

Type

262

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Rules

According

to

Fortran

95,

you

can

specify

an

array

with

up

to

seven

dimensions.

IBM

Extension

With

XL

Fortran,

you

can

specify

up

to

20

dimensions.

End

of

IBM

Extension

Only

one

dimension

specification

for

an

array

name

can

appear

in

a

scoping

unit.

Attributes

Compatible

with

the

DIMENSION

Attribute

v

ALLOCATABLE

v

AUTOMATIC

v

INTENT

v

OPTIONAL

v

PARAMETER

v

POINTER

v

PRIVATE

v

PROTECTED

v

PUBLIC

v

SAVE

v

STATIC

v

TARGET

v

VOLATILE

Examples

CALL

SUB(5,6)

CONTAINS

SUBROUTINE

SUB(I,M)

DIMENSION

LIST1(I,M)

!

automatic

array

INTEGER,

ALLOCATABLE,

DIMENSION(:,:)

::

A

!

deferred-shape

array

...
END

SUBROUTINE

END

Related

Information

v

“Array

Concepts”

on

page

65

v

“VIRTUAL”

on

page

388

DO

Purpose

The

DO

statement

controls

the

execution

of

the

statements

that

follow

it,

up

to

and

including

a

specified

terminal

statement.

Together,

these

statements

form

a

DO

construct.

Syntax

��

DIMENSION

array_declarator_list

::

��

DIMENSION

Statements

and

Attributes

263

DO_construct_name

is

a

name

that

identifies

the

DO

construct.

stmt_label

is

the

statement

label

of

an

executable

statement

appearing

after

the

DO

statement

in

the

same

scoping

unit.

This

statement

denotes

the

end

of

the

DO

construct.

var_name

is

a

scalar

variable

name

of

type

integer

or

real,

called

the

DO

variable

a_expr1,

a_expr2,

and

a_expr3

are

each

scalar

expressions

of

type

integer

or

real

Rules

If

you

specify

a

DO_construct_name

on

the

DO

statement,

you

must

terminate

the

construct

with

an

END

DO

and

the

same

DO_construct_name.

Conversely,

if

you

do

not

specify

a

DO_construct_name

on

the

DO

statement,

and

you

terminate

the

DO

construct

with

an

END

DO

statement,

you

must

not

have

a

DO_construct_name

on

the

END

DO

statement.

If

you

specify

a

statement

label

in

the

DO

statement,

you

must

terminate

the

DO

construct

with

a

statement

that

is

labeled

with

that

statement

label.

You

can

terminate

a

labeled

DO

statement

with

an

END

DO

statement

that

is

labeled

with

that

statement

label,

but

you

cannot

terminate

it

with

an

unlabeled

END

DO

statement.

If

you

do

not

specify

a

label

in

the

DO

statement,

you

must

terminate

the

DO

construct

with

an

END

DO

statement.

If

the

control

clause

(the

clause

beginning

with

var_name)

is

absent,

the

statement

is

an

infinite

DO.

The

loop

will

iterate

indefinitely

until

interrupted

(for

example,

by

the

EXIT

statement).

Examples

INTEGER

::

SUM=0

OUTER:

DO

INNER:

DO

M=1,10

READ

(5,*)

J

IF

(J.LE.I)

THEN

PRINT

*,

’VALUE

MUST

BE

GREATER

THAN

’,

I

CYCLE

INNER

END

IF

SUM=SUM+J

IF

(SUM.GT.500)

EXIT

OUTER

IF

(SUM.GT.100)

EXIT

INNER

END

DO

INNER

SUM=SUM+I

I=I+10

END

DO

OUTER

PRINT

*,

’SUM

=’,SUM

END

��

DO_construct_name

:

DO

stmt_label

�

�

var_name

=

a_expr1,

a_expr2

,

,

a_expr3

��

DO

264

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Related

Information

v

“DO

Construct”

on

page

121

v

“END

(Construct)”

on

page

277,

for

details

on

the

END

DO

statement

v

“EXIT”

on

page

287

v

“CYCLE”

on

page

255

v

“INDEPENDENT”

on

page

406

v

“ASSERT”

on

page

400

v

“CNCALL”

on

page

402

v

“PERMUTATION”

on

page

411

DO

WHILE

Purpose

The

DO

WHILE

statement

is

the

first

statement

in

the

DO

WHILE

construct,

which

indicates

that

you

want

the

following

statement

block,

up

to

and

including

a

specified

terminal

statement,

to

be

repeatedly

executed

for

as

long

as

the

logical

expression

specified

in

the

statement

continues

to

be

true.

Syntax

DO_construct_name

is

a

name

that

identifies

the

DO

WHILE

construct

stmt_label

is

the

statement

label

of

an

executable

statement

appearing

after

the

DO

WHILE

statement

in

the

same

scoping

unit.

It

denotes

the

end

of

the

DO

WHILE

construct.

logical_expr

is

a

scalar

logical

expression

Rules

If

you

specify

a

DO_construct_name

on

the

DO

WHILE

statement,

you

must

terminate

the

construct

with

an

END

DO

and

the

same

DO_construct_name.

Conversely,

if

you

do

not

specify

a

DO_construct_name

on

the

DO

WHILE

statement,

and

you

terminate

the

DO

WHILE

construct

with

an

END

DO

statement,

you

must

not

have

a

DO_construct_name

on

the

END

DO

statement.

If

you

specify

a

statement

label

in

the

DO

WHILE

statement,

you

must

terminate

the

DO

WHILE

construct

with

a

statement

that

is

labeled

with

that

statement

label.

You

can

terminate

a

labeled

DO

WHILE

statement

with

an

END

DO

statement

that

is

labeled

with

that

statement

label,

but

you

cannot

terminate

it

with

an

unlabeled

END

DO

statement.

If

you

do

not

specify

a

label

in

the

DO

WHILE

statement,

you

must

terminate

the

DO

WHILE

construct

with

an

END

DO

statement.

��

DO

DO_construct_name

:

stmt_label

,

�

�

WHILE

(

logical_expr

)

��

DO

Statements

and

Attributes

265

Examples

MYDO:

DO

10

WHILE

(I

.LE.

5)

!

MYDO

is

the

construct

name

SUM

=

SUM

+

INC

I

=

I

+

1

10

END

DO

MYDO

END

SUBROUTINE

EXAMPLE2

REAL

X(10)

LOGICAL

FLAG1

DATA

FLAG1

/.TRUE./

DO

20

WHILE

(I

.LE.

10)

X(I)

=

A

I

=

I

+

1

20

IF

(.NOT.

FLAG1)

STOP

END

SUBROUTINE

EXAMPLE2

Related

Information

v

“DO

WHILE

Construct”

on

page

125

v

“END

(Construct)”

on

page

277,

for

details

on

the

END

DO

statement

v

“EXIT”

on

page

287

v

“CYCLE”

on

page

255

DOUBLE

COMPLEX

IBM

Extension

Purpose

A

DOUBLE

COMPLEX

type

declaration

statement

specifies

the

attributes

of

objects

and

functions

of

type

double

complex.

Initial

values

can

be

assigned

to

objects.

Syntax

��

DOUBLE

COMPLEX

entity_decl_list

::

,

attr_spec_list

::

��

DO

WHILE

266

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

where:

attr_spec

ALLOCATABLE

AUTOMATIC

DIMENSION

(array_spec)

EXTERNAL

INTENT

(intent_spec)

INTRINSIC

OPTIONAL

PARAMETER

POINTER

PRIVATE

PUBLIC

SAVE

STATIC

TARGET

VOLATILE

attr_spec

For

detailed

information

on

rules

about

a

particular

attribute,

refer

to

the

statement

of

the

same

name.

intent_spec

is

either

IN,

OUT,

or

INOUT

::

is

the

double

colon

separator.

Use

the

double

colon

separator

when

you

specify

attributes,

=initialization_expr,

or

=>

NULL()

.

array_spec

is

a

list

of

dimension

bounds

entity_decl

a

is

an

object

name

or

function

name.

array_spec

cannot

be

specified

for

a

function

with

an

implicit

interface.

initial_value

provides

an

initial

value

for

the

entity

specified

by

the

immediately

preceding

name

initialization_expr

provides

an

initial

value,

by

means

of

an

initialization

expression,

for

the

entity

specified

by

the

immediately

preceding

name

=>

NULL()

provides

the

initial

value

for

the

pointer

object

Rules

Within

the

context

of

a

derived

type

definition:

v

If

=>

appears

in

a

component

initialization,

the

POINTER

attribute

must

appear

in

the

attr_spec_list.

v

If

=

appears

in

a

component

initialization,

the

POINTER

attribute

cannot

appear

in

the

component

attr_spec_list.

v

The

compiler

will

evaluate

initialization_expr

within

the

scoping

unit

of

the

type

definition.

��

a

(

array_spec

)

/

initial_value_list

/

=

initialization_expr

=>

NULL()

��

DOUBLE

COMPLEX

(IBM

Extension)

Statements

and

Attributes

267

If

=>

appears

for

a

variable,

the

object

must

have

the

POINTER

attribute.

If

initialization_expr

appears

for

a

variable,

the

object

cannot

have

the

POINTER

attribute.

Entities

in

type

declaration

statements

are

constrained

by

the

rules

of

any

attributes

specified

for

the

entities,

as

detailed

in

the

corresponding

attribute

statements.

The

type

declaration

statement

overrides

the

implicit

type

rules

in

effect.

You

can

use

a

type

declaration

statement

that

confirms

the

type

of

an

intrinsic

function.

The

appearance

of

a

generic

or

specific

intrinsic

function

name

in

a

type

declaration

statement

does

not

cause

the

name

to

lose

its

intrinsic

property.

An

object

cannot

be

initialized

in

a

type

declaration

statement

if

it

is

a

dummy

argument,

an

allocatable

object,

a

function

result,

an

object

in

blank

common,

an

integer

pointer,

an

external

name,

an

intrinsic

name,

or

an

automatic

object.

Nor

can

an

object

be

initialized

if

it

has

the

AUTOMATIC

attribute.

The

object

may

be

initialized

if

it

appears

in

a

named

common

block

in

a

block

data

program

unit

or

if

it

appears

in

a

named

common

block

in

a

module.

In

Fortran

95,

a

pointer

can

be

initialized.

Pointers

can

only

be

initialized

by

the

use

of

=>

NULL().

The

specification

expression

of

an

array_spec

can

be

a

nonconstant

expression

if

the

specification

expression

appears

in

an

interface

body

or

in

the

specification

part

of

a

subprogram.

Any

object

being

declared

that

uses

this

nonconstant

expression

and

is

not

a

dummy

argument

or

a

pointee

is

called

an

automatic

object.

An

attribute

cannot

be

repeated

in

a

given

type

declaration

statement,

nor

can

an

entity

be

explicitly

given

the

same

attribute

more

than

once

in

a

scoping

unit.

initialization_expr

must

be

specified

if

the

statement

contains

the

PARAMETER

attribute.

If

the

entity

you

are

declaring

is

a

variable,

and

initialization_expr

or

NULL()

is

specified,

the

variable

is

initially

defined.

If

the

entity

you

are

declaring

is

a

derived

type

component,

and

initialization_expr

or

NULL()

is

specified,

the

derived

type

has

default

initialization.

a

becomes

defined

with

the

value

determined

by

initialization_expr,

in

accordance

with

the

rules

for

intrinsic

assignment.

If

the

entity

is

an

array,

its

shape

must

be

specified

either

in

the

type

declaration

statement

or

in

a

previous

specification

statement

in

the

same

scoping

unit.

A

variable

or

variable

subobject

cannot

be

initialized

more

than

once.

If

a

is

a

variable,

the

presence

of

initialization_expr

or

=>

NULL()

implies

that

a

is

a

saved

object,

except

for

an

object

in

a

named

common

block.

The

initialization

of

an

object

could

affect

the

fundamental

storage

class

of

an

object.

An

array_spec

specified

in

the

entity_decl

takes

precedence

over

the

array_spec

in

the

DIMENSION

attribute.

An

array

function

result

that

does

not

have

the

ALLOCATABLE

or

POINTER

attribute

must

have

an

explicit-shape

array

specification.

If

the

entity

declared

is

a

function,

it

must

not

have

an

accessible

explicit

interface

unless

it

is

an

intrinsic

function.

DOUBLE

COMPLEX

(IBM

Extension)

268

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

If

T

or

F,

defined

previously

as

the

name

of

a

constant,

appears

in

a

type

declaration

statement,

it

is

no

longer

an

abbreviated

logical

constant

but

the

name

of

the

named

constant.

Examples

SUBROUTINE

SUB

DOUBLE

COMPLEX,

STATIC,

DIMENSION(1)

::

B

END

SUBROUTINE

Related

Information

v

“Complex”

on

page

26

v

“Initialization

Expressions”

on

page

87

v

“How

Type

Is

Determined”

on

page

57,

for

details

on

the

implicit

typing

rules

v

“Array

Declarators”

on

page

67

v

“Automatic

Objects”

on

page

22

v

“Storage

Classes

for

Variables”

on

page

62

v

“DATA”

on

page

256,

for

details

on

initial

values

End

of

IBM

Extension

DOUBLE

PRECISION

Purpose

A

DOUBLE

PRECISION

type

declaration

statement

specifies

the

attributes

of

objects

and

functions

of

type

double

precision.

Initial

values

can

be

assigned

to

objects.

Syntax

where:

��

DOUBLE

PRECISION

entity_decl_list

::

,

attr_spec_list

::

��

DOUBLE

COMPLEX

(IBM

Extension)

Statements

and

Attributes

269

attr_spec

ALLOCATABLE

AUTOMATIC

DIMENSION

(array_spec)

EXTERNAL

INTENT

(intent_spec)

INTRINSIC

OPTIONAL

PARAMETER

POINTER

PRIVATE

PUBLIC

SAVE

STATIC

TARGET

VOLATILE

attr_spec

For

detailed

information

on

rules

about

a

particular

attribute,

refer

to

the

statement

of

the

same

name.

intent_spec

is

either

IN,

OUT,

or

INOUT

::

is

the

double

colon

separator.

Use

the

double

colon

separator

when

you

specify

attributes,

=initialization_expr,

or

=>

NULL()

.

array_spec

is

a

list

of

dimension

bounds

entity_decl

a

is

an

object

name

or

function

name.

array_spec

cannot

be

specified

for

a

function

with

an

implicit

interface.

IBM

Extension

initial_value

provides

an

initial

value

for

the

entity

specified

by

the

immediately

preceding

name

End

of

IBM

Extension

initialization_expr

provides

an

initial

value,

by

means

of

an

initialization

expression,

��

a

(

array_spec

)

(1)

/

initial_value_list

/

=

initialization_expr

(2)

=>

NULL()

��

Notes:

1 IBM

Extension.

2 Fortran

95.

DOUBLE

PRECISION

270

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

for

the

entity

specified

by

the

immediately

preceding

name

Fortran

95

=>

NULL()

provides

the

initial

value

for

the

pointer

object

End

of

Fortran

95

Rules

Fortran

95

Within

the

context

of

a

derived

type

definition:

v

If

=>

appears

in

a

component

initialization,

the

POINTER

attribute

must

appear

in

the

attr_spec_list.

v

If

=

appears

in

a

component

initialization,

the

POINTER

attribute

cannot

appear

in

the

component

attr_spec_list.

v

The

compiler

will

evaluate

initialization_expr

within

the

scoping

unit

of

the

type

definition.

If

=>

appears

for

a

variable,

the

object

must

have

the

POINTER

attribute.

End

of

Fortran

95

If

initialization_expr

appears

for

a

variable,

the

object

cannot

have

the

POINTER

attribute.

Entities

in

type

declaration

statements

are

constrained

by

the

rules

of

any

attributes

specified

for

the

entities,

as

detailed

in

the

corresponding

attribute

statements.

The

type

declaration

statement

overrides

the

implicit

type

rules

in

effect.

You

can

use

a

type

declaration

statement

that

confirms

the

type

of

an

intrinsic

function.

The

appearance

of

a

generic

or

specific

intrinsic

function

name

in

a

type

declaration

statement

does

not

cause

the

name

to

lose

its

intrinsic

property.

An

object

cannot

be

initialized

in

a

type

declaration

statement

if

it

is

a

dummy

argument,

an

allocatable

object,

a

function

result,

an

object

in

blank

common,

an

integer

pointer,

an

external

name,

an

intrinsic

name,

or

an

automatic

object.

Nor

can

an

object

be

initialized

if

it

has

the

AUTOMATIC

attribute.

The

object

may

be

initialized

if

it

appears

in

a

named

common

block

in

a

block

data

program

unit

or

if

it

appears

in

a

named

common

block

in

a

module.

Fortran

95

In

Fortran

95,

a

pointer

can

be

initialized.

Pointers

can

only

be

initialized

by

the

use

of

=>

NULL().

End

of

Fortran

95

The

specification

expression

of

an

array_spec

can

be

a

nonconstant

expression

if

the

specification

expression

appears

in

an

interface

body

or

in

the

specification

part

of

a

subprogram.

Any

object

being

declared

that

uses

this

nonconstant

expression

and

is

not

a

dummy

argument

or

a

pointee

is

called

an

automatic

object.

DOUBLE

PRECISION

Statements

and

Attributes

271

An

attribute

cannot

be

repeated

in

a

given

type

declaration

statement,

nor

can

an

entity

be

explicitly

given

the

same

attribute

more

than

once

in

a

scoping

unit.

Fortran

95

initialization_expr

must

be

specified

if

the

statement

contains

the

PARAMETER

attribute.

If

the

entity

you

are

declaring

is

a

variable,

and

initialization_expr

or

NULL()

is

specified,

the

variable

is

initially

defined.

If

the

entity

you

are

declaring

is

a

derived

type

component,

and

initialization_expr

or

NULL()

is

specified,

the

derived

type

has

default

initialization.

a

becomes

defined

with

the

value

determined

by

initialization_expr,

in

accordance

with

the

rules

for

intrinsic

assignment.

If

the

entity

is

an

array,

its

shape

must

be

specified

either

in

the

type

declaration

statement

or

in

a

previous

specification

statement

in

the

same

scoping

unit.

A

variable

or

variable

subobject

cannot

be

initialized

more

than

once.

If

a

is

a

variable,

the

presence

of

initialization_expr

or

=>

NULL()

implies

that

a

is

a

saved

object,

except

for

an

object

in

a

named

common

block.

The

initialization

of

an

object

could

affect

the

fundamental

storage

class

of

an

object.

End

of

Fortran

95

An

array_spec

specified

in

the

entity_decl

takes

precedence

over

the

array_spec

in

the

DIMENSION

attribute.

An

array

function

result

that

does

not

have

the

POINTER

attribute

must

have

an

explicit-shape

array

specification.

If

the

entity

declared

is

a

function,

it

must

not

have

an

accessible

explicit

interface

unless

it

is

an

intrinsic

function.

IBM

Extension

If

T

or

F,

defined

previously

as

the

name

of

a

constant,

appears

in

a

type

declaration

statement,

it

is

no

longer

an

abbreviated

logical

constant

but

the

name

of

the

named

constant.

End

of

IBM

Extension

Examples

DOUBLE

PRECISION,

POINTER

::

PTR

DOUBLE

PRECISION,

TARGET

::

TAR

Related

Information

v

“Real”

on

page

24

v

“Initialization

Expressions”

on

page

87

v

“How

Type

Is

Determined”

on

page

57,

for

details

on

the

implicit

typing

rules

v

“Array

Declarators”

on

page

67

v

“Automatic

Objects”

on

page

22

v

“Storage

Classes

for

Variables”

on

page

62

v

“DATA”

on

page

256,

for

details

on

initial

values

DOUBLE

PRECISION

272

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

ELSE

Purpose

The

ELSE

statement

is

the

first

statement

of

the

optional

ELSE

block

within

an

IF

construct.

Syntax

IF_construct_name

is

a

name

that

identifies

the

IF

construct

Syntax

Control

branches

to

the

ELSE

block

if

every

previous

logical

expression

in

the

IF

construct

evaluates

as

false.

The

statement

block

of

the

ELSE

block

is

executed

and

the

IF

construct

is

complete.

If

you

specify

an

IF_construct_name,

it

must

be

the

same

name

that

you

specified

in

the

block

IF

statement.

Examples

IF

(A.GT.0)

THEN

B

=

B-A

ELSE

!

the

next

statement

is

executed

if

a<=0

B

=

B+A

END

IF

Related

Information

v

“IF

Construct”

on

page

117

v

“END

(Construct)”

on

page

277,

for

details

on

the

END

IF

statement

v

“ELSE

IF”

ELSE

IF

Purpose

The

ELSE

IF

statement

is

the

first

statement

of

an

optional

ELSE

IF

block

within

an

IF

construct.

Syntax

��

ELSE

IF_construct_name

��

��

ELSE

IF

(

scalar_logical_expr

)

THEN

IF_construct_name

��

ELSE

Statements

and

Attributes

273

IF_construct_name

is

a

name

that

identifies

the

IF

construct

Rules

scalar_logical_expr

is

evaluated

if

no

previous

logical

expressions

in

the

IF

construct

are

evaluated

as

true.

If

scalar_logical_expr

is

true,

the

statement

block

that

follows

is

executed

and

the

IF

construct

is

complete.

If

you

specify

an

IF_construct_name,

it

must

be

the

same

name

that

you

specified

in

the

block

IF

statement.

Examples

IF

(I.EQ.1)

THEN

J=J-1

ELSE

IF

(I.EQ.2)

THEN

J=J-2

ELSE

IF

(I.EQ.3)

THEN

J=J-3

ELSE

J=J-4

END

IF

Related

Information

v

“IF

Construct”

on

page

117

v

“END

(Construct)”

on

page

277,

for

details

on

the

END

IF

statement

v

“ELSE”

on

page

273

ELSEWHERE

Purpose

The

ELSEWHERE

statement

is

the

first

statement

of

the

optional

ELSEWHERE

or

masked

ELSEWHERE

block

within

a

WHERE

construct.

Syntax

Fortran

95

mask_expr

is

a

logical

array

expression

End

of

Fortran

95

Fortran

95

��

ELSEWHERE

(1)

(2)

(

mask_expr

)

where_construct_name

��

Notes:

1 Fortran

95.

2 Fortran

95.

ELSE

IF

274

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

where_construct_name

is

a

name

that

identifies

a

WHERE

construct

End

of

Fortran

95

Rules

Fortran

95

A

masked

ELSEWHERE

statement

contains

a

mask_expr.

See

“Interpreting

Masked

Array

Assignments”

on

page

106

for

information

on

interpreting

mask

expressions.

Each

mask_expr

in

a

WHERE

construct

must

have

the

same

shape.

If

you

specify

a

where_construct_name,

it

must

be

the

same

name

that

you

specified

on

the

WHERE

construct

statement.

End

of

Fortran

95

ELSEWHERE

and

masked

ELSEWHERE

statements

must

not

be

branch

target

statements.

Examples

The

following

example

shows

a

program

that

uses

a

simple

masked

ELSEWHERE

statement

to

change

the

data

in

an

array:

INTEGER

ARR1(3,

3),

ARR2(3,3),

FLAG(3,

3)

ARR1

=

RESHAPE((/(I,

I=1,

9)/),

(/3,

3

/))

ARR2

=

RESHAPE((/(I,

I=9,

1,

-1

/),

(/3,

3

/))

FLAG

=

-99

!

Data

in

arrays

ARR1,

ARR2,

and

FLAG

at

this

point:

!

!

ARR1

=

|

1

4

7

|

ARR2

=

|

9

6

3

|

FLAG

=

|

-99

-99

-99

|

!

|

2

5

8

|

|

8

5

2

|

|

-99

-99

-99

|

!

|

3

6

9

|

|

7

4

1

|

|

-99

-99

-99

|

WHERE

(ARR1

>

ARR2)

FLAG

=

1

ELSEWHERE

(ARR1

==

ARR2)

FLAG

=

0

ELSEWHERE

FLAG

=

-1

END

WHERE

!

Data

in

arrays

ARR1,

ARR2,

and

FLAG

at

this

point:

!

!

ARR1

=

|

1

4

7

|

ARR2

=

|

9

6

3

|

FLAG

=

|

-1

-1

1

|

!

|

2

5

8

|

|

8

5

2

|

|

-1

0

1

|

!

|

3

6

9

|

|

7

4

1

|

|

-1

1

1

|

Related

Information

v

“WHERE

Construct”

on

page

104

v

“WHERE”

on

page

390

v

“END

(Construct)”

on

page

277,

for

details

on

the

END

WHERE

statement

ELSEWHERE

Statements

and

Attributes

275

END

Purpose

An

END

statement

indicates

the

end

of

a

program

unit

or

procedure.

Syntax

Rules

The

END

statement

is

the

only

required

statement

in

a

program

unit.

For

an

internal

subprogram

or

module

subprogram,

you

must

specify

the

FUNCTION

or

SUBROUTINE

keyword

on

the

END

statement.

For

block

data

program

units,

external

subprograms,

the

main

program,

modules

and

interface

bodies,

the

corresponding

keyword

is

optional.

The

program

name

can

be

included

in

the

END

PROGRAM

statement

only

if

the

optional

PROGRAM

statement

is

used

and

if

the

name

is

identical

to

the

program

name

specified

in

the

PROGRAM

statement.

The

block

data

name

can

be

included

in

the

END

BLOCK

DATA

statement

only

if

it

is

provided

in

the

BLOCK

DATA

statement

and

if

the

name

is

identical

to

the

block

data

name

specified

in

the

BLOCK

DATA

statement.

If

a

name

is

specified

in

an

END

MODULE,

END

FUNCTION,

or

END

SUBROUTINE

statement,

it

must

be

identical

to

the

name

specified

in

the

corresponding

MODULE,

FUNCTION,

or

SUBROUTINE

statement,

respectively.

The

END,

END

FUNCTION,

END

PROGRAM,

and

END

SUBROUTINE

statements

are

executable

statements

that

can

be

branched

to.

In

both

fixed

source

form

and

Fortran

90

free

source

form

formats,

no

other

statement

may

follow

the

END

statement

on

the

same

line.

In

fixed

source

form

format,

you

cannot

continue

a

program

unit

END

statement,

nor

can

a

statement

whose

initial

line

appears

to

be

a

program

unit

END

statement

be

continued.

The

END

statement

of

a

main

program

terminates

execution

of

the

program.

The

END

statement

of

a

function

or

subroutine

has

the

same

effect

as

a

RETURN

statement.

An

inline

comment

can

appear

on

the

same

line

as

an

END

statement.

Any

comment

line

appearing

after

an

END

statement

belongs

to

the

next

program

unit.

��

END

BLOCK

DATA

BLOCK_DATA_name

FUNCTION

FUNCTION_name

MODULE

MODULE_name

PROGRAM

PROGRAM_name

SUBROUTINE

SUBROUTINE_name

��

END

276

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Examples

PROGRAM

TEST

CALL

SUB()

CONTAINS

SUBROUTINE

SUB

...

END

SUBROUTINE

!

Reference

to

subroutine

name

SUB

is

optional

END

PROGRAM

TEST

Related

Information

v

“Program

Units

and

Procedures”

on

page

127

END

(Construct)

Purpose

The

END

DO,

END

IF,

END

SELECT,

and

END

WHERE

statements

terminate

DO

(or

DO

WHILE),

IF,

CASE,

and

WHERE

constructs,

respectively.

Fortran

95

The

END

FORALL

statement

terminates

FORALL

constructs.

End

of

Fortran

95

Syntax

DO_construct_name

is

a

name

that

identifies

a

DO

or

DO

WHILE

construct

Fortran

95

��

END

DO

DO_construct_name

(1)

END

FORALL

FORALL_construct_name

END

IF

IF_construct_name

END

SELECT

CASE_construct_name

(2)

END

WHERE

where_construct_name

��

Notes:

1 Fortran

95.

2 Fortran

95.

END

Statements

and

Attributes

277

FORALL_construct_name

is

a

name

that

identifies

a

FORALL

construct

End

of

Fortran

95

IF_construct_name

is

a

name

that

identifies

an

IF

construct

CASE_construct_name

is

a

name

that

identifies

a

CASE

construct

Fortran

95

where_construct_name

is

a

name

that

identifies

a

WHERE

construct

End

of

Fortran

95

Rules

If

you

label

the

END

DO

statement,

you

can

use

it

as

the

terminal

statement

of

a

labeled

or

unlabeled

DO

or

DO

WHILE

construct.

An

END

DO

statement

terminates

the

innermost

DO

or

DO

WHILE

construct

only.

If

a

DO

or

DO

WHILE

statement

does

not

specify

a

statement

label,

the

terminal

statement

of

the

DO

or

DO

WHILE

construct

must

be

an

END

DO

statement.

You

can

branch

to

an

END

DO,

END

IF,

or

END

SELECT

statement

from

within

the

DO

(or

DO

WHILE),

IF,

or

CASE

construct,

respectively.

An

END

IF

statement

can

also

be

branched

to

from

outside

of

the

IF

construct.

Fortran

95

In

Fortran

95,

an

END

IF

statement

cannot

be

branched

to

from

outside

of

the

IF

construct.

End

of

Fortran

95

If

you

specify

a

construct

name

on

the

statement

that

begins

the

construct,

the

END

statement

that

terminates

the

construct

must

have

the

same

construct

name.

Conversely,

if

you

do

not

specify

a

construct

name

on

the

statement

that

begins

the

construct,

you

must

not

specify

a

construct

name

on

the

END

statement.

An

END

WHERE

statement

must

not

be

a

branch

target

statement.

Examples

INTEGER

X(100,100)

DECR:

DO

WHILE

(I.GT.0)

...

IF

(J.LT.K)

THEN

...

END

IF

!

Cannot

reference

a

construct

name

I=I-1

END

DO

DECR

!

Reference

to

construct

name

DECR

mandatory

END

END

(Construct)

278

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

The

following

example

shows

an

invalid

use

of

the

where_construct_name:

BW:

WHERE

(A

/=

0)

B

=

B

+

1

END

WHERE

EW

!

The

where_construct_name

on

the

END

WHERE

statement

!

does

not

match

the

where_construct_name

on

the

WHERE

!

statement.

Related

Information

v

“Control

Structures”

on

page

117

v

“DO”

on

page

263

v

“FORALL”

on

page

289

v

“FORALL

(Construct)”

on

page

292

v

“IF

(Block)”

on

page

304

v

“SELECT

CASE”

on

page

366

v

“WHERE”

on

page

390

v

“Deleted

Features”

on

page

606

END

INTERFACE

Purpose

The

END

INTERFACE

statement

terminates

a

procedure

interface

block.

Syntax

Fortran

95

generic_spec

End

of

Fortran

95

Fortran

95

defined_operator

is

a

defined

unary

operator,

defined

binary

operator,

or

extended

intrinsic

��

END

INTERFACE

(1)

generic_spec

��

Notes:

1 Fortran

95.

��

generic_name

OPERATOR

(

defined_operator

)

ASSIGNMENT

(

=

)

��

END

(Construct)

Statements

and

Attributes

279

operator

End

of

Fortran

95

Rules

Each

INTERFACE

statement

must

have

a

corresponding

END

INTERFACE

statement.

An

END

INTERFACE

statement

without

a

generic_spec

can

match

any

INTERFACE

statement,

with

or

without

a

generic_spec.

Fortran

95

If

the

generic_spec

in

an

END

INTERFACE

statement

is

a

generic_name,

the

generic_spec

of

the

corresponding

INTERFACE

statement

must

be

the

same

generic_name.

If

the

generic_spec

in

an

END

INTERFACE

statement

is

an

OPERATOR(defined_operator),

the

generic_spec

of

the

corresponding

INTERFACE

statement

must

be

the

same

OPERATOR(defined_operator).

If

the

generic_spec

in

an

END

INTERFACE

statement

is

an

ASSIGNMENT(=),

the

generic_spec

for

the

corresponding

INTERFACE

statement

must

be

the

same

ASSIGNMENT(=).

End

of

Fortran

95

Examples

INTERFACE

OPERATOR

(.DETERMINANT.)

FUNCTION

DETERMINANT

(X)

INTENT(IN)

X

REAL

X(50,50),

DETERMINANT

END

FUNCTION

END

INTERFACE

Fortran

95

INTERFACE

OPERATOR(.INVERSE.)

FUNCTION

INVERSE(Y)

INTENT(IN)

Y

REAL

Y(50,50),

INVERSE

END

FUNCTION

END

INTERFACE

OPERATOR(.INVERSE.)

End

of

Fortran

95

Related

Information

v

“INTERFACE”

on

page

320

v

“Interface

Concepts”

on

page

136

END

TYPE

Purpose

The

END

TYPE

statement

indicates

the

completion

of

a

derived-type

definition.

END

INTERFACE

280

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Syntax

Rules

If

type_name

is

specified,

it

must

match

the

type_name

in

the

corresponding

Derived

Type

statement.

If

a

label

is

specified

on

the

END

TYPE

statement,

the

label

belongs

to

the

scoping

unit

of

the

derived-type

definition.

Examples

TYPE

A

INTEGER

::

B

REAL

::

C

END

TYPE

A

Related

Information

v

“Derived

Types”

on

page

33

ENDFILE

Purpose

The

ENDFILE

statement

writes

an

endfile

record

as

the

next

record

of

an

external

file

connected

for

sequential

access.

This

record

becomes

the

last

record

in

the

file.

An

ENDFILE

statement

for

a

file

connected

for

stream

access

causes

the

terminal

point

to

become

the

current

file

position.

File

storage

units

before

the

current

position

are

considered

written,

and

can

be

read.

You

can

write

additional

data

to

the

file

by

using

subsequent

stream

output

statements.

Syntax

u

is

an

external

unit

identifier.

The

value

of

u

must

not

be

an

asterisk

or

a

Hollerith

constant.

position_list

is

a

list

that

must

contain

one

unit

specifier

([UNIT=]u)

and

can

also

contain

one

of

each

of

the

other

valid

specifiers:

[UNIT=]

u

is

a

unit

specifier

in

which

u

must

be

an

external

unit

identifier

whose

value

is

not

an

asterisk.

An

external

unit

identifier

refers

to

an

external

file

that

is

represented

by

a

scalar

integer

expression,

whose

value

is

in

the

��

END

TYPE

type_name

��

��

ENDFILE

u

(

position_list

)

��

END

TYPE

Statements

and

Attributes

281

range

1

through

2147483647.

If

the

optional

characters

UNIT=

are

omitted,

u

must

be

the

first

item

in

position_list.

IOSTAT=

ios

is

an

input/output

status

specifier

that

specifies

the

status

of

the

input/output

operation.

ios

is

a

scalar

variable

of

type

INTEGER(4)

or

default

integer.

When

the

ENDFILE

statement

finishes

executing,

ios

is

defined

with:

v

A

zero

value

if

no

error

condition

occurs

v

A

positive

value

if

an

error

occurs.

ERR=

stmt_label

is

an

error

specifier

that

specifies

the

statement

label

of

an

executable

statement

in

the

same

scoping

unit

to

which

control

is

to

transfer

in

the

case

of

an

error.

Coding

the

ERR=

specifier

suppresses

error

messages.

Rules

IBM

Extension

If

the

unit

is

not

connected,

an

implicit

OPEN

specifying

sequential

access

is

performed

to

a

default

file

named

fort.n,

where

n

is

the

value

of

u

with

leading

zeros

removed.

If

two

ENDFILE

statements

are

executed

for

the

same

file

without

an

intervening

REWIND

or

BACKSPACE

statement,

the

second

ENDFILE

statement

is

ignored.

End

of

IBM

Extension

After

execution

of

an

ENDFILE

statement

for

a

file

connected

for

sequential

access,

a

BACKSPACE

or

REWIND

statement

must

be

used

to

reposition

the

file

prior

to

execution

of

any

data

transfer

input/output

statement.

If

the

ERR=

and

IOSTAT=

specifiers

are

set

and

an

error

is

encountered,

transfer

is

made

to

the

statement

specified

by

the

ERR=

specifier

and

a

positive

integer

value

is

assigned

to

ios.

IBM

Extension

If

IOSTAT=

and

ERR=

are

not

specified,

v

The

program

stops

if

a

severe

error

is

encountered.

v

The

program

continues

to

the

next

statement

if

a

recoverable

error

is

encountered

and

the

ERR_RECOVERY

run-time

option

is

set

to

YES.

If

the

option

is

set

to

NO,

the

program

stops.

End

of

IBM

Extension

Examples

ENDFILE

12

ENDFILE

(IOSTAT=IOSS,UNIT=11)

Related

Information

v

“Conditions

and

IOSTAT

Values”

on

page

181

v

“Understanding

XL

Fortran

Input/Output”

on

page

173

ENDFILE

282

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

v

Setting

Run-time

Options

in

the

User’s

Guide

ENTRY

Purpose

A

function

subprogram

or

subroutine

subprogram

has

a

primary

entry

point

that

is

established

through

the

SUBROUTINE

or

FUNCTION

statement.

The

ENTRY

statement

establishes

an

alternate

entry

point

for

an

external

subprogram

or

a

module

subprogram.

Syntax

entry_name

is

the

name

of

an

entry

point

in

a

function

subprogram

or

subroutine

subprogram

Rules

The

ENTRY

statement

cannot

appear

in

a

main

program,

block

data

program

unit,

internal

subprogram,

IF

construct,

DO

construct,

CASE

construct,

derived-type

definition,

or

interface

block.

An

ENTRY

statement

can

appear

anywhere

after

the

FUNCTION

or

SUBROUTINE

statement

(and

after

any

USE

statements)

of

an

external

or

module

subprogram,

except

in

a

statement

block

within

a

control

construct,

in

a

derived-type

definition,

or

in

an

interface

block.

ENTRY

statements

are

nonexecutable

and

do

not

affect

control

sequencing

during

the

execution

of

a

subprogram.

The

result

variable

is

result_name,

if

specified;

otherwise,

it

is

entry_name.

If

the

characteristics

of

the

ENTRY

statement’s

result

variable

are

the

same

as

those

of

the

FUNCTION

statement’s

result

variable,

the

result

variables

identify

the

same

variable,

even

though

they

can

have

different

names.

Otherwise,

they

are

storage-associated

and

must

be

all

nonpointer,

nonallocatable

scalars

of

intrinsic

(noncharacter)

type.

result_name

can

be

the

same

as

the

result

variable

name

specified

for

the

FUNCTION

statement

or

another

ENTRY

statement.

The

result

variable

cannot

be

specified

in

a

COMMON,

DATA,

integer

POINTER,

or

EQUIVALENCE

statement,

nor

can

it

have

the

PARAMETER,

INTENT,

OPTIONAL,

SAVE,

or

VOLATILE

attributes.

The

STATIC

and

AUTOMATIC

attributes

can

be

specified

only

when

the

result

variable

is

not

an

allocatable

object,

an

array

or

a

pointer,

and

is

not

of

character

or

derived

type.

��

ENTRY

entry_name

�

�

(

)

dummy_argument_list

RESULT

(

result_name

)

��

ENDFILE

Statements

and

Attributes

283

If

the

RESULT

keyword

is

specified,

the

ENTRY

statement

must

be

within

a

function

subprogram,

entry_name

must

not

appear

in

any

specification

statement

in

the

scope

of

the

function

subprogram,

and

result_name

cannot

be

the

same

as

entry_name.

A

result

variable

must

not

be

initialized

in

a

type

declaration

statement

or

DATA

statement.

The

entry

name

in

an

external

subprogram

is

a

global

entity;

an

entry

name

in

a

module

subprogram

is

not

a

global

entity.

An

interface

for

an

entry

can

appear

in

an

interface

block

only

when

the

entry

name

is

used

as

the

procedure

name

in

an

interface

body.

In

a

function

subprogram,

entry_name

identifies

a

function

and

can

be

referenced

as

a

function

from

the

calling

procedure.

In

a

subroutine

subprogram,

entry_name

identifies

a

subroutine

and

can

be

referenced

as

a

subroutine

from

the

calling

procedure.

When

the

reference

is

made,

execution

begins

with

the

first

executable

statement

following

the

ENTRY

statement.

The

result

variable

must

be

defined

prior

to

exiting

from

the

function,

when

the

function

is

invoked

through

that

entry.

A

name

in

the

dummy_argument_list

must

not

appear

in

the

following

places:

v

In

an

executable

statement

preceding

the

ENTRY

statement

unless

it

also

appears

in

a

FUNCTION,

SUBROUTINE,

or

ENTRY

statement

that

precedes

the

executable

statement.

v

In

the

expression

of

a

statement

function

statement,

unless

the

name

is

also

a

dummy

argument

of

the

statement

function,

appears

in

a

FUNCTION

or

SUBROUTINE

statement,

or

appears

in

an

ENTRY

statement

that

precedes

the

statement

function

statement.

The

order,

number,

type,

and

kind

type

parameters

of

the

dummy

arguments

can

differ

from

those

of

the

FUNCTION

or

SUBROUTINE

statement,

or

other

ENTRY

statements.

If

a

dummy

argument

is

used

in

a

specification

expression

to

specify

an

array

bound

or

character

length

of

an

object,

you

can

only

specify

the

object

in

a

statement

that

is

executed

during

a

procedure

reference

if

the

dummy

argument

is

present

and

appears

in

the

dummy

argument

list

of

the

procedure

name

referenced.

Recursion

An

ENTRY

statement

can

reference

itself

directly

only

if

the

subprogram

statement

specifies

RECURSIVE

and

the

ENTRY

statement

specifies

RESULT.

The

entry

procedure

then

has

an

explicit

interface

within

the

subprogram.

The

RESULT

clause

is

not

required

for

an

entry

to

reference

itself

indirectly.

Fortran

95

Elemental

subprograms

can

have

ENTRY

statements,

but

the

ENTRY

statement

cannot

have

the

ELEMENTAL

prefix.

The

procedure

defined

by

the

ENTRY

statement

is

elemental

if

the

ELEMENTAL

prefix

is

specified

in

the

SUBROUTINE

or

FUNCTION

statement.

End

of

Fortran

95

ENTRY

284

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

If

entry_name

is

of

type

character,

its

length

cannot

be

an

asterisk

if

the

function

is

recursive.

IBM

Extension

You

can

also

call

external

procedures

recursively

when

you

specify

the

-qrecur

compiler

option,

although

XL

Fortran

disregards

this

option

if

a

procedure

specifies

either

the

RECURSIVE

or

RESULT

keyword.

End

of

IBM

Extension

Examples

RECURSIVE

FUNCTION

FNC()

RESULT

(RES)

...

ENTRY

ENT

()

RESULT

(RES)

!

The

result

variable

name

can

be

!

the

same

as

for

the

function

...
END

FUNCTION

Related

Information

v

“FUNCTION”

on

page

298

v

“SUBROUTINE”

on

page

372

v

“Recursion”

on

page

166

v

“Dummy

Arguments”

on

page

155

v

-qrecur

Option

in

the

User’s

Guide

EQUIVALENCE

Purpose

The

EQUIVALENCE

statement

specifies

that

two

or

more

objects

in

a

scoping

unit

are

to

share

the

same

storage.

Syntax

equiv_object

is

a

variable

name,

array

element,

or

substring.

Any

subscript

or

substring

expression

must

be

an

integer

initialization

expression.

Rules

equiv_object

must

not

be

a

target,

pointer,

dummy

argument,

function

name,

pointee,

entry

name,

result

name,

structure

component,

named

constant,

automatic

data

object,

allocatable

object,

object

of

nonsequence

derived

type,

object

of

sequence

derived

type

that

contains

a

pointer

or

allocatable

component,

or

a

subobject

of

any

of

these.

��

�

,

EQUIVALENCE

(

equiv_object

,

equiv_object_list

)

��

ENTRY

Statements

and

Attributes

285

Because

all

items

named

within

a

pair

of

parentheses

have

the

same

first

storage

unit,

they

become

associated.

This

is

called

equivalence

association.

It

may

cause

the

association

of

other

items

as

well.

You

can

specify

default

initialization

for

a

storage

unit

that

is

storage

associated.

However,

the

objects

or

subobjects

supplying

the

default

initialization

must

be

of

the

same

type.

They

must

also

be

of

the

same

type

parameters

and

supply

the

same

value

for

the

storage

unit.

If

you

specify

an

array

element

in

an

EQUIVALENCE

statement,

the

number

of

subscript

quantities

cannot

exceed

the

number

of

dimensions

in

the

array.

If

you

specify

a

multidimensional

array

using

an

array

element

with

a

single

subscript

n,

the

n

element

in

the

array’s

storage

sequence

is

specified.

In

all

other

cases,

XL

Fortran

replaces

any

missing

subscript

with

the

lower

bound

of

the

corresponding

dimension

of

the

array.

A

nonzero-sized

array

without

a

subscript

refers

to

the

first

element

of

the

array.

If

equiv_object

is

of

derived

type,

it

must

be

of

a

sequence

derived

type.

IBM

Extension

You

can

equivalence

an

object

of

sequence

derived

type

with

any

other

object

of

sequence

derived

type

or

intrinsic

data

type

provided

that

the

object

is

allowed

in

an

EQUIVALENCE

statement.

In

XL

Fortran,

associated

items

can

be

of

any

intrinsic

type

or

of

sequence

derived

type.

If

they

are,

the

EQUIVALENCE

statement

does

not

cause

type

conversion.

End

of

IBM

Extension

The

lengths

of

associated

items

do

not

have

to

be

equal.

Any

zero-sized

items

are

storage-associated

with

one

another

and

with

the

first

storage

unit

of

any

nonzero-sized

sequences.

An

EQUIVALENCE

statement

cannot

associate

the

storage

sequences

of

two

different

common

blocks.

It

must

not

specify

that

the

same

storage

unit

is

to

occur

more

than

once

in

a

storage

sequence.

An

EQUIVALENCE

statement

must

not

contradict

itself

or

any

previously

established

associations

caused

by

an

EQUIVALENCE

statement.

You

can

cause

names

not

in

common

blocks

to

share

storage

with

a

name

in

a

common

block

using

the

EQUIVALENCE

statement.

If

you

specify

that

an

object

declared

by

an

EQUIVALENCE

group

has

the

PROTECTED

attribute,

all

objects

specified

in

that

EQUIVALENCE

group

must

have

the

PROTECTED

attribute.

You

can

extend

a

common

block

by

using

an

EQUIVALENCE

statement,

but

only

by

adding

beyond

the

last

entry,

not

before

the

first

entry.

For

example,

if

the

variable

that

you

associate

to

a

variable

in

a

common

block,

using

the

EQUIVALENCE

statement,

is

an

element

of

an

array,

the

implicit

association

of

the

rest

of

the

elements

of

the

array

can

extend

the

size

of

the

common

block.

EQUIVALENCE

286

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Examples

DOUBLE

PRECISION

A(3)

REAL

B(5)

EQUIVALENCE

(A,B(3))

Association

of

storage

units:

|

|

|

|

|

|

|

|

|

Array

A:

|

A(1)

|

A(2)

|

A(3)

|

Array

B:

|

B(1)

|

B(2)

|

B(3)

|

B(4)

|

B(5)

|

This

example

shows

how

association

of

two

items

can

result

in

further

association.

AUTOMATIC

A

CHARACTER

A*4,B*4,C(2)*3

EQUIVALENCE

(A,C(1)),(B,C(2))

Association

of

storage

units:

|

|

|

|

|

|

|

|

Variable

A:

|

A

|

Variable

B:

|

B

|

Array

C:

|

C(1)

|

C(2)

|

Because

XL

Fortran

associates

both

A

and

B

with

C,

A

and

B

become

associated

with

each

other,

and

they

all

have

the

automatic

storage

class.

INTEGER(4)

G(2,-1:2,-3:2)

REAL(4)

H(3,1:3,2:3)

EQUIVALENCE

(G(2),H(1,1))

!

G(2)

is

G(2,-1,-3)

!

H(1,1)

is

H(1,1,2)

Related

Information

v

“Storage

Classes

for

Variables”

on

page

62

v

“Definition

Status

of

Variables”

on

page

57

EXIT

Purpose

The

EXIT

statement

terminates

execution

of

a

DO

construct

or

DO

WHILE

construct

before

the

construct

completes

all

of

its

iterations.

Syntax

DO_construct_name

is

the

name

of

the

DO

or

DO

WHILE

construct

Rules

The

EXIT

statement

is

placed

within

a

DO

or

DO

WHILE

construct

and

belongs

to

the

DO

or

DO

WHILE

construct

specified

by

DO_construct_name

or,

if

not

��

EXIT

DO_construct_name

��

EQUIVALENCE

Statements

and

Attributes

287

specified,

by

the

DO

or

DO

WHILE

construct

that

immediately

surrounds

it.

When

a

DO_construct_name

is

specified,

the

EXIT

statement

must

be

in

the

range

of

that

construct.

When

the

EXIT

statement

is

executed,

the

DO

or

DO

WHILE

construct

that

the

EXIT

statement

belongs

to

becomes

inactive.

If

the

EXIT

statement

is

nested

in

any

other

DO

or

DO

WHILE

constructs,

they

also

become

inactive.

Any

DO

variable

present

retains

its

last

defined

value.

If

the

DO

construct

has

no

construct

control,

it

will

iterate

infinitely

unless

it

becomes

inactive.

The

EXIT

statement

can

be

used

to

make

the

construct

inactive.

An

EXIT

statement

can

have

a

statement

label;

it

cannot

be

used

as

the

labeled

statement

that

terminates

a

DO

or

DO

WHILE

construct.

Examples

LOOP1:

DO

I

=

1,

20

N

=

N

+

1

10

IF

(N

>

NMAX)

EXIT

LOOP1

!

EXIT

from

LOOP1

LOOP2:

DO

WHILE

(K==1)

KMAX

=

KMAX

-

1

20

IF

(K

>

KMAX)

EXIT

!

EXIT

from

LOOP2

END

DO

LOOP2

LOOP3:

DO

J

=

1,

10

N

=

N

+

1

30

IF

(N

>

NMAX)

EXIT

LOOP1

!

EXIT

from

LOOP1

EXIT

LOOP3

!

EXIT

from

LOOP3

END

DO

LOOP3

END

DO

LOOP1

Related

Information

v

“DO

Construct”

on

page

121

v

“DO

WHILE

Construct”

on

page

125

EXTERNAL

Purpose

The

EXTERNAL

attribute

specifies

that

a

name

represents

an

external

procedure,

a

dummy

procedure,

or

a

block

data

program

unit.

A

procedure

name

with

the

EXTERNAL

attribute

can

be

used

as

an

actual

argument.

Syntax

name

is

the

name

of

an

external

procedure,

dummy

procedure,

or

BLOCK

DATA

program

unit

��

EXTERNAL

name_list

::

��

EXIT

288

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Rules

If

an

external

procedure

name

or

dummy

argument

name

is

used

as

an

actual

argument,

it

must

be

declared

with

the

EXTERNAL

attribute

or

by

an

interface

block

in

the

scoping

unit,

but

may

not

appear

in

both.

If

an

intrinsic

procedure

name

is

specified

with

the

EXTERNAL

attribute

in

a

scoping

unit,

the

name

becomes

the

name

of

a

user-defined

external

procedure.

Therefore,

you

cannot

invoke

that

intrinsic

procedure

by

that

name

from

that

scoping

unit.

You

can

specify

a

name

to

have

the

EXTERNAL

attribute

appear

only

once

in

a

scoping

unit.

A

name

in

an

EXTERNAL

statement

must

not

also

be

specified

as

a

specific

procedure

name

in

an

interface

block

in

the

scoping

unit.

Attributes

Compatible

with

the

EXTERNAL

Attribute

v

OPTIONAL

v

PRIVATE

v

PUBLIC

Examples

PROGRAM

MAIN

EXTERNAL

AAA

CALL

SUB(AAA)

!

Procedure

AAA

is

passed

to

SUB

END

SUBROUTINE

SUB(ARG)

CALL

ARG()

!

This

results

in

a

call

to

AAA

END

SUBROUTINE

Related

Information

v

“Procedures

as

Dummy

Arguments”

on

page

163

v

Item

4

under

Appendix

A,

“Compatibility

Across

Standards,”

on

page

603

FORALL

Fortran

95

Purpose

The

FORALL

statement

performs

assignment

to

groups

of

subobjects,

especially

array

elements.

Unlike

the

WHERE

statement,

assignment

can

be

performed

on

an

elemental

level

rather

than

on

an

array

level.

The

FORALL

statement

also

allows

pointer

assignment.

Syntax

��

FORALL

forall_header

forall_assignment

��

EXTERNAL

Statements

and

Attributes

289

forall_header

forall_triplet_spec

forall_assignment

is

either

assignment_statement

or

pointer_assignment_statement

scalar_mask_expr

is

a

scalar

logical

expression

subscript,

stride

are

each

scalar

integer

expressions

Rules

Only

pure

procedures

can

be

referenced

in

the

mask

expression

of

forall_header

and

in

a

forall_assignment

(including

one

referenced

by

a

defined

operation

or

assignment).

index_name

must

be

a

scalar

integer

variable.

It

is

also

a

statement

entity;

that

is,

it

does

not

affect

and

is

not

affected

by

other

entities

in

the

scoping

unit.

In

forall_triplet_spec_list,

neither

a

subscript

nor

a

stride

can

contain

a

reference

to

any

index_name

in

the

forall_triplet_spec_list.

Evaluation

of

any

expression

in

forall_header

must

not

affect

evaluation

of

any

other

expression

in

forall_header.

Given

the

forall_triplet_spec

index1

=

s1:s2:s3

the

maximum

number

of

index

values

is

determined

by:

max

=

INT((s2-s1+s3)/s3)

If

the

stride

(s3

above)

is

not

specified,

a

value

of

1

is

assumed.

If

max

≤

0

for

any

index,

forall_assignment

is

not

executed.

For

example,

index1

=

2:10:3

!

The

index

values

are

2,5,8.

max

=

INT((10-2+3)/3)

=

3.

index2

=

6:2:-1

!

The

index

values

are

6,5,4,3,2.

index2

=

6:2

!

No

index

values.

If

the

mask

expression

is

omitted,

a

value

of

.TRUE.

is

assumed.

No

atomic

object

can

be

assigned

to

more

than

once.

Assignment

to

a

nonatomic

object

assigns

to

all

subobjects

or

associates

targets

with

all

subobjects.

��

(

forall_triplet_spec_list

)

,

scalar_mask_expr

��

��

index_name

=

subscript

:

subscript

:

stride

��

FORALL

(Fortran

95)

290

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Interpreting

the

FORALL

Statement

1.

Evaluate

the

subscript

and

stride

expressions

for

each

forall_triplet_spec

in

any

order.

All

possible

pairings

of

index_name

values

form

the

set

of

combinations.

For

example,

given

the

following

statement:

FORALL

(I=1:3,J=4:5)

A(I,J)

=

A(J,I)

The

set

of

combinations

of

I

and

J

is:

{(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)}

The

-1

and

-qnozerosize

compiler

options

do

not

affect

this

step.

2.

Evaluate

the

scalar_mask_expr

for

the

set

of

combinations,

in

any

order,

producing

a

set

of

active

combinations

(those

for

which

scalar_mask_expr

evaluated

to

.TRUE.).

For

example,

if

the

mask

(I+J.NE.6)

is

applied

to

the

above

set,

the

set

of

active

combinations

is:

{(1,4),(2,5),(3,4),(3,5)}

3.

For

assignment_statement,

evaluate,

in

any

order,

all

values

in

the

right-hand

side

expression

and

all

subscripts,

strides,

and

substring

bounds

in

the

left-hand

side

variable

for

all

active

combinations

of

index_name

values.

For

pointer_assignment,

determine,

in

any

order,

what

will

be

the

targets

of

the

pointer

assignment

and

evaluate

all

subscripts,

strides,

and

substring

bounds

in

the

pointer

for

all

active

combinations

of

index_name

values.

Whether

or

not

the

target

is

a

pointer,

the

determination

of

the

target

does

not

include

evaluation

of

its

value.

4.

For

assignment_statement,

assign,

in

any

order,

the

computed

expression

values

to

the

corresponding

variable

entities

for

all

active

combinations

of

index_name

values.

For

pointer_assignment,

associate,

in

any

order,

all

targets

with

the

corresponding

pointer

entities

for

all

active

combinations

of

index_name

values.

Examples

INTEGER

A(1000,1000),

B(200)

I=17

FORALL

(I=1:1000,J=1:1000,I.NE.J)

A(I,J)=A(J,I)

PRINT

*,

I

!

The

value

17

is

printed

because

the

I

!

in

the

FORALL

has

statement

scope.

FORALL

(N=1:200:2)

B(N)=B(N+1)

END

Related

Information

v

“Intrinsic

Assignment”

on

page

101

v

“Pointer

Assignment”

on

page

113

v

“FORALL

Construct”

on

page

110

v

“INDEPENDENT”

on

page

406

v

“Statement

and

Construct

Entities”

on

page

130

End

of

Fortran

95

FORALL

(Fortran

95)

Statements

and

Attributes

291

FORALL

(Construct)

Fortran

95

Purpose

The

FORALL

(Construct)

statement

is

the

first

statement

of

the

FORALL

construct.

Syntax

forall_header

forall_triplet_spec

scalar_mask_expr

is

a

scalar

logical

expression

subscript,

stride

are

both

scalar

integer

expressions

Rules

Any

procedures

that

are

referenced

in

the

mask

expression

of

forall_header

(including

one

referenced

by

a

defined

operation

or

assignment)

must

be

pure.

The

index_name

must

be

a

scalar

integer

variable.

The

scope

of

index_name

is

the

whole

FORALL

construct.

In

forall_triplet_spec_list,

neither

a

subscript

nor

a

stride

can

contain

a

reference

to

any

index_name

in

the

forall_triplet_spec_list.

Evaluation

of

any

expression

in

forall_header

must

not

affect

evaluation

of

any

other

expression

in

forall_header.

Given

the

following

forall_triplet_spec:

index1

=

s1:s2:s3

The

maximum

number

of

index

values

is

determined

by:

max

=

INT((s2-s1+s3)/s3)

If

the

stride

(s3

above)

is

not

specified,

a

value

of

1

is

assumed.

If

max

≤

0

for

any

index,

forall_assignment

is

not

executed.

For

example:

��

FORALL

FORALL_construct_name

:

forall_header

��

��

(

forall_triplet_spec_list

,

scalar_mask_expr

)

��

��

index_name

=

subscript

:

subscript

:

stride

��

FORALL

-

Construct

292

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

index1

=

2:10:3

!

The

index

values

are

2,5,8.

!

max

=

floor(((10-2)/3)+1)

=

3.

index2

=

6:2:-1

!

The

index

values

are

6,5,4,3,2.

index2

=

6:2

!

No

index

values.

If

the

mask

expression

is

omitted,

a

value

of

.TRUE.

is

assumed.

Examples

POSITIVE:

FORALL

(X=1:100,A(X)>0)

I(X)=I(X)+J(X)

J(X)=J(X)-I(X+1)

END

FORALL

POSITIVE

Related

Information

v

“END

(Construct)”

on

page

277

v

“FORALL

Construct”

on

page

110

v

“Statement

and

Construct

Entities”

on

page

130

End

of

Fortran

95

FORMAT

Purpose

The

FORMAT

statement

provides

format

specifications

for

input/output

statements.

Syntax

format_item

r

is

an

unsigned,

positive,

integer

literal

constant

that

cannot

specify

a

kind

type

parameter,

or

it

is

a

scalar

integer

expression

enclosed

by

angle

brackets

(<

and

>).

It

is

called

a

repeat

specification.

It

specifies

the

number

of

times

to

repeat

the

format_item_list

or

the

data_edit_desc.

The

default

is

1.

data_edit_desc

is

a

data

edit

descriptor

��

FORMAT

(

)

format_item_list

��

��

data_edit_desc

r

control_edit_desc

(

format_item_list

)

r

char_string_edit_desc

��

FORALL

-

Construct

Statements

and

Attributes

293

control_edit_desc

is

a

control

edit

descriptor

char_string_edit_desc

is

a

character

string

edit

descriptor

Data

Edit

Descriptors

Forms

Use

Page

A

Aw

Edits

character

values

191

Bw

Bw.m

Edits

binary

values

191

Ew.d

Ew.dEe

Ew.dDe

*

Ew.dQe

*

Dw.d

ENw.d

ENw.dEe

ESw.d

ESw.dEe

Qw.d

*

Edits

real

and

complex

numbers

with

exponents

193

Fw.d

Edits

real

and

complex

numbers

without

exponents

197

Gw.d

Gw.dEe

Gw.dDe

*

Gw.dQe

*

Edits

data

fields

of

any

intrinsic

type,

with

the

output

format

adapting

to

the

type

of

the

data

and,

if

the

data

is

of

type

real,

the

magnitude

of

the

data

198

Iw

Iw.m

Edits

integer

numbers

200

Lw

Edits

logical

values

201

Ow

Ow.m

Edits

octal

values

201

Q

*

Returns

the

count

of

characters

remaining

in

an

input

record

*

203

Zw

Zw.m

Edits

hexadecimal

values

204

Note:

*

IBM

Extensions

where:

w

specifies

the

width

of

a

field,

including

all

blanks.

It

must

be

positive

except

in

Fortran

95,

where

it

can

be

zero

for

I,

B,

O,

Z,

and

F

edit

descriptors

on

output.

m

specifies

the

number

of

digits

to

be

printed

d

specifies

the

number

of

digits

to

the

right

of

the

decimal

point

e

specifies

the

number

of

digits

in

the

exponent

field

w,

m,

d,

and

e

can

be:

FORMAT

294

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

v

An

unsigned

integer

literal

constant

IBM

Extension

v

A

scalar

integer

expression

enclosed

by

angle

brackets

(<

and

>).

See

“Variable

Format

Expressions”

on

page

297

for

details.

End

of

IBM

Extension

You

cannot

specify

kind

parameters

for

w,

m,

d,

or

e.

IBM

Extension

Note:

There

are

two

types

of

Q

data

edit

descriptor

(Qw.d

and

Q):

extended

precision

Q

is

the

Q

edit

descriptor

whose

syntax

is

Qw.d

character

count

Q

is

the

Q

edit

descriptor

whose

syntax

is

Q

End

of

IBM

Extension

Control

Edit

Descriptors

Forms

Use

Page

/

r

/

Specifies

the

end

of

data

transfer

on

the

current

record

205

:

Specifies

the

end

of

format

control

if

there

are

no

more

items

in

the

input/output

list

206

$

*

Suppresses

end-of-record

in

output

*

206

*

BN

Ignores

nonleading

blanks

in

numeric

input

fields

207

BZ

Interprets

nonleading

blanks

in

numeric

input

fields

as

zeros

207

kP

Specifies

a

scale

factor

for

real

and

complex

items

209

S

SS

Specifies

that

plus

signs

are

not

to

be

written

209

SP

Specifies

that

plus

signs

are

to

be

written

209

Tc

Specifies

the

absolute

position

in

a

record

from

which,

or

to

which,

the

next

character

is

transferred

210

TLc

Specifies

the

relative

position

(backward

from

the

current

position

in

a

record)

from

which,

or

to

which,

the

next

character

is

transferred

210

TRc

Specifies

the

relative

position

(forward

from

the

current

position

in

a

record)

from

which,

or

to

which,

the

next

character

is

transferred

210

oX

Specifies

the

relative

position

(forward

from

the

current

position

in

a

record)

from

which,

or

to

which,

the

next

character

is

transferred

210

Note:

*

IBM

Extension

FORMAT

Statements

and

Attributes

295

where:

r

is

a

repeat

specifier.

It

is

an

unsigned,

positive,

integer

literal

constant.

k

specifies

the

scale

factor

to

be

used.

It

is

an

optionally

signed,

integer

literal

constant.

c

specifies

the

character

position

in

a

record.

It

is

an

unsigned,

nonzero,

integer

literal

constant.

o

is

the

relative

character

position

in

a

record.

It

is

an

unsigned,

nonzero,

integer

literal

constant.

IBM

Extension

r,

k,

c,

and

o

can

also

be

expressed

as

an

arithmetic

expression

enclosed

by

angle

brackets

(<

and

>)

that

evaluates

into

an

integer

value.

End

of

IBM

Extension

Kind

type

parameters

cannot

be

specified

for

r,

k,

c,

or

o.

Character

String

Edit

Descriptors

Forms

Use

Page

nHstr

Outputs

a

character

string

(str)

208

’str’

″str″

Outputs

a

character

string

(str)

207

n

is

the

number

of

characters

in

a

literal

field.

It

is

an

unsigned,

positive,

integer

literal

constant.

Blanks

are

included

in

character

count.

A

kind

type

parameter

cannot

be

specified.

Rules

When

a

format

identifier

in

a

formatted

READ,

WRITE,

or

PRINT

statement

is

a

statement

label

or

a

variable

that

is

assigned

a

statement

label,

the

statement

label

identifies

a

FORMAT

statement.

The

FORMAT

statement

must

have

a

statement

label.

FORMAT

statements

cannot

appear

in

block

data

program

units,

interface

blocks,

the

scope

of

a

module,

or

derived-type

definitions.

Commas

separate

edit

descriptors.

You

can

omit

the

comma

between

a

P

edit

descriptor

and

an

F,

E,

EN,

ES,

D,

G,

or

Q

(both

extended

precision

and

character

count)

edit

descriptor

immediately

following

it,

before

a

slash

edit

descriptor

when

the

optional

repeat

specification

is

not

present,

after

a

slash

edit

descriptor,

and

before

or

after

a

colon

edit

descriptor.

FORMAT

specifications

can

also

be

given

as

character

expressions

in

input/output

statements.

XL

Fortran

treats

uppercase

and

lowercase

characters

in

format

specifications

the

same,

except

in

character

string

edit

descriptors.

FORMAT

296

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Character

Format

Specification

When

a

format

identifier

(page

352)

in

a

formatted

READ,

WRITE,

or

PRINT

statement

is

a

character

array

name

or

character

expression,

the

value

of

the

array

or

expression

is

a

character

format

specification.

If

the

format

identifier

is

a

character

array

element

name,

the

format

specification

must

be

completely

contained

within

the

array

element.

If

the

format

identifier

is

a

character

array

name,

the

format

specification

can

continue

beyond

the

first

element

into

following

consecutive

elements.

Blanks

can

precede

the

format

specification.

Character

data

can

follow

the

right

parenthesis

that

ends

the

format

specification

without

affecting

the

format

specification.

Variable

Format

Expressions:

IBM

Extension

Wherever

an

integer

constant

is

required

by

an

edit

descriptor,

you

can

specify

an

integer

expression

in

a

FORMAT

statement.

The

integer

expression

must

be

enclosed

by

angle

brackets

(<

and

>).

You

cannot

use

a

sign

outside

of

a

variable

format

expression.

The

following

are

valid

format

specifications:

WRITE(6,20)

INT1

20

FORMAT(I<MAX(20,5)>)

WRITE(6,FMT=30)

INT2,

INT3

30

FORMAT(I<J+K>,I<2*M>)

The

integer

expression

can

be

any

valid

Fortran

expression,

including

function

calls

and

references

to

dummy

arguments,

with

the

following

restrictions:

v

Expressions

cannot

be

used

with

the

H

edit

descriptor

v

Expressions

cannot

contain

graphical

relational

operators.

The

value

of

the

expression

is

reevaluated

each

time

an

input/output

item

is

processed

during

the

execution

of

the

READ,

WRITE,

or

PRINT

statement.

End

of

IBM

Extension

Examples

CHARACTER*32

CHARVAR

CHARVAR="(’integer:

’,I2,’

binary:

’,B8)"

!

Character

format

M

=

56

!

specification

J

=

1

!

OUTPUT:

X

=

2355.95843

!

WRITE

(6,770)

M,X

!

56

2355.96

WRITE

(6,CHARVAR)

M,M

!

integer:

56

!

binary:

00111000

WRITE

(6,880)

J,M

!

1

!

56

770

FORMAT(I3,

2F10.2)

880

FORMAT(I<J+1>)

END

Related

Information

v

“Input/Output

Formatting”

on

page

187

v

“PRINT”

on

page

344

v

“READ”

on

page

351

FORMAT

Statements

and

Attributes

297

v

“WRITE”

on

page

392

FUNCTION

Purpose

The

FUNCTION

statement

is

the

first

statement

of

a

function

subprogram.

Syntax

prefix

is

one

of

the

following:

type_spec

RECURSIVE

PURE

ELEMENTAL

type_spec

specifies

the

type

and

type

parameters

of

the

function

result.

See

“Type

Declaration”

on

page

378

for

details

about

type_spec.

name

is

the

name

of

the

function

subprogram

IBM

Extension

len

is

either

an

unsigned

integer

literal

or

a

parenthesized

scalar

integer

initialization

expression.

Its

value

specifies

the

length

of

the

function’s

result

variable.

It

can

be

included

only

when

the

type

is

specified

in

the

FUNCTION

statement.

The

type

cannot

be

DOUBLE

PRECISION,

DOUBLE

COMPLEX,

BYTE,

or

a

derived

type.

End

of

IBM

Extension

Rules

At

most

one

of

each

kind

of

prefix

can

be

specified.

The

type

and

type

parameters

of

the

function

result

can

be

specified

by

either

type_spec

or

by

declaring

the

result

variable

in

the

declaration

part

of

the

function

��

�

prefix

FUNCTION

name

(1)

(2)

*

len

�

�

(

)

dummy_argument_list

RESULT

(

result_name

)

��

Notes:

1 IBM

Extension.

2 IBM

Extension.

FORMAT

298

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

subprogram,

but

not

by

both.

If

they

are

not

specified

at

all,

the

implicit

typing

rules

are

in

effect.

A

length

specifier

cannot

be

specified

by

both

type_spec

and

len.

If

RESULT

is

specified,

result_name

becomes

the

function

result

variable.

name

must

not

be

declared

in

any

specification

statement

in

the

subprogram,

although

it

can

be

referenced.

result_name

must

not

be

the

same

as

name.

If

RESULT

is

not

specified,

name

becomes

the

function

result

variable.

If

the

result

variable

is

an

array

or

pointer,

the

DIMENSION

or

POINTER

attributes,

respectively,

must

be

specified

within

the

function

body.

If

the

function

result

is

a

pointer,

the

shape

of

the

result

variable

determines

the

shape

of

the

value

returned

by

the

function.

If

the

result

variable

is

a

pointer,

the

function

must

either

associate

a

target

with

the

pointer

or

define

the

association

status

of

the

pointer

as

disassociated.

If

the

result

variable

is

not

a

pointer,

the

function

must

define

its

value.

If

the

name

of

an

external

function

is

of

derived

type,

the

derived

type

must

be

a

sequence

derived

type

if

the

type

is

not

use-associated

or

host-associated.

The

function

result

variable

must

not

appear

within

a

variable

format

expression,

nor

can

it

be

specified

in

a

COMMON,

DATA,

integer

POINTER,

or

EQUIVALENCE

statement,

nor

can

it

have

the

PARAMETER,

INTENT,

OPTIONAL,

or

SAVE

attributes.

The

STATIC

and

AUTOMATIC

attributes

can

be

specified

only

when

the

result

variable

is

not

an

allocatable

object,

an

array

or

a

pointer,

and

is

not

of

character

or

derived

type.

The

function

result

variable

is

associated

with

any

entry

procedure

result

variables.

This

is

called

entry

association.

The

definition

of

any

of

these

result

variables

becomes

the

definition

of

all

the

associated

variables

having

that

same

type,

and

is

the

value

of

the

function

regardless

of

the

entry

point.

If

the

function

subprogram

contains

entry

procedures,

the

result

variables

are

not

required

to

be

of

the

same

type

unless

the

type

is

of

character

or

derived

type,

or

if

the

variables

have

the

ALLOCATABLE

or

POINTER

attribute,

or

if

they

are

not

scalars.

The

variable

whose

name

is

used

to

reference

the

function

must

be

in

a

defined

state

when

a

RETURN

or

END

statement

is

executed

in

the

subprogram.

An

associated

variable

of

a

different

type

must

not

become

defined

during

the

execution

of

the

function

reference,

unless

an

associated

variable

of

the

same

type

redefines

it

later

during

execution

of

the

subprogram.

Recursion

The

RECURSIVE

keyword

must

be

specified

if,

directly

or

indirectly:

v

The

function

invokes

itself

v

The

function

invokes

a

function

defined

by

an

ENTRY

statement

in

the

same

subprogram

v

An

entry

procedure

in

the

same

subprogram

invokes

itself

v

An

entry

procedure

in

the

same

subprogram

invokes

another

entry

procedure

in

the

same

subprogram

v

An

entry

procedure

in

the

same

subprogram

invokes

the

subprogram

defined

by

the

FUNCTION

statement.

FUNCTION

Statements

and

Attributes

299

A

function

that

directly

invokes

itself

requires

that

both

the

RECURSIVE

and

RESULT

keywords

be

specified.

The

presence

of

both

keywords

makes

the

procedure

interface

explicit

within

the

subprogram.

If

name

is

of

type

character,

its

length

cannot

be

an

asterisk

if

the

function

is

recursive.

IBM

Extension

If

RECURSIVE

is

specified,

the

result

variable

has

a

default

storage

class

of

automatic.

You

can

also

call

external

procedures

recursively

when

you

specify

the

-qrecur

compiler

option,

although

XL

Fortran

disregards

this

option

if

the

FUNCTION

statement

specifies

either

RECURSIVE

or

RESULT.

End

of

IBM

Extension

Elemental

Procedures

Fortran

95

For

elemental

procedures,

the

keyword

ELEMENTAL

must

be

specified.

If

the

ELEMENTAL

keyword

is

specified,

the

RECURSIVE

keyword

cannot

be

specified.

End

of

Fortran

95

Examples

RECURSIVE

FUNCTION

FACTORIAL

(N)

RESULT

(RES)

INTEGER

RES

IF

(N.EQ.0)

THEN

RES=1

ELSE

RES=N*FACTORIAL(N-1)

END

IF

END

FUNCTION

FACTORIAL

PROGRAM

P

INTERFACE

OPERATOR

(.PERMUTATION.)

ELEMENTAL

FUNCTION

MYPERMUTATION(ARR1,ARR2)

INTEGER

::

MYPERMUTATION

INTEGER,

INTENT(IN)

::

ARR1,ARR2

END

FUNCTION

MYPERMUTATION

END

INTERFACE

INTEGER

PERMVEC(100,150),N(100,150),K(100,150)

...

PERMVEC

=

N

.PERMUTATION.

K

...

END

Related

Information

v

“Function

and

Subroutine

Subprograms”

on

page

150

v

“ENTRY”

on

page

283

v

“Function

Reference”

on

page

151

v

“Dummy

Arguments”

on

page

155

v

“Statement

Function”

on

page

368

v

“Recursion”

on

page

166

FUNCTION

300

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

v

-qrecur

Option

in

the

User’s

Guide

v

“Pure

Procedures”

on

page

167

v

“Elemental

Procedures”

on

page

169

GO

TO

(Assigned)

Purpose

The

assigned

GO

TO

statement

transfers

program

control

to

an

executable

statement,

whose

statement

label

is

designated

in

an

ASSIGN

statement.

Syntax

variable_name

is

a

scalar

variable

name

of

type

INTEGER(4)

or

INTEGER(8)

that

you

have

assigned

a

statement

label

to

in

an

ASSIGN

statement.

stmt_label

is

the

statement

label

of

an

executable

statement

in

the

same

scoping

unit

as

the

assigned

GO

TO.

The

same

statement

label

can

appear

more

than

once

in

stmt_label_list.

Rules

When

the

assigned

GO

TO

statement

is

executed,

the

variable

you

specify

by

variable_name

with

the

value

of

a

statement

label

must

be

defined.

You

must

establish

this

definition

with

an

ASSIGN

statement

in

the

same

scoping

unit

as

the

assigned

GO

TO

statement.

If

the

integer

variable

is

a

dummy

argument

in

a

subprogram,

you

must

assign

it

a

statement

label

in

the

subprogram

in

order

to

use

it

in

an

assigned

GO

TO

in

that

subprogram.

Execution

of

the

assigned

GO

TO

statement

transfers

control

to

the

statement

identified

by

that

statement

label.

If

stmt_label_list

is

present,

the

statement

label

assigned

to

the

variable

specified

by

variable_name

must

be

one

of

the

statement

labels

in

the

list.

The

assigned

GO

TO

cannot

be

the

terminal

statement

of

a

DO

or

DO

WHILE

construct.

Fortran

95

The

assigned

GO

TO

statement

has

been

deleted

in

Fortran

95.

End

of

Fortran

95

Examples

INTEGER

RETURN_LABEL

...
!

Simulate

a

call

to

a

local

procedure

��

GO

TO

variable_name

(

stmt_label_list

)

,

��

FUNCTION

Statements

and

Attributes

301

ASSIGN

100

TO

RETURN_LABEL

GOTO

9000

100

CONTINUE

...
9000

CONTINUE

!

A

"local"

procedure

...

GOTO

RETURN_LABEL

Related

Information

v

“Statement

Labels”

on

page

11

v

“Branching”

on

page

126

v

“Deleted

Features”

on

page

606

GO

TO

(Computed)

Purpose

The

computed

GO

TO

statement

transfers

program

control

to

one

of

possibly

several

executable

statements.

Syntax

stmt_label

is

the

statement

label

of

an

executable

statement

in

the

same

scoping

unit

as

the

computed

GO

TO.

The

same

statement

label

can

appear

more

than

once

in

stmt_label_list.

arith_expr

is

a

scalar

integer

expression.

IBM

Extension

It

can

also

be

real

or

complex.

If

the

value

of

the

expression

is

noninteger,

XL

Fortran

converts

it

to

INTEGER(4)

before

using

it.

End

of

IBM

Extension

Rules

When

a

computed

GO

TO

statement

is

executed,

the

arith_expr

is

evaluated.

The

resulting

value

is

used

as

an

index

into

stmt_label_list.

Control

then

transfers

to

the

statement

whose

statement

label

you

identify

by

the

index.

For

example,

if

the

value

of

arith_expr

is

4,

control

transfers

to

the

statement

whose

statement

label

is

fourth

in

the

stmt_label_list,

provided

there

are

at

least

four

labels

in

the

list.

��

GO

TO

(

stmt_label_list

)

arith_expr

,

��

GO

TO

-

Assigned

302

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

If

the

value

of

arith_expr

is

less

than

1

or

greater

than

the

number

of

statement

labels

in

the

list,

the

GO

TO

statement

has

no

effect

(like

a

CONTINUE

statement),

and

the

next

statement

is

executed.

Examples

INTEGER

NEXT

...

GO

TO

(100,200)

NEXT

10

PRINT

*,’Control

transfers

here

if

NEXT

does

not

equal

1

or

2’

...
100

PRINT

*,’Control

transfers

here

if

NEXT

=

1’

...
200

PRINT

*,’Control

transfers

here

if

NEXT

=

2’

Related

Information

v

“Statement

Labels”

on

page

11

v

“Branching”

on

page

126

GO

TO

(Unconditional)

Purpose

The

unconditional

GO

TO

statement

transfers

program

control

to

a

specified

executable

statement.

Syntax

stmt_label

is

the

statement

label

of

an

executable

statement

in

the

same

scoping

unit

as

the

unconditional

GO

TO

Rules

The

unconditional

GO

TO

statement

transfers

control

to

the

statement

identified

by

stmt_label.

The

unconditional

GO

TO

statement

cannot

be

the

terminal

statement

of

a

DO

or

DO

WHILE

construct.

Examples

REAL(8)

::

X,Y

GO

TO

10

...
10

PRINT

*,

X,Y

END

��

GO

TO

stmt_label

��

GO

TO

-

Computed

Statements

and

Attributes

303

Related

Information

v

“Statement

Labels”

on

page

11

v

“Branching”

on

page

126

IF

(Arithmetic)

Purpose

The

arithmetic

IF

statement

transfers

program

control

to

one

of

three

executable

statements,

depending

on

the

evaluation

of

an

arithmetic

expression.

Syntax

arith_expr

is

a

scalar

arithmetic

expression

of

type

integer

or

real

stmt_label1,

stmt_label2,

and

stmt_label3

are

statement

labels

of

executable

statements

within

the

same

scoping

unit

as

the

IF

statement.

The

same

statement

label

can

appear

more

than

once

among

the

three

statement

labels.

Rules

The

arithmetic

IF

statement

evaluates

arith_expr

and

transfers

control

to

the

statement

identified

by

stmt_label1,

stmt_label2,

or

stmt_label3,

depending

on

whether

the

value

of

arith_expr

is

less

than

zero,

zero,

or

greater

than

zero,

respectively.

Examples

IF

(K-100)

10,20,30

10

PRINT

*,’K

is

less

than

100.’

GO

TO

40

20

PRINT

*,’K

equals

100.’

GO

TO

40

30

PRINT

*,’K

is

greater

than

100.’

40

CONTINUE

Related

Information

v

“Branching”

on

page

126

v

“Statement

Labels”

on

page

11

IF

(Block)

Purpose

The

block

IF

statement

is

the

first

statement

in

an

IF

construct.

Syntax

��

IF

(

arith_expr

)

stmt_label1

,

stmt_label2

,

stmt_label3

��

GO

TO

-

Unconditional

304

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

IF_construct_name

Is

a

name

that

identifies

the

IF

construct.

Rules

The

block

IF

statement

evaluates

a

logical

expression

and

executes

at

most

one

of

the

blocks

contained

within

the

IF

construct.

If

the

IF_construct_name

is

specified,

it

must

appear

on

the

END

IF

statement,

and

optionally

on

any

ELSE

IF

or

ELSE

statements

in

the

IF

construct.

Examples

WHICHC:

IF

(CMD

.EQ.

’RETRY’)

THEN

IF

(LIMIT

.GT.

FIVE)

THEN

!

Nested

IF

constructs

...

CALL

STOP

ELSE

CALL

RETRY

END

IF

ELSE

IF

(CMD

.EQ.

’STOP’)

THEN

WHICHC

CALL

STOP

ELSE

IF

(CMD

.EQ.

’ABORT’)

THEN

CALL

ABORT

ELSE

WHICHC

GO

TO

100

END

IF

WHICHC

Related

Information

v

“IF

Construct”

on

page

117

v

“ELSE

IF”

on

page

273

v

“ELSE”

on

page

273

v

“END

(Construct)”

on

page

277,

for

details

on

the

END

IF

statement

IF

(Logical)

Purpose

The

logical

IF

statement

evaluates

a

logical

expression

and,

if

true,

executes

a

specified

statement.

Syntax

logical_expr

is

a

scalar

logical

expression

��

IF_construct_name

:

IF

(

scalar_logical_expr

)

THEN

��

��

IF

(

logical_expr

)

stmt

��

IF

-

Block

Statements

and

Attributes

305

stmt

is

an

unlabeled

executable

statement

Rules

When

a

logical

IF

statement

is

executed,

the

logical_expr

is

evaluated.

If

the

value

of

logical_expr

is

true,

stmt

is

executed.

If

the

value

of

logical_expr

is

false,

stmt

does

not

execute

and

the

IF

statement

has

no

effect

(like

a

CONTINUE

statement).

Execution

of

a

function

reference

in

logical_expr

can

change

the

values

of

variables

that

appear

in

stmt.

stmt

cannot

be

a

SELECT

CASE,

CASE,

END

SELECT,

DO,

DO

WHILE,

END

DO,

block

IF,

ELSE

IF,

ELSE,

END

IF,

END

FORALL,

another

logical

IF,

ELSEWHERE,

END

WHERE,

END,

END

FUNCTION,

END

SUBROUTINE

statement,

FORALL

construct

statement

or

WHERE

construct

statement.

Examples

IF

(ERR.NE.0)

CALL

ERROR(ERR)

Related

Information

“Control

Structures”

on

page

117

IMPLICIT

Purpose

The

IMPLICIT

statement

changes

or

confirms

the

default

implicit

typing

or

the

default

storage

class

for

local

entities

or,

with

the

form

IMPLICIT

NONE

specified,

voids

the

implicit

type

rules

altogether.

Syntax

type_spec

specifies

a

data

type.

See

“Type

Declaration”

on

page

378.

range

is

either

a

single

letter

or

range

of

letters.

A

range

of

letters

has

the

form

letter1-letter2,

where

letter1

is

the

first

letter

in

the

range

and

letter2,

which

��

�

IMPLICIT

NONE

,

type_spec

(

range_list

)

(1)

STATIC

(2)

AUTOMATIC

(3)

UNDEFINED

��

Notes:

1 IBM

Extension.

2 IBM

Extension.

3 IBM

Extension.

IF

-

Logical

306

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

follows

letter1

alphabetically,

is

the

last

letter

in

the

range.

Dollar

sign

($)

and

underscore

(_)

are

also

permitted

in

a

range.

The

underscore

(_)

follows

the

dollar

sign

($),

which

follows

the

Z.

Thus,

the

range

Y

-

_

is

the

same

as

Y,

Z,

$,

_.

Rules

Letter

ranges

cannot

overlap;

that

is,

no

more

than

one

type

can

be

specified

for

a

given

letter.

In

a

given

scoping

unit,

if

a

character

has

not

been

specified

in

an

IMPLICIT

statement,

the

implicit

type

for

entities

in

a

program

unit

or

interface

body

is

default

integer

for

entities

that

begin

with

the

characters

I-N,

and

default

real

otherwise.

The

default

for

an

internal

or

module

procedure

is

the

same

as

the

implicit

type

used

by

the

host

scoping

unit.

For

any

data

entity

name

that

begins

with

the

character

specified

by

range_list,

and

for

which

you

do

not

explicitly

specify

a

type,

the

type

specified

by

the

immediately

preceding

type_spec

is

provided.

Note

that

implicit

typing

can

be

to

a

derived

type

that

is

inaccessible

in

the

local

scope

if

the

derived

type

is

accessible

to

the

host

scope.

IBM

Extension

A

character

or

a

range

of

characters

that

you

specify

as

STATIC

or

AUTOMATIC

can

also

appear

in

an

IMPLICIT

statement

for

any

data

type.

A

letter

in

a

range_list

cannot

have

both

type_spec

and

UNDEFINED

specified

for

it

in

the

scoping

unit.

Neither

can

both

STATIC

and

AUTOMATIC

be

specified

for

the

same

letter.

End

of

IBM

Extension

If

you

specify

the

form

IMPLICIT

NONE

in

a

scoping

unit,

you

must

use

type

declaration

statements

to

specify

data

types

for

names

local

to

that

scoping

unit.

You

cannot

refer

to

a

name

that

does

not

have

an

explicitly

defined

data

type;

this

lets

you

control

all

names

that

are

inadvertently

referenced.

When

IMPLICIT

NONE

is

specified,

you

cannot

specify

any

other

IMPLICIT

statement

in

the

same

scoping

unit,

except

ones

that

contain

STATIC

or

AUTOMATIC.

You

can

compile

your

program

with

the

-qundef

compiler

option

to

achieve

the

same

effect

as

an

IMPLICIT

NONE

statement

appearing

in

each

scoping

unit

where

an

IMPLICIT

statement

is

allowed.

IBM

Extension

IMPLICIT

UNDEFINED

turns

off

the

implicit

data

typing

defaults

for

the

character

or

range

of

characters

specified.

When

you

specify

IMPLICIT

UNDEFINED,

you

must

declare

the

data

types

of

all

symbolic

names

in

the

scoping

unit

that

start

with

a

specified

character.

The

compiler

issues

a

diagnostic

message

for

each

symbolic

name

local

to

the

scoping

unit

that

does

not

have

an

explicitly

defined

data

type.

End

of

IBM

Extension

IMPLICIT

Statements

and

Attributes

307

An

IMPLICIT

statement

does

not

change

the

data

type

of

an

intrinsic

function.

IBM

Extension

Using

the

-qsave/-qnosave

compiler

option

modifies

the

predefined

conventions

for

storage

class:

-qsave

compiler

option

makes

the

predefined

convention

IMPLICIT

STATIC(

a

-

_

)

-qnosave

compiler

option

makes

the

predefined

convention

IMPLICIT

AUTOMATIC(

a

-

_

)

Even

if

you

specified

the

-qmixed

compiler

option,

the

range

list

items

are

not

case

sensitive.

For

example,

with

-qmixed

specified,

IMPLICIT

INTEGER(A)

affects

the

implicit

typing

of

data

objects

that

begin

with

A

as

well

as

those

that

begin

with

a.

End

of

IBM

Extension

Examples

IMPLICIT

INTEGER

(B),

COMPLEX

(D,

K-M),

REAL

(R-Z,A)

!

This

IMPLICIT

statement

establishes

the

following

!

implicit

typing:

!

!

A:

real

!

B:

integer

!

C:

real

!

D:

complex

!

E

to

H:

real

!

I,

J:

integer

!

K,

L,

M:

complex

!

N:

integer

!

O

to

Z:

real

!

$:

real

!

_:

real

Related

Information

v

“How

Type

Is

Determined”

on

page

57

for

a

discussion

of

the

implicit

rules

v

“Storage

Classes

for

Variables”

on

page

62

v

-qundef

Option

in

the

User’s

Guide

v

-qsave

Option

in

the

User’s

Guide

INQUIRE

Purpose

The

INQUIRE

statement

obtains

information

about

the

properties

of

a

named

file

or

the

connection

to

a

particular

unit.

There

are

three

forms

of

the

INQUIRE

statement:

v

Inquire

by

file,

which

requires

the

FILE=

specifier.

v

Inquire

by

output

list,

which

requires

the

IOLENGTH=

specifier

v

Inquire

by

unit,

which

requires

the

UNIT=

specifier.

Syntax

IMPLICIT

308

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

iol

indicates

the

number

of

bytes

of

data

that

would

result

from

the

use

of

the

output

list

in

an

unformatted

output

statement.

iol

is

a

scalar

integer

variable.

output_item

See

the

PRINT

or

WRITE

statement

inquiry_list

is

a

list

of

inquiry

specifiers

for

the

inquire-by-file

and

inquire-by-unit

forms

of

the

INQUIRE

statement.

The

inquire-by-file

form

cannot

contain

a

unit

specifier,

and

the

inquire-by-unit

form

cannot

contain

a

file

specifier.

No

specifier

can

appear

more

than

once

in

any

INQUIRE

statement.

The

inquiry

specifiers

are:

[UNIT=]

u

is

a

unit

specifier.

It

specifies

the

unit

about

which

the

inquire-by-unit

form

of

the

statement

is

inquiring.

u

must

be

an

external

unit

identifier

whose

value

is

not

an

asterisk.

An

external

unit

identifier

refers

to

an

external

file

that

is

represented

by

a

scalar

integer

expression,

whose

value

is

in

the

range

0

through

2147483647.

If

the

optional

characters

UNIT=

are

omitted,

u

must

be

the

first

item

in

inquiry_list.

IOSTAT=

ios

is

an

input/output

status

specifier

that

specifies

the

status

of

the

input/output

operation.

ios

is

a

scalar

variable

of

type

INTEGER(4)

or

default

integer.

When

the

input/output

statement

containing

this

specifier

is

finished

executing,

ios

is

defined

with:

v

A

zero

value

if

no

error

condition

occurs

v

A

positive

value

if

an

error

occurs.

Coding

the

IOSTAT=

specifier

suppresses

error

messages.

ERR=

stmt_label

is

an

error

specifier

that

specifies

the

statement

label

of

an

executable

statement

in

the

same

scoping

unit

to

which

control

is

to

transfer

in

the

case

of

an

error.

Coding

the

ERR=

specifier

suppresses

error

messages.

FILE=

char_expr

is

a

file

specifier.

It

specifies

the

name

of

the

file

about

which

the

inquire-by-file

form

of

the

statement

is

inquiring.

char_expr

is

a

scalar

character

expression

whose

value,

when

any

trailing

blanks

are

removed,

is

a

valid

Mac

OS

X

operating

system

file

name.

The

named

file

does

not

have

to

exist,

nor

does

it

have

to

be

associated

with

a

unit.

IBM

Extension

Note:

A

valid

Mac

OS

X

operating

system

file

name

must

have

a

full

path

name

of

total

length

≤

1023

characters,

with

each

file

name

≤

255

characters

long

(though

the

full

path

name

need

not

be

specified).

End

of

IBM

Extension

��

INQUIRE

(

inquiry_list

)

(

IOLENGTH

=

iol

)

output_item_list

��

INQUIRE

Statements

and

Attributes

309

ACCESS=

char_var

indicates

whether

the

file

is

connected

for

direct

access,

sequential

access,

or

stream

access.

char_var

is

a

scalar

character

variable

that

is

assigned

the

value

SEQUENTIAL

if

the

file

is

connected

for

sequential

access.

The

value

assigned

is

DIRECT

if

the

file

is

connected

for

direct

access.

The

value

assigned

is

STREAM

if

the

file

is

connected

for

stream

access.

If

there

is

no

connection,

char_var

is

assigned

the

value

UNDEFINED.

FORM=

char_var

indicates

whether

the

file

is

connected

for

formatted

or

unformatted

input/output.

char_var

is

a

scalar

default

character

variable

that

is

assigned

the

value

FORMATTED

if

the

file

is

connected

for

formatted

input/output.

The

value

assigned

is

UNFORMATTED

if

the

file

is

connected

for

unformatted

input/output.

If

there

is

no

connection,

char_var

is

assigned

the

value

UNDEFINED.

POS=integer_var

integer_var

is

a

scalar

default

integer

variable

that

indicates

the

value

of

the

file

position

for

a

file

connected

for

stream

access.

integer_var

is

assigned

the

number

of

the

file

storage

unit

immediately

following

the

current

position

of

a

file

connected

for

stream

access.

If

the

file

is

positioned

at

its

terminal

position,

integer_var

is

assigned

a

value

one

greater

than

the

highest-numbered

storage

unit

in

the

file.

integer_var

becomes

undefined

if

the

file

is

not

connected

for

stream

access

or

if

the

position

of

the

file

can

not

be

determined

because

of

previous

error

conditions.

RECL=

rcl

indicates

the

value

of

the

record

length

of

a

file

connected

for

direct

access,

or

the

value

of

the

maximum

record

length

of

a

file

connected

for

sequential

access.

IBM

Extension

rcl

is

a

scalar

variable

of

type

INTEGER(4)

or

type

default

integer

that

is

assigned

the

value

of

the

record

length.

End

of

IBM

Extension

If

the

file

is

connected

for

formatted

input/output,

the

length

is

the

number

of

characters

for

all

records

that

contain

character

data.

If

the

file

is

connected

for

unformatted

input/output,

the

length

is

the

number

of

bytes

of

data.

If

there

is

no

connection,

rcl

becomes

undefined.

If

the

file

is

connected

for

stream

access,

rcl

becomes

undefined.

BLANK=

char_var

indicates

the

default

treatment

of

blanks

for

a

file

connected

for

formatted

input/output.

char_var

is

a

scalar

character

variable

that

is

assigned

the

value

NULL

if

all

blanks

in

numeric

input

fields

are

ignored,

or

the

value

ZERO

if

all

nonleading

blanks

are

interpreted

as

zeros.

If

there

is

no

connection,

or

if

the

connection

is

not

for

formatted

input/output,

char_var

is

assigned

the

value

UNDEFINED.

EXIST=

ex

indicates

if

a

file

or

unit

exists.

ex

is

a

scalar

variable

of

type

LOGICAL(4)

or

default

logical

that

is

assigned

the

value

true

or

false.

For

the

inquire-by-file

form

of

the

statement,

the

value

true

is

assigned

if

the

file

specified

by

the

FILE=

specifier

exists.

The

value

false

is

assigned

if

the

INQUIRE

310

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

file

does

not

exist.

For

the

inquire-by-unit

form

of

the

statement,

the

value

true

is

assigned

if

the

unit

specified

by

UNIT=

exists.

The

value

false

is

assigned

if

it

is

an

invalid

unit.

OPENED=

od

indicates

if

a

file

or

unit

is

connected.

od

is

a

scalar

variable

of

type

LOGICAL(4)

or

default

logical

that

is

assigned

the

value

true

or

false.

For

the

inquire-by-file

form

of

the

statement,

the

value

true

is

assigned

if

the

file

specified

by

FILE=

char_var

is

connected

to

a

unit.

The

value

false

is

assigned

if

the

file

is

not

connected

to

a

unit.

For

the

inquire-by-unit

form

of

the

statement,

the

value

true

is

assigned

if

the

unit

specified

by

UNIT=

is

connected

to

a

file.

The

value

false

is

assigned

if

the

unit

is

not

connected

to

a

file.

For

preconnected

files

that

have

not

been

closed,

the

value

is

true

both

before

and

after

the

first

input/output

operation.

NUMBER=

num

indicates

the

external

unit

identifier

currently

associated

with

the

file.

num

is

a

scalar

variable

of

type

INTEGER(4)

or

default

integer

that

is

assigned

the

value

of

the

external

unit

identifier

of

the

unit

that

is

currently

connected

to

the

file.

If

there

is

no

unit

connected

to

the

file,

num

is

assigned

the

value

-1.

NAMED=

nmd

indicates

if

the

file

has

a

name.

nmd

is

a

scalar

variable

of

type

LOGICAL(4)

or

default

logical

that

is

assigned

the

value

true

if

the

file

has

a

name.

The

value

assigned

is

false

if

the

file

does

not

have

a

name.

NAME=

fn

indicates

the

name

of

the

file.

fn

is

a

scalar

character

variable

that

is

assigned

the

name

of

the

file

to

which

the

unit

is

connected.

SEQUENTIAL=

seq

indicates

if

the

file

is

connected

for

sequential

access.

seq

is

a

scalar

character

variable

that

is

assigned

the

value

YES

if

the

file

can

be

accessed

sequentially,

the

value

NO

if

the

file

cannot

be

accessed

sequentially,

or

the

value

UNKNOWN

if

access

cannot

be

determined.

STREAM=strm

is

a

scalar

default

character

variable

that

indicates

whether

the

file

is

connected

for

stream

access.

strm

is

assigned

the

value

YES

if

the

file

can

be

accessed

using

stream

access,

the

value

NO

if

the

file

cannot

be

accessed

using

stream

access,

or

the

value

UNKNOWN

if

access

cannot

be

determined.

DIRECT=

dir

indicates

if

the

file

is

connected

for

direct

access.

dir

is

a

scalar

character

variable

that

is

assigned

the

value

YES

if

the

file

can

be

accessed

directly,

the

value

NO

if

the

file

cannot

be

accessed

directly,

or

the

value

UNKNOWN

if

access

cannot

be

determined.

FORMATTED=

fmt

indicates

if

the

file

can

be

connected

for

formatted

input/output.

fmt

is

a

scalar

character

variable

that

is

assigned

the

value

YES

if

the

file

can

be

connected

for

formatted

input/output,

the

value

NO

if

the

file

cannot

be

connected

for

formatted

input/output,

or

the

value

UNKNOWN

if

formatting

cannot

be

determined.

UNFORMATTED=

unf

indicates

if

the

file

can

be

connected

for

unformatted

input/output.

fmt

is

a

scalar

character

variable

that

is

assigned

the

value

YES

if

the

file

can

be

INQUIRE

Statements

and

Attributes

311

connected

for

unformatted

input/output,

the

value

NO

if

the

file

cannot

be

connected

for

unformatted

input/output,

or

the

value

UNKNOWN

if

formatting

cannot

be

determined.

NEXTREC=

nr

indicates

where

the

next

record

can

be

read

or

written

on

a

file

connected

for

direct

access.

nr

is

a

scalar

variable

of

type

INTEGER(4),

INTEGER(8),

or

default

integer

that

is

assigned

the

value

n

+

1,

where

n

is

the

record

number

of

the

last

record

read

or

written

on

the

file

connected

for

direct

access.

If

the

file

is

connected

but

no

records

were

read

or

written

since

the

connection,

nr

is

assigned

the

value

1.

If

the

file

is

not

connected

for

direct

access

or

if

the

position

of

the

file

cannot

be

determined

because

of

a

previous

error,

nr

becomes

undefined.

IBM

Extension

Because

record

numbers

can

be

greater

than

2**31-1,

you

may

choose

to

make

the

scalar

variable

specified

with

the

NEXTREC=

specifier

of

type

INTEGER(8).

This

could

be

accomplished

in

many

ways,

two

examples

include:

v

Explicitly

declaring

nr

as

INTEGER(8)

v

Changing

the

default

kind

of

integers

with

the

-qintsize=8

compiler

option.

End

of

IBM

Extension

POSITION=

pos

indicates

the

position

of

the

file.

pos

is

a

scalar

character

variable

that

is

assigned

the

value

REWIND

if

the

file

is

connected

by

an

OPEN

statement

for

positioning

at

its

initial

point,

APPEND

if

the

file

is

connected

for

positioning

before

its

endfile

record

or

at

its

terminal

point,

ASIS

if

the

file

is

connected

without

changing

its

position,

or

UNDEFINED

if

there

is

no

connection

or

if

the

file

is

connected

for

direct

access.

If

the

file

has

been

repositioned

to

its

initial

point

since

it

was

opened,

pos

is

assigned

the

value

REWIND.

If

the

file

has

been

repositioned

just

before

its

endfile

record

since

it

was

opened

(or,

if

there

is

no

endfile

record,

at

its

terminal

point),

pos

is

assigned

the

value

APPEND.

If

both

of

the

above

are

true

and

the

file

is

empty,

pos

is

assigned

the

value

APPEND.

If

the

file

is

positioned

after

the

endfile

record,

pos

is

assigned

the

value

ASIS.

ACTION=

act

indicates

if

the

file

is

connected

for

read

and/or

write

access.

act

is

a

scalar

character

variable

that

is

assigned

the

value

READ

if

the

file

is

connected

for

input

only,

WRITE

if

the

file

is

connected

for

output

only,

READWRITE

if

the

file

is

connected

for

both

input

and

output,

and

UNDEFINED

if

there

is

no

connection.

READ=

rd

indicates

if

the

file

can

be

read.

rd

is

a

scalar

character

variable

that

is

assigned

the

value

YES

if

the

file

can

be

read,

NO

if

the

file

cannot

be

read,

and

UNKNOWN

if

it

cannot

be

determined

if

the

file

can

be

read.

WRITE=

wrt

indicates

if

the

file

can

be

written

to.

wrt

is

a

scalar

character

variable

that

is

assigned

the

value

YES

if

the

file

can

be

written

to,

NO

if

the

file

cannot

be

written

to,

and

UNKNOWN

if

it

cannot

be

determined

if

the

file

can

be

written

to.

INQUIRE

312

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

READWRITE=

rw

indicates

if

the

file

can

be

both

read

from

and

written

to.

rw

is

a

scalar

character

variable

that

is

assigned

the

value

YES

if

the

file

can

be

both

read

from

and

written

to,

NO

if

the

file

cannot

be

both

read

from

and

written

to,

and

UNKNOWN

if

it

cannot

be

determined

if

the

file

can

be

both

read

from

and

written

to.

DELIM=

del

indicates

the

form,

if

any,

that

is

used

to

delimit

character

data

that

is

written

by

list-directed

or

namelist

formatting.

del

is

a

scalar

character

variable

that

is

assigned

the

value

APOSTROPHE

if

apostrophes

are

used

to

delimit

data,

QUOTE

if

quotation

marks

are

used

to

delimit

data,

NONE

if

neither

apostrophes

nor

quotation

marks

are

used

to

delimit

data,

and

UNDEFINED

if

there

is

no

file

connection

or

no

connection

to

formatted

data.

PAD=

pd

indicates

if

the

connection

of

the

file

had

specified

PAD=NO.

pd

is

a

scalar

character

variable

that

is

assigned

the

value

NO

if

the

connection

of

the

file

had

specified

PAD=NO,

and

YES

for

all

other

cases.

SIZE=filesize

filesize

is

a

scalar

integer

variable

that

is

assigned

the

file

size

in

bytes.

Rules

An

INQUIRE

statement

can

be

executed

before,

while,

or

after

a

file

is

associated

with

a

unit.

Any

values

assigned

as

the

result

of

an

INQUIRE

statement

are

values

that

are

current

at

the

time

the

statement

is

executed.

IBM

Extension

If

the

unit

or

file

is

connected,

the

values

returned

for

the

ACCESS=,

SEQUENTIAL=,

STREAM=,

DIRECT=,

ACTION=,

READ=,

WRITE=,

READWRITE=,

FORM=,

FORMATTED=,

UNFORMATTED=,

BLANK=,

DELIM=,

PAD=,

RECL=,

POSITION=,

NEXTREC=,

NUMBER=,

NAME=

and

NAMED=

specifiers

are

properties

of

the

connection,

and

not

of

that

file.

Note

that

the

EXIST=

and

OPENED=

specifiers

return

true

in

these

situations.

If

a

unit

or

file

is

not

connected

or

does

not

exist,

the

ACCESS=,

ACTION=,

FORM=,

BLANK=,

DELIM=,

POSITION=

specifiers

return

the

value

UNDEFINED,

the

DIRECT=,

SEQUENTIAL=,

STREAM=,

FORMATTED=,

UNFORMATTED=,

READ=,

WRITE=

and

READWRITE=

specifiers

return

the

value

UNKNOWN,

the

RECL=

and

NEXTREC=

specifier

variables

are

not

defined,

the

PAD=

specifier

returns

the

value

YES,

and

the

OPENED

specifier

returns

the

value

false.

The

value

returned

by

the

SIZE=

specifier

is

-1.

If

a

unit

or

file

does

not

exist,

the

EXIST=

and

NAMED=

specifiers

return

the

value

false,

the

NUMBER=

specifier

returns

the

value

-1,

and

the

NAME=

specifier

variable

is

not

defined.

If

a

unit

or

file

exists

but

is

not

connected,

the

EXIST=

specifier

returns

the

value

true.

For

the

inquire-by-unit

form

of

the

statement,

the

NAMED=

specifier

returns

the

value

false,

the

NUMBER=

specifier

returns

the

unit

number,

and

the

NAME=

specifier

variable

is

undefined.

For

the

inquire-by-file

form

of

the

statement,

the

NAMED=

specifier

returns

the

value

true,

the

NUMBER=

specifier

INQUIRE

Statements

and

Attributes

313

returns

-1,

and

the

NAME=

specifier

returns

the

file

name.

End

of

IBM

Extension

The

same

variable

name

must

not

be

specified

for

more

than

one

specifier

in

the

same

INQUIRE

statement,

and

must

not

be

associated

with

any

other

variable

in

the

list

of

specifiers.

Examples

SUBROUTINE

SUB(N)

CHARACTER(N)

A(5)

INQUIRE

(IOLENGTH=IOL)

A(1)

!

Inquire

by

output

list

OPEN

(7,RECL=IOL)

...
END

SUBROUTINE

Related

Information

v

“Conditions

and

IOSTAT

Values”

on

page

181

v

“Understanding

XL

Fortran

Input/Output”

on

page

173

INTEGER

Purpose

An

INTEGER

type

declaration

statement

specifies

the

length

and

attributes

of

objects

and

functions

of

type

integer.

Initial

values

can

be

assigned

to

objects.

Syntax

where:

attr_spec

ALLOCATABLE

AUTOMATIC

DIMENSION

(array_spec)

EXTERNAL

INTENT

(intent_spec)

INTRINSIC

OPTIONAL

PARAMETER

POINTER

PRIVATE

PUBLIC

SAVE

STATIC

TARGET

VOLATILE

��

INTEGER

kind_selector

::

,

attr_spec_list

::

entity_decl_list

��

INQUIRE

314

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

kind_selector

IBM

Extension

specifies

the

length

of

integer

entities:

1,

2,

4

or

8.

int_literal_constant

cannot

specify

a

kind

type

parameter.

End

of

IBM

Extension

attr_spec

For

detailed

information

on

rules

about

a

particular

attribute,

refer

to

the

statement

of

the

same

name.

intent_spec

is

either

IN,

OUT,

or

INOUT

::

is

the

double

colon

separator.

Use

the

double

colon

separator

when

you

specify

attributes,

=initialization_expr,

or

=>

NULL()

.

array_spec

is

a

list

of

dimension

bounds

entity_decl

��

(

int_initialization_expr

)

KIND

=

(1)

*

int_literal_constant

��

Notes:

1 IBM

Extension.

��

a

(1)

(2)

(

array_spec

)

*

len

(3)

(4)

(

array_spec

)

*

len

�

�

(5)

/

initial_value_list

/

=

initialization_expr

(6)

=>

NULL()

��

Notes:

1 IBM

Extension.

2 IBM

Extension.

3 IBM

Extension.

4 IBM

Extension.

5 IBM

Extension.

6 Fortran

95.

INTEGER

Statements

and

Attributes

315

a

is

an

object

name

or

function

name.

array_spec

cannot

be

specified

for

a

function

name

with

an

implicit

interface.

IBM

Extension

len

overrides

the

length

as

specified

in

kind_selector,

and

cannot

specify

a

kind

type

parameter.

The

entity

length

must

be

an

integer

literal

constant

that

represents

one

of

the

permissible

length

specifications.

End

of

IBM

Extension

IBM

Extension

initial_value

provides

an

initial

value

for

the

entity

specified

by

the

immediately

preceding

name

End

of

IBM

Extension

initialization_expr

provides

an

initial

value,

by

means

of

an

initialization

expression,

for

the

entity

specified

by

the

immediately

preceding

name

Fortran

95

=>

NULL()

provides

the

initial

value

for

the

pointer

object

End

of

Fortran

95

Rules

Fortran

95

Within

the

context

of

a

derived

type

definition:

v

If

=>

appears

in

a

component

initialization,

the

POINTER

attribute

must

appear

in

the

attr_spec_list.

v

If

=

appears

in

a

component

initialization,

the

POINTER

attribute

cannot

appear

in

the

component

attr_spec_list.

v

The

compiler

will

evaluate

initialization_expr

within

the

scoping

unit

of

the

type

definition.

If

=>

appears

for

a

variable,

the

object

must

have

the

POINTER

attribute.

End

of

Fortran

95

If

initialization_expr

appears

for

a

variable,

the

object

cannot

have

the

POINTER

attribute.

Entities

in

type

declaration

statements

are

constrained

by

the

rules

of

any

attributes

specified

for

the

entities,

as

detailed

in

the

corresponding

attribute

statements.

INTEGER

316

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

The

type

declaration

statement

overrides

the

implicit

type

rules

in

effect.

You

can

use

a

type

declaration

statement

that

confirms

the

type

of

an

intrinsic

function.

The

appearance

of

a

generic

or

specific

intrinsic

function

name

in

a

type

declaration

statement

does

not

cause

the

name

to

lose

its

intrinsic

property.

An

object

cannot

be

initialized

in

a

type

declaration

statement

if

it

is

a

dummy

argument,

an

allocatable

object,

a

pointer,

a

function

result,

an

object

in

blank

common,

an

integer

pointer,

an

external

name,

an

intrinsic

name,

or

an

automatic

object.

Nor

can

an

object

be

initialized

if

it

has

the

AUTOMATIC

attribute.

The

object

may

be

initialized

if

it

appears

in

a

named

common

block

in

a

block

data

program

unit

or

if

it

appears

in

a

named

common

block

in

a

module.

Fortran

95

In

Fortran

95,

a

pointer

can

be

initialized.

Pointers

can

only

be

initialized

by

the

use

of

=>

NULL().

End

of

Fortran

95

The

specification

expression

of

an

array_spec

can

be

a

nonconstant

expression

if

the

specification

expression

appears

in

an

interface

body

or

in

the

specification

part

of

a

subprogram.

Any

object

being

declared

that

uses

this

nonconstant

expression

and

is

not

a

dummy

argument

or

a

pointee

is

called

an

automatic

object.

An

attribute

cannot

be

repeated

in

a

given

type

declaration

statement,

nor

can

an

entity

be

explicitly

given

the

same

attribute

more

than

once

in

a

scoping

unit.

initialization_expr

must

be

specified

if

the

statement

contains

the

PARAMETER

attribute.

If

the

entity

you

are

declaring

is

a

variable,

and

initialization_expr

or

NULL()

is

specified,

the

variable

is

initially

defined.

Fortran

95

If

the

entity

you

are

declaring

is

a

derived

type

component,

and

initialization_expr

or

NULL()

is

specified,

the

derived

type

has

default

initialization.

End

of

Fortran

95

a

becomes

defined

with

the

value

determined

by

initialization_expr,

in

accordance

with

the

rules

for

intrinsic

assignment.

If

the

entity

is

an

array,

its

shape

must

be

specified

either

in

the

type

declaration

statement

or

in

a

previous

specification

statement

in

the

same

scoping

unit.

A

variable

or

variable

subobject

cannot

be

initialized

more

than

once.

If

a

is

a

variable,

the

presence

of

initialization_expr

or

NULL()

implies

that

a

is

a

saved

object,

except

for

an

object

in

a

named

common

block.

The

initialization

of

an

object

could

affect

the

fundamental

storage

class

of

an

object.

An

array_spec

specified

in

the

entity_decl

takes

precedence

over

the

array_spec

in

the

DIMENSION

attribute.

An

array

function

result

that

does

not

have

the

ALLOCATABLE

or

POINTER

attribute

must

have

an

explicit-shape

array

specification.

If

the

entity

declared

is

a

function,

it

must

not

have

an

accessible

explicit

interface

unless

it

is

an

intrinsic

function.

INTEGER

Statements

and

Attributes

317

IBM

Extension

If

T

or

F,

defined

previously

as

the

name

of

a

constant,

appears

in

a

type

declaration

statement,

it

is

no

longer

an

abbreviated

logical

constant

but

the

name

of

the

named

constant.

End

of

IBM

Extension

Examples

MODULE

INT

INTEGER,

DIMENSION(3)

::

A,B,C

INTEGER

::

X=234,Y=678

END

MODULE

INT

Related

Information

v

“Integer”

on

page

22

v

“Initialization

Expressions”

on

page

87

v

“How

Type

Is

Determined”

on

page

57,

for

details

on

the

implicit

typing

rules

v

“Array

Declarators”

on

page

67

v

“Automatic

Objects”

on

page

22

v

“Storage

Classes

for

Variables”

on

page

62

v

“DATA”

on

page

256,

for

details

on

initial

values

INTENT

Purpose

The

INTENT

attribute

specifies

the

intended

use

of

dummy

arguments.

Syntax

dummy_arg_name

is

the

name

of

a

dummy

argument,

which

cannot

be

a

dummy

procedure

Rules

If

you

specify

a

nonpointer,

nonallocatable

dummy

argument,

the

INTENT

attribute

will

have

the

following

characteristics:

v

INTENT(IN)

specifies

that

the

dummy

argument

must

not

be

redefined

or

become

undefined

during

the

execution

of

the

subprogram.

v

INTENT(OUT)

specifies

that

the

dummy

argument

must

be

defined

before

it

is

referenced

within

the

subprogram.

Such

a

dummy

argument

might

not

become

undefined

on

invocation

of

the

subprogram.

v

INTENT(INOUT)

specifies

that

the

dummy

argument

can

both

receive

and

return

data

to

the

invoking

subprogram.

If

you

specify

a

pointer

dummy

argument,

the

INTENT

attribute

will

have

the

following

characteristics:

��

INTENT

(

IN

)

dummy_arg_name_list

OUT

::

INOUT

��

INTEGER

318

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

v

INTENT(IN)

specifies

that

during

the

execution

of

the

procedure,

the

association

status

of

the

pointer

dummy

argument

cannot

be

changed,

except

if

the

target

of

the

pointer

is

deallocated.

If

the

target

of

the

pointer

is

deallocated,

the

association

status

of

the

pointer

dummy

argument

becomes

undefined.

You

cannot

use

an

INTENT(IN)

pointer

dummy

argument

as

a

pointer

object

in

a

pointer

assignment

statement.

You

cannot

allocate,

deallocate,

or

nullify

an

INTENT(IN)

pointer

dummy

argument

You

cannot

specify

an

INTENT(IN)

pointer

dummy

argument

as

an

actual

argument

to

a

procedure

if

the

associated

dummy

argument

is

a

pointer

with

INTENT(OUT)

or

INTENT(INOUT)

attribute.

v

INTENT(OUT)

specifies

that

at

the

execution

of

the

procedure,

the

association

status

of

the

pointer

dummy

argument

is

undefined

v

INTENT(INOUT)

specifies

that

the

dummy

argument

can

both

receive

and

return

data

to

the

invoking

subprogram.

If

you

specify

an

allocatable

dummy

argument,

the

INTENT

attribute

will

have

the

following

characteristics:

v

INTENT(IN)

specifies

that

during

the

execution

of

the

procedure,

the

allocation

status

of

the

dummy

argument

cannot

be

changed,

and

it

must

not

be

redefined

or

become

undefined.

v

INTENT(OUT)

specifies

that

at

the

execution

of

the

procedure,

if

the

associated

actual

argument

is

currently

allocated

it

will

be

deallocated.

v

INTENT(INOUT)

specifies

that

the

dummy

argument

can

both

receive

and

return

data

to

the

invoking

subprogram.

If

you

do

not

specify

the

INTENT

attribute

for

a

pointer

or

allocatable

dummy

argument,

its

use

is

subject

to

the

limitations

and

restrictions

of

the

associated

actual

argument.

An

actual

argument

that

becomes

associated

with

a

dummy

argument

with

an

intent

of

OUT

or

INOUT

must

be

definable.

Hence,

a

dummy

argument

with

an

intent

of

IN,

or

an

actual

argument

that

is

a

constant,

a

subobject

of

a

constant,

or

an

expression,

cannot

be

passed

as

an

actual

argument

to

a

subprogram

expecting

an

argument

with

an

intent

of

OUT

or

INOUT.

An

actual

argument

that

is

an

array

section

with

a

vector

subscript

cannot

be

associated

with

a

dummy

array

that

is

defined

or

redefined

(that

is,

with

an

intent

of

OUT

or

INOUT).

Attributes

Compatible

with

the

INTENT

Attribute

v

ALLOCATABLE

v

DIMENSION

v

OPTIONAL

v

POINTER

v

TARGET

v

VALUE

v

VOLATILE

The

VALUE

attribute

can

only

be

used

for

a

dummy

argument

with

an

intent

of

IN.

INTENT

Statements

and

Attributes

319

IBM

Extension

The

%VAL

built-in

function,

used

for

interlanguage

calls,

can

only

be

used

for

an

actual

argument

that

corresponds

to

a

dummy

argument

with

an

intent

of

IN,

or

has

no

intent

specified.

This

constraint

does

not

apply

to

the

%REF

built-in

function.

End

of

IBM

Extension

Examples

PROGRAM

MAIN

DATA

R,S

/12.34,56.78/

CALL

SUB(R+S,R,S)

END

PROGRAM

SUBROUTINE

SUB

(A,B,C)

INTENT(IN)

A

INTENT(OUT)

B

INTENT(INOUT)

C

C=C+A+ABS(A)

!

Valid

references

to

A

and

C

!

Valid

redefinition

of

C

B=C**2

!

Valid

redefinition

of

B

END

SUBROUTINE

Related

Information

v

“Intent

of

Dummy

Arguments”

on

page

158

v

“Argument

Association”

on

page

156

v

“%VAL

and

%REF”

on

page

157,

for

details

on

interlanguage

calls

v

“Dummy

Arguments”

on

page

155

INTERFACE

Purpose

The

INTERFACE

statement

is

the

first

statement

of

an

interface

block,

which

can

specify

an

explicit

interface

for

an

external

or

dummy

procedure.

Syntax

generic_spec

defined_operator

is

a

defined

unary

operator,

defined

binary

operator,

or

extended

intrinsic

operator

��

INTERFACE

generic_spec

��

��

generic_name

OPERATOR

(

defined_operator

)

ASSIGNMENT

(

=

)

��

INTENT

320

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Rules

If

generic_spec

is

present,

the

interface

block

is

generic.

If

generic_spec

is

absent,

the

interface

block

is

nongeneric.

generic_name

specifies

a

single

name

to

reference

all

procedures

in

the

interface

block.

At

most,

one

specific

procedure

is

invoked

each

time

there

is

a

procedure

reference

with

a

generic

name.

Fortran

95

If

a

generic_spec

appears

in

an

INTERFACE

statement,

it

must

match

the

generic_spec

in

the

corresponding

END

INTERFACE

statement.

If

the

generic_spec

in

an

INTERFACE

statement

is

a

generic_name,

the

generic_spec

of

the

corresponding

END

INTERFACE

statement

must

be

the

same

generic_name.

End

of

Fortran

95

An

INTERFACE

statement

without

a

generic_spec

can

match

any

END

INTERFACE

statement,

with

or

without

a

generic_spec.

A

specific

procedure

must

not

have

more

than

one

explicit

interface

in

a

given

scoping

unit.

You

can

always

reference

a

procedure

through

its

specific

interface,

if

accessible.

If

a

generic

interface

exists

for

a

procedure,

the

procedure

can

also

be

referenced

through

the

generic

interface.

If

generic_spec

is

OPERATOR(defined_operator),

the

interface

block

can

define

a

defined

operator

or

extend

an

intrinsic

operator.

If

generic_spec

is

ASSIGNMENT(=),

the

interface

block

can

extend

intrinsic

assignment.

Examples

INTERFACE

!

Nongeneric

interface

block

FUNCTION

VOL(RDS,HGT)

REAL

VOL,

RDS,

HGT

END

FUNCTION

VOL

FUNCTION

AREA

(RDS)

REAL

AREA,

RDS

END

FUNCTION

AREA

END

INTERFACE

INTERFACE

OPERATOR

(.DETERMINANT.)

!

Defined

operator

interface

FUNCTION

DETERMINANT(X)

INTENT(IN)

X

REAL

X(50,50),

DETERMINANT

END

FUNCTION

END

INTERFACE

INTERFACE

ASSIGNMENT(=)

!

Defined

assignment

interface

SUBROUTINE

BIT_TO_NUMERIC

(N,B)

INTEGER,

INTENT(OUT)

::

N

LOGICAL,

INTENT(IN)

::

B(:)

END

SUBROUTINE

END

INTERFACE

INTERFACE

Statements

and

Attributes

321

Related

Information

v

“Explicit

Interface”

on

page

137

v

“Extended

Intrinsic

and

Defined

Operations”

on

page

97

v

“Defined

Operators”

on

page

143

v

“Defined

Assignment”

on

page

144

v

“FUNCTION”

on

page

298

v

“SUBROUTINE”

on

page

372

v

“MODULE

PROCEDURE”

on

page

329

v

“Procedure

References”

on

page

151

v

“Unambiguous

Generic

Procedure

References”

on

page

141,

for

details

about

the

rules

on

how

any

two

procedures

with

the

same

generic

name

must

differ

INTRINSIC

Purpose

The

INTRINSIC

attribute

identifies

a

name

as

an

intrinsic

procedure

and

allows

you

to

use

specific

names

of

intrinsic

procedures

as

actual

arguments.

Syntax

name

is

the

name

of

an

intrinsic

procedure

Rules

If

you

use

a

specific

intrinsic

procedure

name

as

an

actual

argument

in

a

scoping

unit,

it

must

have

the

INTRINSIC

attribute.

Generic

names

can

have

the

INTRINSIC

attribute,

but

you

cannot

pass

them

as

arguments

unless

they

are

also

specific

names.

A

generic

or

specific

procedure

that

has

the

INTRINSIC

attribute

keeps

its

generic

or

specific

properties.

A

generic

intrinsic

procedure

that

has

the

INTRINSIC

attribute

can

also

be

the

name

of

a

generic

interface

block.

The

generic

interface

block

defines

extensions

to

the

generic

intrinsic

procedure.

Attributes

Compatible

with

the

INTRINSIC

Attribute

v

PRIVATE

v

PUBLIC

Examples

PROGRAM

MAIN

INTRINSIC

SIN,

ABS

INTERFACE

ABS

��

INTRINSIC

name_list

::

��

INTERFACE

322

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

LOGICAL

FUNCTION

MYABS(ARG)

LOGICAL

ARG

END

FUNCTION

END

INTERFACE

LOGICAL

LANS,LVAR

REAL(8)

DANS,DVAR

DANS

=

ABS(DVAR)

!

Calls

the

DABS

intrinsic

procedure

LANS

=

ABS(LVAR)

!

Calls

the

MYABS

external

procedure

!

Pass

intrinsic

procedure

name

to

subroutine

CALL

DOIT(0.5,SIN,X)

!

Passes

the

SIN

specific

intrinsic

END

PROGRAM

SUBROUTINE

DOIT(RIN,OPER,RESULT)

INTRINSIC

::

MATMUL

INTRINSIC

COS

RESULT

=

OPER(RIN)

END

SUBROUTINE

Related

Information

v

Generic

and

specific

intrinsic

procedures

are

listed

in

“Intrinsic

Procedures”

on

page

421.

See

this

section

to

find

out

if

a

specific

intrinsic

name

can

be

used

as

an

actual

argument.

v

“Generic

Interface

Blocks”

on

page

141

LOGICAL

Purpose

A

LOGICAL

type

declaration

statement

specifies

the

length

and

attributes

of

objects

and

functions

of

type

logical.

Initial

values

can

be

assigned

to

objects.

Syntax

��

LOGICAL

kind_selector

::

,

attr_spec_list

::

entity_decl_list

��

INTRINSIC

Statements

and

Attributes

323

where:

attr_spec

ALLOCATABLE

AUTOMATIC

DIMENSION

(array_spec)

EXTERNAL

INTENT

(intent_spec)

INTRINSIC

OPTIONAL

PARAMETER

POINTER

PRIVATE

PUBLIC

SAVE

STATIC

TARGET

VOLATILE

LOGICAL

324

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

kind_selector

IBM

Extension

specifies

the

length

of

logical

entities:

1,

2,

4

or

8.

int_literal_constant

cannot

specify

a

kind

type

parameter.

End

of

IBM

Extension

attr_spec

For

detailed

information

on

rules

about

a

particular

attribute,

refer

to

the

statement

of

the

same

name.

intent_spec

is

either

IN,

OUT,

or

INOUT

::

is

the

double

colon

separator.

Use

the

double

colon

separator

when

you

specify

attributes,

=initialization_expr,

or

=>

NULL()

.

array_spec

is

a

list

of

dimension

bounds

entity_decl

��

(

int_initialization_expr

)

KIND

=

(1)

*

int_literal_constant

��

Notes:

1 IBM

Extension.

��

a

(1)

(2)

(

array_spec

)

*

len

(3)

(4)

(

array_spec

)

*

len

�

�

(5)

/

initial_value_list

/

=

initialization_expr

(6)

=>

NULL()

��

Notes:

1 IBM

Extension.

2 IBM

Extension.

3 IBM

Extension.

4 IBM

Extension.

5 IBM

Extension.

6 Fortran

95.

LOGICAL

Statements

and

Attributes

325

a

is

an

object

name

or

function

name.

array_spec

cannot

be

specified

for

a

function

with

an

implicit

interface.

IBM

Extension

len

overrides

the

length

as

specified

in

kind_selector,

and

cannot

specify

a

kind

type

parameter.

The

entity

length

must

be

an

integer

literal

constant

that

represents

one

of

the

permissible

length

specifications.

End

of

IBM

Extension

IBM

Extension

initial_value

provides

an

initial

value

for

the

entity

specified

by

the

immediately

preceding

name

End

of

IBM

Extension

initialization_expr

provides

an

initial

value,

by

means

of

an

initialization

expression,

for

the

entity

specified

by

the

immediately

preceding

name

Fortran

95

=>

NULL()

provides

the

initial

value

for

the

pointer

object

End

of

Fortran

95

Rules

Fortran

95

Within

the

context

of

a

derived

type

definition:

v

If

=>

appears

in

a

component

initialization,

the

POINTER

attribute

must

appear

in

the

attr_spec_list.

v

If

=

appears

in

a

component

initialization,

the

POINTER

attribute

cannot

appear

in

the

component

attr_spec_list.

v

The

compiler

will

evaluate

initialization_expr

within

the

scoping

unit

of

the

type

definition.

If

=>

appears

for

a

variable,

the

object

must

have

the

POINTER

attribute.

End

of

Fortran

95

If

initialization_expr

appears

for

a

variable,

the

object

cannot

have

the

POINTER

attribute.

Entities

in

type

declaration

statements

are

constrained

by

the

rules

of

any

attributes

specified

for

the

entities,

as

detailed

in

the

corresponding

attribute

statements.

LOGICAL

326

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

The

type

declaration

statement

overrides

the

implicit

type

rules

in

effect.

You

can

use

a

type

declaration

statement

that

confirms

the

type

of

an

intrinsic

function.

The

appearance

of

a

generic

or

specific

intrinsic

function

name

in

a

type

declaration

statement

does

not

cause

the

name

to

lose

its

intrinsic

property.

An

object

cannot

be

initialized

in

a

type

declaration

statement

if

it

is

a

dummy

argument,

an

allocatable

object,

a

pointer,

a

function

result,

an

object

in

blank

common,

an

integer

pointer,

an

external

name,

an

intrinsic

name,

or

an

automatic

object.

Nor

can

an

object

be

initialized

if

it

has

the

AUTOMATIC

attribute.

The

object

may

be

initialized

if

it

appears

in

a

named

common

block

in

a

block

data

program

unit

or

if

it

appears

in

a

named

common

block

in

a

module.

Fortran

95

In

Fortran

95,

a

pointer

can

be

initialized.

Pointers

can

only

be

initialized

by

the

use

of

=>

NULL().

End

of

Fortran

95

The

specification

expression

of

an

array_spec

can

be

a

nonconstant

expression

if

the

specification

expression

appears

in

an

interface

body

or

in

the

specification

part

of

a

subprogram.

Any

object

being

declared

that

uses

this

nonconstant

expression

and

is

not

a

dummy

argument

or

a

pointee

is

called

an

automatic

object.

An

attribute

cannot

be

repeated

in

a

given

type

declaration

statement,

nor

can

an

entity

be

explicitly

given

the

same

attribute

more

than

once

in

a

scoping

unit.

initialization_expr

must

be

specified

if

the

statement

contains

the

PARAMETER

attribute.

If

the

entity

you

are

declaring

is

a

variable,

and

initialization_expr

or

NULL()

is

specified,

the

variable

is

initially

defined.

Fortran

95

If

the

entity

you

are

declaring

is

a

derived

type

component,

and

initialization_expr

or

NULL()

is

specified,

the

derived

type

has

default

initialization.

End

of

Fortran

95

a

becomes

defined

with

the

value

determined

by

initialization_expr,

in

accordance

with

the

rules

for

intrinsic

assignment.

If

the

entity

is

an

array,

its

shape

must

be

specified

either

in

the

type

declaration

statement

or

in

a

previous

specification

statement

in

the

same

scoping

unit.

A

variable

or

variable

subobject

cannot

be

initialized

more

than

once.

If

a

is

a

variable,

the

presence

of

initialization_expr

or

NULL()

implies

that

a

is

a

saved

object,

except

for

an

object

in

a

named

common

block.

The

initialization

of

an

object

could

affect

the

fundamental

storage

class

of

an

object.

An

array_spec

specified

in

the

entity_decl

takes

precedence

over

the

array_spec

in

the

DIMENSION

attribute.

An

array

function

result

that

does

not

have

the

ALLOCATABLE

or

POINTER

attribute

must

have

an

explicit-shape

array

specification.

If

the

entity

declared

is

a

function,

it

must

not

have

an

accessible

explicit

interface

unless

it

is

an

intrinsic

function.

LOGICAL

Statements

and

Attributes

327

IBM

Extension

If

T

or

F,

defined

previously

as

the

name

of

a

constant,

appears

in

a

type

declaration

statement,

it

is

no

longer

an

abbreviated

logical

constant

but

the

name

of

the

named

constant.

End

of

IBM

Extension

Examples

LOGICAL,

ALLOCATABLE

::

L(:,:)

LOGICAL

::

Z=.TRUE.

Related

Information

v

“Logical”

on

page

28

v

“Initialization

Expressions”

on

page

87

v

“How

Type

Is

Determined”

on

page

57,

for

details

on

the

implicit

typing

rules

v

“Array

Declarators”

on

page

67

v

“Automatic

Objects”

on

page

22

v

“Storage

Classes

for

Variables”

on

page

62

v

“DATA”

on

page

256,

for

details

on

initial

values

MODULE

Purpose

The

MODULE

statement

is

the

first

statement

of

a

module

program

unit,

which

contains

specifications

and

definitions

that

can

be

made

accessible

to

other

program

units.

Syntax

Rules

The

module

name

is

a

global

entity

that

is

referenced

by

the

USE

statement

in

other

program

units

to

access

the

public

entities

of

the

module.

The

module

name

must

not

have

the

same

name

as

any

other

program

unit,

external

procedure

or

common

block

in

the

program,

nor

can

it

be

the

same

as

any

local

name

in

the

module.

If

the

END

statement

that

completes

the

module

specifies

a

module

name,

the

name

must

be

the

same

as

that

specified

in

the

MODULE

statement.

Examples

MODULE

MM

CONTAINS

REAL

FUNCTION

SUM(CARG)

COMPLEX

CARG

SUM_FNC(CARG)

=

IMAG(CARG)

+

REAL(CARG)

SUM

=

SUM_FNC(CARG)

��

MODULE

module_name

��

LOGICAL

328

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

RETURN

ENTRY

AVERAGE(CARG)

AVERAGE

=

SUM_FNC(CARG)

/

2.0

END

FUNCTION

SUM

SUBROUTINE

SHOW_SUM(SARG)

COMPLEX

SARG

REAL

SUM_TMP

10

FORMAT(’SUM:’,E10.3,’

REAL:’,E10.3,’

IMAG’,E10.3)

SUM_TMP

=

SUM(CARG=SARG)

WRITE(10,10)

SUM_TMP,

SARG

END

SUBROUTINE

SHOW_SUM

END

MODULE

MM

Related

Information

v

“Modules”

on

page

146

v

“USE”

on

page

384

v

“Use

Association”

on

page

132

v

“END”

on

page

276,

for

details

on

the

END

MODULE

statement

v

“PRIVATE”

on

page

346

v

“PROTECTED”

on

page

348

v

“PUBLIC”

on

page

350

MODULE

PROCEDURE

Purpose

The

MODULE

PROCEDURE

statement

lists

those

module

procedures

that

have

a

generic

interface.

Syntax

Rules

Fortran

95

The

MODULE

PROCEDURE

statement

can

appear

anywhere

among

the

interface

bodies

in

an

interface

block

that

has

a

generic

specification.

End

of

Fortran

95

MODULE

PROCEDURE

statements

must

be

contained

in

a

scoping

unit

where

procedure_name

can

be

accessed

as

a

module

procedure,

and

must

be

the

name

that

is

accesible

in

this

scope.

procedure_name

must

not

have

been

previously

associated

with

the

generic

specification

of

the

interface

block

in

which

it

appears,

either

by

a

previous

appearance

in

an

interface

block

or

by

use

or

by

host

association.

The

characteristics

of

module

procedures

are

determined

by

module

procedure

definitions,

not

by

interface

bodies.

��

MODULE

PROCEDURE

procedure_name_list

��

MODULE

Statements

and

Attributes

329

Examples

MODULE

M

CONTAINS

SUBROUTINE

S1(IARG)

IARG=1

END

SUBROUTINE

SUBROUTINE

S2(RARG)

RARG=1.1

END

SUBROUTINE

END

MODULE

USE

M

INTERFACE

SS

SUBROUTINE

SS1(IARG,JARG)

END

SUBROUTINE

MODULE

PROCEDURE

S1,

S2

END

INTERFACE

CALL

SS(N)

!

Calls

subroutine

S1

from

M

CALL

SS(I,J)

!

Calls

subroutine

SS1

END

Related

Information

v

“Interface

Blocks”

on

page

138

v

“INTERFACE”

on

page

320

v

“Modules”

on

page

146

NAMELIST

Purpose

The

NAMELIST

statement

specifies

one

or

more

lists

of

names

for

use

in

READ,

WRITE,

and

PRINT

statements.

Syntax

Nname

is

a

namelist

group

name

variable_name

must

not

be

an

array

dummy

argument

with

a

nonconstant

bound,

a

variable

with

nonconstant

character

length,

an

automatic

object,

a

pointer,

a

variable

of

a

type

that

has

an

ultimate

component

that

is

a

pointer,

an

allocatable

object,

or

a

pointee.

Rules

The

list

of

names

belonging

to

a

namelist

group

name

ends

with

the

appearance

of

another

namelist

group

name

or

the

end

of

the

NAMELIST

statement.

variable_name

must

either

be

accessed

via

use

or

host

association,

or

have

its

type

and

type

parameters

specified

by

previous

specification

statements

in

the

same

scoping

unit

or

by

the

implicit

typing

rules.

If

typed

implicitly,

any

appearance

of

��

�

,

NAMELIST

/

Nname

/

variable_name_list

��

MODULE

PROCEDURE

330

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

the

object

in

a

subsequent

type

declaration

statement

must

confirm

the

implied

type

and

type

parameters.

A

derived-type

object

must

not

appear

as

a

list

item

if

any

component

ultimately

contained

within

the

object

is

not

accessible

within

the

scoping

unit

containing

the

namelist

input/output

statement

on

which

its

containing

namelist

group

name

is

specified.

variable_name

can

belong

to

one

or

more

namelist

lists.

If

the

namelist

group

name

has

the

PUBLIC

attribute,

no

item

in

the

list

can

have

the

PRIVATE

attribute

or

private

components.

Nname

can

be

specified

in

more

than

one

NAMELIST

statement

in

the

scoping

unit,

and

more

than

once

in

each

NAMELIST

statement.

The

variable_name_list

following

each

successive

appearance

of

the

same

Nname

in

a

scoping

unit

is

treated

as

the

continuation

of

the

list

for

that

Nname.

A

namelist

name

can

appear

only

in

input/output

statements.

The

rules

for

input/output

conversion

of

namelist

data

are

the

same

as

the

rules

for

data

conversion.

Examples

DIMENSION

X(5),

Y(10)

NAMELIST

/NAME1/

I,J,K

NAMELIST

/NAME2/

A,B,C

/NAME3/

X,Y

WRITE

(10,

NAME1)

PRINT

NAME2

Related

Information

v

“Namelist

Formatting”

on

page

215

v

Setting

Run-time

Options

in

the

User’s

Guide

NULLIFY

Purpose

The

NULLIFY

statement

causes

pointers

to

become

disassociated.

Syntax

pointer_object

is

a

pointer

variable

name

or

structure

component

Rules

A

pointer_object

must

have

the

POINTER

attribute.

Tip

Always

initialize

a

pointer

with

the

NULLIFY

statement,

pointer

assignment,

default

initialization

or

explicit

initialization.

��

NULLIFY

(

pointer_object_list

)

��

NAMELIST

Statements

and

Attributes

331

Examples

TYPE

T

INTEGER

CELL

TYPE(T),

POINTER

::

NEXT

ENDTYPE

T

TYPE(T)

HEAD,

TAIL

TARGET

::

TAIL

HEAD%NEXT

=>

TAIL

NULLIFY

(TAIL%NEXT)

END

Related

Information

v

“Pointer

Assignment”

on

page

113

v

“Pointer

Association”

on

page

133

OPEN

Purpose

The

OPEN

statement

can

be

used

to

connect

an

existing

external

file

to

a

unit,

create

an

external

file

that

is

preconnected,

create

an

external

file

and

connect

it

to

a

unit,

or

change

certain

specifiers

of

a

connection

between

an

external

file

and

a

unit.

Syntax

open_list

is

a

list

that

must

contain

one

unit

specifier

(UNIT=u)

and

can

also

contain

one

of

each

of

the

other

valid

specifiers.

The

valid

specifiers

are:

[UNIT=]

u

is

a

unit

specifier

in

which

u

must

be

an

external

unit

identifier

whose

value

is

not

an

asterisk.

An

external

unit

identifier

refers

to

an

external

file

that

is

represented

by

a

scalar

integer

expression,

whose

value

is

in

the

range

0

through

2,147,483,647.

If

the

optional

characters

UNIT=

are

omitted,

u

must

be

the

first

item

in

open_list.

IOSTAT=

ios

is

an

input/output

status

specifier

that

specifies

the

status

of

the

input/output

operation.

ios

is

a

scalar

variable

of

type

INTEGER(4)

or

default

integer.

When

the

input/output

statement

containing

this

specifier

finishes

execution,

ios

is

defined

with:

v

A

zero

value

if

no

error

condition

occurs

v

A

positive

value

if

an

error

occurs.

ERR=

stmt_label

is

an

error

specifier

that

specifies

the

statement

label

of

an

executable

statement

in

the

same

scoping

unit

to

which

control

is

to

transfer

in

the

case

of

an

error.

Coding

the

ERR=

specifier

suppresses

error

messages.

FILE=

char_expr

��

OPEN

(

open_list

)

��

NULLIFY

332

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

is

a

file

specifier

that

specifies

the

name

of

the

file

to

be

connected

to

the

specified

unit.

IBM

Extension

char_expr

is

a

scalar

character

expression

whose

value,

when

any

trailing

blanks

are

removed,

is

a

valid

Mac

OS

X

operating

system

file

name.

If

the

file

specifier

is

omitted

and

is

required,

the

unit

becomes

implicitly

connected

(by

default)

to

fort.u,

where

u

is

the

unit

specified

with

any

leading

zeros

removed.

Use

the

UNIT_VARS

run-time

option

to

allow

alternative

files

names

to

be

used

for

files

that

are

implicitly

connected.

Note:

A

valid

Mac

OS

X

operating

system

file

name

must

have

a

full

path

name

of

total

length

≤1023

characters,

with

each

file

name

≤255

characters

long

(although

the

full

path

name

need

not

be

specified).

End

of

IBM

Extension

STATUS=

char_expr

specifies

the

status

of

the

file

when

it

is

opened.

char_expr

is

a

scalar

character

expression

whose

value,

when

any

trailing

blanks

are

removed,

is

one

of

the

following:

v

OLD,

to

connect

an

existing

file

to

a

unit.

If

OLD

is

specified,

the

file

must

exist.

If

the

file

does

not

exist,

an

error

condition

will

occur.

v

NEW,

to

create

a

new

file,

connect

it

to

a

unit,

and

change

the

status

to

OLD.

If

NEW

is

specified,

the

file

must

not

exist.

If

the

file

already

exists,

an

error

condition

will

occur.

v

SCRATCH,

to

create

and

connect

a

new

file

that

will

be

deleted

when

it

is

disconnected.

SCRATCH

must

not

be

specified

with

a

named

file

(that

is,

FILE=char_expr

must

be

omitted).

v

REPLACE.

If

the

file

does

not

already

exist,

the

file

is

created

and

the

status

is

changed

to

OLD.

If

the

file

exists,

the

file

is

deleted,

a

new

file

is

created

with

the

same

name,

and

the

status

is

changed

to

OLD.

v

UNKNOWN,

to

connect

an

existing

file,

or

to

create

and

connect

a

new

file.

If

the

file

exists,

it

is

connected

as

OLD.

If

the

file

does

not

exist,

it

is

connected

as

NEW.

UNKNOWN

is

the

default.

ACCESS=

char_expr

specifies

the

access

method

for

the

connection

of

the

file.

char_expr

is

a

scalar

character

expression

whose

value,

when

any

trailing

blanks

are

removed,

is

either

SEQUENTIAL,

DIRECT

or

STREAM.

SEQUENTIAL

is

the

default.

If

ACCESS=

is

DIRECT,

RECL=

must

be

specified.

If

ACCESS=

is

STREAM,

RECL=

must

not

be

specified.

FORM=

char_expr

specifies

whether

the

file

is

connected

for

formatted

or

unformatted

input/output.

char_expr

is

a

scalar

character

expression

whose

value,

when

any

trailing

blanks

are

removed,

is

either

FORMATTED

or

UNFORMATTED.

If

you

connect

the

file

for

sequential

access,

FORMATTED

is

the

default.

If

you

connect

the

file

for

direct

or

stream

access,

UNFORMATTED

is

the

default.

RECL=

integer_expr

OPEN

Statements

and

Attributes

333

specifies

the

length

of

each

record

in

a

file

being

connected

for

direct

access

or

the

maximum

length

of

a

record

in

a

file

being

connected

for

sequential

access.

integer_expr

is

a

scalar

integer

expression

whose

value

must

be

positive.

This

specifier

must

be

present

when

a

file

is

being

connected

for

direct

access.

For

formatted

input/output,

the

length

is

the

number

of

characters

for

all

records

that

contain

character

data.

For

unformatted

input/output,

the

length

is

the

number

of

bytes

required

for

the

internal

form

of

the

data.

The

length

of

an

unformatted

sequential

record

does

not

count

the

four-byte

fields

surrounding

the

data.

IBM

Extension

If

RECL=

is

omitted

when

a

file

is

being

connected

for

sequential

access,

the

length

is

2**31–1,

minus

the

record

terminator.

For

a

formatted

sequential

file,

the

default

record

length

is

2**31-2.

For

an

unformatted

sequential

file,

the

default

record

length

is

2**31-9.

For

a

file

that

cannot

be

accessed

randomly,

the

default

length

is

2**15

(32,768).

End

of

IBM

Extension

BLANK=

char_expr

controls

the

default

interpretation

of

blanks

when

you

are

using

a

format

specification.

char_expr

is

a

scalar

character

expression

whose

value,

when

any

trailing

blanks

are

removed,

is

either

NULL

or

ZERO.

If

BLANK=

is

specified,

you

must

use

FORM=’FORMATTED’.

If

BLANK=

is

not

specified

and

you

specify

FORM=’FORMATTED’,

NULL

is

the

default.

POSITION=

char_expr

specifies

the

file

position

for

a

file

connected

for

sequential

or

stream

access.

A

file

that

did

not

exist

previously

is

positioned

at

its

initial

point.

char_expr

is

a

scalar

character

expression

whose

value,

when

any

trailing

blanks

are

removed,

is

either

ASIS,

REWIND,

or

APPEND.

REWIND

positions

the

file

at

its

initial

point.

APPEND

positions

the

file

before

the

endfile

record

or,

if

there

is

no

endfile

record,

at

the

terminal

point.

ASIS

leaves

the

position

unchanged.

The

default

value

is

ASIS

except

under

the

following

conditions:

v

The

first

input/output

statement

(other

than

the

INQUIRE

statement)

referring

to

the

unit

after

the

OPEN

statement

is

a

WRITE

statement,

and

either:

–

The

STATUS=

specifier

is

UNKNOWN

and

the

-qposition

compiler

option

specifies

appendunknown,

or

–

The

STATUS=

specifier

is

OLD

and

the

-qposition

compiler

option

specifies

appendold.

In

such

cases,

the

default

value

for

the

POSITION=

specifier

is

APPEND

at

the

time

the

WRITE

statement

is

executed.

ACTION=

char_expr

specifies

the

allowed

input/output

operations.

char_expr

is

a

scalar

character

expression

whose

value

evaluates

to

READ,

WRITE

or

READWRITE.

If

READ

is

specified,

WRITE

and

ENDFILE

statements

cannot

refer

to

this

connection.

If

WRITE

is

specified,

READ

statements

cannot

refer

to

this

connection.

The

value

READWRITE

permits

any

input/output

statement

to

refer

to

this

connection.

If

the

ACTION=

specifier

is

omitted,

the

default

value

depends

on

the

actual

file

permissions:

OPEN

334

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

v

If

the

STATUS=

specifier

has

the

value

OLD

or

UNKNOWN

and

the

file

already

exists:

–

The

file

is

opened

with

READWRITE

–

If

the

above

is

not

possible,

the

file

is

opened

with

READ

–

If

neither

of

the

above

is

possible,

the

file

is

opened

with

WRITE.
v

If

the

STATUS=

specifier

has

the

value

NEW,

REPLACE,

SCRATCH

or

UNKNOWN

and

the

file

does

not

exist:

–

The

file

is

opened

with

READWRITE

–

If

the

above

is

not

possible,

the

file

is

opened

with

WRITE.

DELIM=

char_expr

specifies

what

delimiter,

if

any,

is

used

to

delimit

character

constants

written

with

list-directed

or

namelist

formatting.

char_expr

is

a

scalar

character

expression

whose

value

must

evaluate

to

APOSTROPHE,

QUOTE,

or

NONE.

If

the

value

is

APOSTROPHE,

apostrophes

delimit

character

constants

and

all

apostrophes

within

character

constants

are

doubled.

If

the

value

is

QUOTE,

double

quotation

marks

delimit

character

constants

and

all

double

quotation

marks

within

character

constants

are

doubled.

If

the

value

is

NONE,

character

constants

are

not

delimited

and

no

characters

are

doubled.

The

default

value

is

NONE.

The

DELIM=

specifier

is

permitted

only

for

files

being

connected

for

formatted

input/output,

although

it

is

ignored

during

input

of

a

formatted

record.

PAD=

char_expr

specifies

if

input

records

are

padded

with

blanks.

char_expr

is

a

scalar

character

expression

that

must

evaluate

to

YES

or

NO.

If

the

value

is

YES,

a

formatted

input

record

is

padded

with

blanks

if

an

input

list

is

specified

and

the

format

specification

requires

more

data

from

a

record

than

the

record

contains.

If

NO

is

specified,

the

input

list

and

format

specification

must

not

require

more

characters

from

a

record

than

the

record

contains.

The

default

value

is

YES.

The

PAD=

specifier

is

permitted

only

for

files

being

connected

for

formatted

input/output,

although

it

is

ignored

during

output

of

a

formatted

record.

IBM

Extension

If

the

-qxlf77

compiler

option

specifies

the

noblankpad

suboption

and

the

file

is

being

connected

for

formatted

direct

input/output,

the

default

value

is

NO

when

the

PAD=

specifier

is

omitted.

End

of

IBM

Extension

Rules

If

a

unit

is

connected

to

a

file

that

exists,

an

OPEN

statement

for

that

unit

can

be

performed.

If

the

FILE=

specifier

is

not

included

in

the

OPEN

statement,

the

file

to

be

connected

to

the

unit

is

the

same

as

the

file

to

which

the

unit

is

connected.

If

the

file

to

be

connected

to

the

unit

is

not

the

same

as

the

file

to

which

the

unit

is

connected,

the

effect

is

as

if

a

CLOSE

statement

without

a

STATUS=

specifier

had

been

executed

for

the

unit

immediately

prior

to

the

execution

of

the

OPEN

statement.

If

the

file

to

be

connected

to

the

unit

is

the

same

as

the

file

to

which

the

unit

is

connected,

only

the

BLANK=,

DELIM=,

PAD=,

ERR=,

and

IOSTAT=

specifiers

can

have

a

value

different

from

the

one

currently

in

effect.

Execution

of

the

OPEN

OPEN

Statements

and

Attributes

335

statement

causes

any

new

value

for

the

BLANK=,

DELIM=

or

PAD=

specifiers

to

be

in

effect,

but

does

not

cause

any

change

in

any

of

the

unspecified

specifiers

or

the

position

of

the

file.

Any

ERR=

and

IOSTAT=

specifiers

from

OPEN

statements

previously

executed

have

no

effect

on

the

current

OPEN

statement.

If

you

specify

the

STATUS=

specifier

it

must

have

the

value

OLD.

To

specify

the

same

file

as

the

one

currently

connected

to

the

unit,

you

can

specify

the

same

file

name,

omit

the

FILE=

specifier,

or

specify

a

file

symbolically

linked

to

the

same

file.

If

a

file

is

connected

to

a

unit,

an

OPEN

statement

on

that

file

and

a

different

unit

cannot

be

performed.

IBM

Extension

If

the

STATUS=

specifier

has

the

value

OLD,

NEW

or

REPLACE,

the

FILE=

specifier

is

optional.

Unit

0

cannot

be

specified

to

connect

to

a

file

other

than

the

preconnected

file,

the

standard

error

device,

although

you

can

change

the

values

for

the

BLANK=,

DELIM=

and

PAD=

specifiers.

End

of

IBM

Extension

If

the

ERR=

and

IOSTAT=

specifiers

are

set

and

an

error

is

encountered,

transfer

is

made

to

the

statement

specified

by

the

ERR=

specifier

and

a

positive

integer

value

is

assigned

to

ios.

IBM

Extension

If

IOSTAT=

and

ERR=

are

not

specified,

v

The

program

stops

if

a

severe

error

is

encountered

v

The

program

continues

to

the

next

statement

if

a

recoverable

error

is

encountered

and

the

ERR_RECOVERY

run-time

option

is

set

to

YES.

If

the

option

is

set

to

NO,

the

program

stops.

End

of

IBM

Extension

Examples

!

Open

a

new

file

with

name

fname

CHARACTER*20

FNAME

FNAME

=

’INPUT.DAT’

OPEN(UNIT=8,FILE=FNAME,STATUS=’NEW’,FORM=’FORMATTED’)

OPEN

(4,FILE="myfile")

OPEN

(4,FILE="myfile",

PAD="NO")

!

Changing

PAD=

value

to

NO

!

Connects

unit

2

to

a

tape

device

for

unformatted,

sequential

!

write-only

access:

OPEN

(2,

FILE="/dev/rmt0",ACTION="WRITE",POSITION="REWIND",

&

&

FORM="UNFORMATTED",ACCESS="SEQUENTIAL",RECL=32767)

Related

Information

v

“Units”

on

page

176

v

Item

3

under

Appendix

A,

“Compatibility

Across

Standards,”

on

page

603

v

“Understanding

XL

Fortran

Input/Output”

on

page

173

OPEN

336

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

v

Setting

Run-time

Options

in

the

User’s

Guide

v

-qposition

Option

in

the

User’s

Guide

v

-qxlf77

Option

in

the

User’s

Guide

v

“CLOSE”

on

page

245

v

“READ”

on

page

351

v

“WRITE”

on

page

392

OPTIONAL

Purpose

The

OPTIONAL

attribute

specifies

that

a

dummy

argument

need

not

be

associated

with

an

actual

argument

in

a

reference

to

the

procedure.

Syntax

Rules

A

procedure

that

has

an

optional

dummy

argument

must

have

an

explicit

interface

in

any

scope

in

which

the

procedure

is

referenced.

Use

the

PRESENT

intrinsic

function

to

determine

if

an

actual

argument

has

been

associated

with

an

optional

dummy

argument.

Avoid

referencing

an

optional

dummy

argument

without

first

verifying

that

the

dummy

argument

is

present.

A

dummy

argument

is

considered

present

in

a

subprogram

if

it

is

associated

with

an

actual

argument,

which

itself

can

also

be

a

dummy

argument

that

is

present

(an

instance

of

propagation).

A

dummy

argument

that

is

not

optional

must

be

present;

that

is,

it

must

be

associated

with

an

actual

argument.

An

optional

dummy

argument

that

is

not

present

may

be

used

as

an

actual

argument

corresponding

to

an

optional

dummy

argument,

which

is

then

also

considered

not

to

be

associated

with

an

actual

argument.

An

optional

dummy

argument

that

is

not

present

is

subject

to

the

following

restrictions:

v

If

it

is

a

dummy

data

object

or

subobject,

it

cannot

be

defined

or

referenced.

v

If

it

is

a

dummy

procedure,

it

cannot

be

referenced.

v

It

cannot

appear

as

an

actual

argument

corresponding

to

a

non-optional

dummy

argument,

other

than

as

the

argument

of

the

PRESENT

intrinsic

function.

v

If

it

is

an

array,

it

must

not

be

supplied

as

an

actual

argument

to

an

elemental

procedure

unless

an

array

of

the

same

rank

is

supplied

as

an

actual

argument,

which

corresponds

to

a

nonoptional

argument

of

that

elemental

procedure.

The

OPTIONAL

attribute

cannot

be

specified

for

dummy

arguments

in

an

interface

body

that

specifies

an

explicit

interface

for

a

defined

operator

or

defined

assignment.

��

OPTIONAL

dummy_arg_name_list

::

��

OPEN

Statements

and

Attributes

337

Attributes

Compatible

with

the

OPTIONAL

Attribute

v

ALLOCATABLE

v

DIMENSION

v

EXTERNAL

v

INTENT

v

POINTER

v

TARGET

v

VALUE

v

VOLATILE

Examples

SUBROUTINE

SUB

(X,Y)

INTERFACE

SUBROUTINE

SUB2

(A,B)

OPTIONAL

::

B

END

SUBROUTINE

END

INTERFACE

OPTIONAL

::

Y

IF

(PRESENT(Y))

THEN

!

Reference

to

Y

conditional

X

=

X

+

Y

!

on

its

presence

ENDIF

CALL

SUB2(X,Y)

END

SUBROUTINE

SUBROUTINE

SUB2

(A,B)

OPTIONAL

::

B

!

B

and

Y

are

argument

associated,

IF

(PRESENT(B))

THEN

!

even

if

Y

is

not

present,

in

B

=

B

*

A

!

which

case,

B

is

also

not

present

PRINT*,

B

ELSE

A

=

A**2

PRINT*,

A

ENDIF

END

SUBROUTINE

Related

Information

v

“Optional

Dummy

Arguments”

on

page

159

v

“Interface

Concepts”

on

page

136

v

“PRESENT(A)”

on

page

504

v

“Dummy

Arguments”

on

page

155

PARAMETER

Purpose

The

PARAMETER

attribute

specifies

names

for

constants.

Syntax

init_expr

is

an

initialization

expression

��

�

,

PARAMETER

(

constant_name

=

init_expr

)

��

OPTIONAL

338

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Rules

A

named

constant

must

have

its

type,

shape,

and

parameters

specified

in

a

previous

specification

statement

in

the

same

scoping

unit

or

be

declared

implicitly.

If

a

named

constant

is

implicitly

typed,

its

appearance

in

any

subsequent

type

declaration

statement

or

attribute

specification

statement

must

confirm

the

implied

type

and

any

parameter

values.

You

can

define

constant_name

only

once

with

a

PARAMETER

attribute

in

a

scoping

unit.

A

named

constant

that

is

specified

in

the

initialization

expression

must

have

been

previously

defined

(possibly

in

the

same

PARAMETER

or

type

declaration

statement,

if

not

in

a

previous

statement)

or

made

accessible

through

use

or

host

association.

The

initialization

expression

is

assigned

to

the

named

constant

using

the

rules

for

intrinsic

assignment.

If

the

named

constant

is

of

type

character

and

it

has

inherited

length,

it

takes

on

the

length

of

the

initialization

expression.

Attributes

Compatible

with

the

PARAMETER

Attribute

v

DIMENSION

v

PRIVATE

v

PUBLIC

Examples

REAL,

PARAMETER

::

TWO=2.0

COMPLEX

XCONST

REAL

RPART,IPART

PARAMETER

(RPART=1.1,IPART=2.2)

PARAMETER

(XCONST

=

(RPART,IPART+3.3))

CHARACTER*2,

PARAMETER

::

BB=’

’

...
END

Related

Information

v

“Initialization

Expressions”

on

page

87

v

“Data

Objects”

on

page

21

PAUSE

Purpose

The

PAUSE

statement

temporarily

suspends

the

execution

of

a

program

and

prints

the

keyword

PAUSE

and,

if

specified,

a

character

constant

or

digit

string

to

unit

0.

Syntax

PARAMETER

Statements

and

Attributes

339

char_constant

is

a

scalar

character

constant

that

is

not

a

Hollerith

constant

digit_string

is

a

string

of

one

to

five

digits

Rules

IBM

Extension

After

execution

of

a

PAUSE

statement,

processing

continues

when

you

press

the

Enter

key.

If

unit

5

is

not

connected

to

the

terminal,

the

PAUSE

statement

does

not

suspend

execution.

End

of

IBM

Extension

Fortran

95

The

PAUSE

statement

has

been

deleted

in

Fortran

95.

End

of

Fortran

95

Examples

PAUSE

’Ensure

backup

tape

is

in

tape

drive’

PAUSE

10

!

Output:

PAUSE

10

Related

Information

v

“Deleted

Features”

on

page

606

POINTER

(Fortran

90)

Purpose

The

POINTER

attribute

designates

objects

as

pointer

variables.

The

term

pointer

refers

to

objects

with

the

Fortran

90

POINTER

attribute.

The

integer

POINTER

statement

provides

details

on

what

was

documented

in

previous

versions

of

XL

Fortran

as

the

POINTER

statement;

these

pointers

are

now

referred

to

as

integer

pointers.

Syntax

��

PAUSE

char_constant

digit_string

��

PAUSE

340

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

deferred_shape_spec

is

a

colon

(:),

where

each

colon

represents

a

dimension

Rules

object_name

refers

to

a

data

object

or

function

result.

If

object_name

is

declared

elsewhere

in

the

scoping

unit

with

the

DIMENSION

attribute,

the

array

specification

must

be

a

deferred_shape_spec_list.

object_name

must

not

appear

in

an

integer

POINTER,

NAMELIST,

or

EQUIVALENCE

statement.

If

object_name

is

a

component

of

a

derived-type

definition,

any

variables

declared

with

that

type

cannot

be

specified

in

an

EQUIVALENCE

or

NAMELIST

statement.

Pointer

variables

can

appear

in

common

blocks

and

block

data

program

units.

An

object

having

a

component

with

the

POINTER

attribute

can

itself

have

the

TARGET,

INTENT,

or

ALLOCATABLE

attibutes,

although

it

cannot

appear

in

a

data

transfer

statement.

Attributes

Compatible

with

the

POINTER

Attribute

v

AUTOMATIC

v

DIMENSION

v

INTENT

v

OPTIONAL

v

PRIVATE

v

PROTECTED

v

PUBLIC

v

SAVE

v

STATIC

v

VOLATILE

These

attributes

apply

only

to

the

pointer

itself,

not

to

any

associated

targets,

except

for

the

DIMENSION

attribute,

which

applies

to

associated

targets.

Examples

Example1:

INTEGER,

POINTER

::

PTR(:)

INTEGER,

TARGET

::

TARG(5)

PTR

=>

TARG

!

PTR

is

associated

with

TARG

and

is

!

assigned

an

array

specification

of

(5)

PTR(1)

=

5

!

TARG(1)

has

value

of

5

PRINT

*,

FUNC()

CONTAINS

REAL

FUNCTION

FUNC()

POINTER

::

FUNC

!

Function

result

is

a

pointer

...

END

FUNCTION

END

��

POINTER

::

�

,

object_name

(

deferred_shape_spec_list

)

��

POINTER

-

Fortran

90

Statements

and

Attributes

341

IBM

Extension

Example

2:

Fortran

90

pointers

and

threadsafing

FUNCTION

MYFUNC(ARG)

!

MYPTR

is

thread-specific.

INTEGER,

POINTER

::

MYPTR

!

every

thread

that

invokes

!

’MYFUNC’

will

allocate

a

ALLOCATE(MYPTR)

!

new

piece

of

storage

that

MYPTR

=

ARG

!

is

only

accessible

within

...

!

that

thread.

ANYVAR

=

MYPTR

END

FUNCTION

End

of

IBM

Extension

Related

Information

v

“Pointer

Assignment”

on

page

113

v

“TARGET”

on

page

373

v

“ALLOCATED(ARRAY)

or

ALLOCATED(SCALAR)”

on

page

432

v

“DEALLOCATE”

on

page

260

v

“Pointer

Association”

on

page

133

v

“Deferred-Shape

Arrays”

on

page

70

POINTER

(integer)

IBM

Extension

Purpose

The

integer

POINTER

statement

specifies

that

the

value

of

the

variable

int_pointer

is

to

be

used

as

the

address

for

any

reference

to

pointee.

The

name

of

this

statement

has

been

changed

from

POINTER

to

integer

POINTER

to

distinguish

it

from

the

Fortran

90

POINTER

statement.

Syntax

int_pointer

is

the

name

of

an

integer

pointer

variable

pointee

is

a

variable

name

or

array

declarator

Rules

The

compiler

does

not

allocate

storage

for

the

pointee.

Storage

is

associated

with

the

pointee

at

execution

time

by

the

assignment

of

the

address

of

a

block

of

��

�

,

POINTER

(

int_pointer

,

pointee

)

��

POINTER

-

Fortran

90

342

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

storage

to

the

pointer.

The

pointee

can

become

associated

with

either

static

or

dynamic

storage.

A

reference

to

a

pointee

requires

that

the

associated

pointer

be

defined.

An

integer

pointer

is

a

scalar

variable

of

type

INTEGER(4)

that

cannot

have

a

type

explicitly

assigned

to

it.

You

can

use

integer

pointers

in

any

expression

or

statement

in

which

a

variable

of

the

same

type

as

the

integer

pointer

can

be

used.

You

can

assign

any

data

type

to

a

pointee,

but

you

cannot

assign

a

storage

class

or

initial

value

to

a

pointee.

An

actual

array

that

appears

as

a

pointee

in

an

integer

POINTER

statement

is

called

a

pointee

array.

You

can

dimension

a

pointee

array

in

a

type

declaration

statement,

a

DIMENSION

statement,

or

in

the

integer

POINTER

statement

itself.

If

you

specify

the

-qddim

compiler

option,

a

pointee

array

that

appears

in

a

main

program

can

also

have

an

adjustable

array

specification.

In

main

programs

and

subprograms,

the

dimension

size

is

evaluated

when

the

pointee

is

referenced

(dynamic

dimensioning).

If

you

do

not

specify

the

-qddim

compiler

option,

a

pointee

array

that

appears

in

a

subprogram

can

have

an

adjustable

array

specification,

and

the

dimension

size

is

evaluated

on

entrance

to

the

subprogram,

not

when

the

pointee

is

evaluated.

The

following

constraints

apply

to

the

definition

and

use

of

pointees

and

integer

pointers:

v

A

pointee

cannot

be

zero-sized.

v

A

pointee

can

be

scalar,

an

assumed-sized

array

or

an

explicit-shape

array.

v

A

pointee

cannot

appear

in

a

COMMON,

DATA,

NAMELIST,

or

EQUIVALENCE

statement.

v

A

pointee

cannot

have

the

following

attributes:

EXTERNAL,

ALLOCATABLE,

POINTER,

TARGET,

INTRINSIC,

INTENT,

OPTIONAL,

SAVE,

STATIC,

AUTOMATIC,

or

PARAMETER.

v

A

pointee

cannot

be

a

dummy

argument

and

therefore

cannot

appear

in

a

FUNCTION,

SUBROUTINE,

or

ENTRY

statement.

v

A

pointee

cannot

be

an

automatic

object,

though

a

pointee

can

have

nonconstant

bounds

or

lengths.

v

A

pointee

cannot

be

a

generic

interface

block

name.

v

A

pointee

that

is

of

derived

type

must

be

of

sequence

derived

type.

v

A

function

value

cannot

be

a

pointee.

v

An

integer

pointer

cannot

be

pointed

to

by

another

pointer.

(A

pointer

cannot

be

a

pointee.)

v

An

integer

pointer

cannot

have

the

following

attributes:

–

ALLOCATABLE

–

DIMENSION

–

EXTERNAL

–

INTRINSIC

–

PARAMETER

–

POINTER

–

TARGET
v

An

integer

pointer

cannot

appear

as

a

NAMELIST

group

name.

v

An

integer

pointer

cannot

be

a

procedure.

POINTER

-

integer

(IBM

Extension)

Statements

and

Attributes

343

Examples

INTEGER

A,B

POINTER

(P,I)

IF

(A<>0)

THEN

P=LOC(A)

ELSE

P=LOC(B)

ENDIF

I=0

!

Assigns

0

to

either

A

or

B,

depending

on

A’s

value

END

Related

Information

v

“Integer

Pointer

Association”

on

page

134

v

“LOC(X)”

on

page

482

v

-qddim

Option

in

the

User’s

Guide

End

of

IBM

Extension

PRINT

Purpose

The

PRINT

statement

is

a

data

transfer

output

statement.

Syntax

name

is

a

namelist

group

name

output_item

is

an

output

list

item.

An

output

list

specifies

the

data

to

be

transferred.

An

output

list

item

can

be:

v

A

variable.

An

array

is

treated

as

if

all

of

its

elements

were

specified

in

the

order

they

are

arranged

in

storage.

A

pointer

must

be

associated

with

a

target,

and

an

allocatable

object

must

be

allocated.

A

derived-type

object

cannot

have

any

ultimate

component

that

is

inaccessible

to

this

statement.

The

evaluation

of

output_item

cannot

result

in

a

derived-type

object

that

contains

a

pointer.

The

structure

components

of

a

structure

in

a

formatted

statement

are

treated

as

if

they

appear

in

the

order

of

the

derived-type

definition;

in

an

unformatted

statement,

the

structure

components

are

treated

as

a

single

value

in

their

internal

representation

(including

padding).

v

An

expression.

v

An

implied-DO

list,

as

described

under

“Implied-DO

List”

on

page

345.

format

is

a

format

specifier

that

specifies

the

format

to

be

used

in

the

output

operation.

format

is

a

format

identifier

that

can

be:

v

The

statement

label

of

a

FORMAT

statement.

The

FORMAT

statement

must

be

in

the

same

scoping

unit.

��

PRINT

name

format

,

output_item_list

��

POINTER

-

integer

(IBM

Extension)

344

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

v

The

name

of

a

scalar

INTEGER(4)

or

INTEGER(8)

variable

that

was

assigned

the

statement

label

of

a

FORMAT

statement.

The

FORMAT

statement

must

be

in

the

same

scoping

unit.

Fortran

95

Fortran

95

does

not

permit

assigning

of

a

statement

label.

End

of

Fortran

95

v

A

character

constant.

It

cannot

be

a

Hollerith

constant.

It

must

begin

with

a

left

parenthesis

and

end

with

a

right

parenthesis.

Only

the

format

codes

described

in

the

FORMAT

statement

can

be

used

between

the

parentheses.

Blank

characters

can

precede

the

left

parenthesis,

or

follow

the

right

parenthesis.

v

A

character

variable

that

contains

character

data

whose

leftmost

character

positions

constitute

a

valid

format.

A

valid

format

begins

with

a

left

parenthesis

and

ends

with

a

right

parenthesis.

Only

the

format

codes

listed

under

“FORMAT”

on

page

293

can

be

used

between

the

parentheses.

Blank

characters

can

precede

the

left

parenthesis,

or

follow

the

right

parenthesis.

v

An

array

of

noncharacter

intrinsic

type.

v

Any

character

expression,

except

one

involving

concatenation

of

an

operand

that

specifies

inherited

length,

unless

the

operand

is

the

name

of

a

constant.

v

An

asterisk,

specifying

list-directed

formatting.

v

A

namelist

specifier

that

specifies

a

previously

defined

namelist.

Specifying

the

–qport=typestmt

compiler

option

enables

the

TYPE

statement

which

has

identical

functionality

to

the

PRINT

statement.

Implied-DO

List

do_object

is

an

output

list

item

do_variable

is

a

named

scalar

variable

of

type

integer

or

real

arith_expr1,

arith_expr2,

and

arith_expr3

are

scalar

numeric

expressions

The

range

of

an

implied-DO

list

is

the

list

do_object_list.

The

iteration

count

and

the

values

of

the

DO

variable

are

established

from

arith_expr1,

arith_expr2,

and

arith_expr3,

the

same

as

for

a

DO

statement.

When

the

implied-DO

list

is

executed,

the

items

in

the

do_object_list

are

specified

once

for

each

iteration

of

the

implied-DO

list,

with

the

appropriate

substitution

of

values

for

any

occurrence

of

the

DO

variable.

Examples

PRINT

10,

A,B,C

10

FORMAT

(E4.2,G3.2E1,B3)

��

(

do_object_list

,

do_variable

=

arith_expr1,

arith_expr2

�

�

)

,

arith_expr3

��

PRINT

Statements

and

Attributes

345

Related

Information

v

“Understanding

XL

Fortran

Input/Output”

on

page

173

v

“Input/Output

Formatting”

on

page

187

v

See

the

User’s

Guide

for

more

information

on

-qport=typestmt.

v

“Deleted

Features”

on

page

606

PRIVATE

Purpose

The

PRIVATE

attribute

specifies

that

a

module

entity

is

not

accessible

outside

the

module

through

use

association.

Syntax

access_id

is

a

generic

specification

or

the

name

of

a

variable,

procedure,

derived

type,

constant,

or

namelist

group

Rules

The

PRIVATE

attribute

can

appear

only

in

the

scope

of

a

module.

Although

multiple

PRIVATE

statements

may

appear

in

a

module,

only

one

statement

that

omits

an

access_id_list

is

permitted.

A

PRIVATE

statement

without

an

access_id_list

sets

the

default

accessibility

to

private

for

all

potentially

accessible

entities

in

the

module.

If

the

module

contains

such

a

statement,

it

cannot

also

include

a

PUBLIC

statement

without

an

access_id_list.

If

the

module

does

not

contain

such

a

statement,

the

default

accessibility

is

public.

Entities

whose

accessibility

is

not

explicitly

specified

have

default

accessibility.

A

procedure

that

has

a

generic

identifier

that

is

public

is

accessible

through

that

identifier,

even

if

its

specific

identifier

is

private.

If

a

module

procedure

contains

a

private

dummy

argument

or

function

result

whose

type

has

private

accessibility,

the

module

procedure

must

be

declared

to

have

private

accessibility

and

must

not

have

a

generic

identifier

that

has

public

accessibility.

If

a

PRIVATE

statement

is

specified

within

a

derived-type

definition,

all

the

components

of

the

derived

type

become

private.

A

structure

must

be

private

if

its

derived

type

is

private.

A

namelist

group

must

be

private

if

it

contains

any

object

that

is

private

or

contains

private

components.

A

derived

type

that

has

a

component

of

derived

type

that

is

private

must

itself

be

private

or

have

private

components.

A

subprogram

must

be

private

if

any

of

its

arguments

are

of

a

derived

type

that

is

private.

A

function

must

be

private

if

its

result

variable

is

of

a

derived

type

that

is

private.

��

PRIVATE

access_id_list

::

��

PRINT

346

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Attributes

Compatible

with

the

PRIVATE

Attribute

v

ALLOCATABLE

v

DIMENSION

v

EXTERNAL

v

INTRINSIC

v

PARAMETER

v

POINTER

v

PROTECTED

v

SAVE

v

STATIC

v

TARGET

v

VOLATILE

Examples

MODULE

MC

PUBLIC

!

Default

accessibility

declared

as

public

INTERFACE

GEN

MODULE

PROCEDURE

SUB1,

SUB2

END

INTERFACE

PRIVATE

SUB1

!

SUB1

declared

as

private

CONTAINS

SUBROUTINE

SUB1(I)

INTEGER

I

I

=

I

+

1

END

SUBROUTINE

SUB1

SUBROUTINE

SUB2(I,J)

I

=

I

+

J

END

SUBROUTINE

END

MODULE

MC

PROGRAM

ABC

USE

MC

K

=

5

CALL

GEN(K)

!

SUB1

referenced

because

GEN

has

public

!

accessibility

and

appropriate

argument

!

is

passed

CALL

SUB2(K,4)

PRINT

*,

K

!

Value

printed

is

10

END

PROGRAM

Related

Information

v

“Derived

Types”

on

page

33

v

“Modules”

on

page

146

v

“PROTECTED”

on

page

348

v

“PUBLIC”

on

page

350

PROGRAM

Purpose

The

PROGRAM

statement

specifies

that

a

program

unit

is

a

main

program,

the

program

unit

that

receives

control

from

the

system

when

the

executable

program

is

invoked

at

run

time.

Syntax

PRIVATE

Statements

and

Attributes

347

name

is

the

name

of

the

main

program

in

which

this

statement

appears

Rules

The

PROGRAM

statement

is

optional.

If

specified,

the

PROGRAM

statement

must

be

the

first

statement

of

the

main

program.

If

a

program

name

is

specified

in

the

corresponding

END

statement,

it

must

match

name.

The

program

name

is

global

to

the

executable

program.

This

name

must

not

be

the

same

as

the

name

of

any

common

block,

external

procedure,

or

any

other

program

unit

in

that

executable

program,

or

as

any

name

that

is

local

to

the

main

program.

The

name

has

no

type,

and

it

must

not

appear

in

any

type

declaration

or

specification

statements.

You

cannot

refer

to

a

main

program

from

a

subprogram

or

from

itself.

Examples

PROGRAM

DISPLAY_NUMBER_2

INTEGER

A

A

=

2

PRINT

*,

A

END

PROGRAM

DISPLAY_NUMBER_2

Related

Information

v

“Main

Program”

on

page

145

PROTECTED

IBM

Extension

Purpose

The

PROTECTED

attribute

allows

greater

control

over

the

modification

of

module

entities.

A

module

procedure

can

only

modify

a

protected

module

entity

or

its

subobjects

if

the

same

module

defines

both

the

procedure

and

the

entity.

Syntax

The

PROTECTED

attribute

must

only

appear

in

the

specification

part

of

the

module.

entity

A

named

variable

not

in

a

common

block.

��

PROGRAM

name

��

��

PROTECTED

entity_declaration_list

::

��

PROGRAM

348

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Rules

If

you

specify

that

an

object

declared

by

an

EQUIVALENCE

statement

has

the

PROTECTED

attribute,

all

objects

specified

in

that

EQUIVALENCE

statement

must

have

the

PROTECTED

attribute.

A

non-pointer

object

with

the

PROTECTED

attribute

accessed

through

use

association,

is

not

definable.

You

must

not

specify

the

PROTECTED

attribute

for

integer

pointers.

A

pointer

object

with

the

PROTECTED

attribute

accessed

through

use

association,

must

not

appear

as

any

of

the

following:

v

As

a

pointer

object

in

a

NULLIFY

statement

or

POINTER

assignment

statement

v

As

an

allocatable

object

in

an

ALLOCATE

or

DEALLOCATE

statement.

v

As

an

actual

argument

in

reference

to

a

procedure,

if

the

associated

dummy

argument

is

a

pointer

with

the

INTENT(INOUT)

or

INTENT(OUT)

attribute.

Attributes

Compatible

with

the

PROTECTED

Attribute

v

ALLOCATABLE

v

AUTOMATIC

v

DIMENSION

v

INTENT

v

OPTIONAL

v

POINTER

v

PRIVATE

v

PUBLIC

v

SAVE

v

STATIC

v

TARGET

v

VOLATILE

Examples

In

the

following

example,

the

values

of

both

age

and

val

can

only

be

modified

by

subroutines

in

the

module

in

which

they

are

declared:

module

mod1

integer,

protected

::

val

integer

::

age

protected

::

age

contains

subroutine

set_val(arg)

integer

arg

val

=

arg

end

subroutine

subroutine

set_age(arg)

integer

arg

age

=

arg

end

subroutine

end

module

program

dt_init01

use

mod1

implicit

none

integer

::

value,

his_age

call

set_val(88)

call

set_age(38)

value

=

val

his_age

=

age

print

*,

value,

his_age

end

program

PROTECTED

Statements

and

Attributes

349

Related

Information

“Modules”

on

page

146

“PRIVATE”

on

page

346

“PUBLIC”

End

of

IBM

Extension

PUBLIC

Purpose

The

PUBLIC

attribute

specifies

that

a

module

entity

can

be

accessed

by

other

program

units

through

use

association.

Syntax

access_id

is

a

generic

specification

or

the

name

of

a

variable,

procedure,

derived

type,

constant,

or

namelist

group

Rules

The

PUBLIC

attribute

can

appear

only

in

the

scope

of

a

module.

Although

multiple

PUBLIC

statements

can

appear

in

a

module,

only

one

statement

that

omits

an

access_id_list

is

permitted.

A

PUBLIC

statement

without

an

access_id_list

sets

the

default

accessibility

to

public

for

all

potentially

accessible

entities

in

the

module.

If

the

module

contains

such

a

statement,

it

cannot

also

include

a

PRIVATE

statement

without

an

access_id_list.

If

the

module

does

not

contain

a

PRIVATE

statement

without

an

access_id_list,

the

default

accessibility

is

public.

Entities

whose

accessibility

is

not

explicitly

specified

have

default

accessibility.

A

procedure

that

has

a

generic

identifier

that

is

public

is

accessible

through

that

identifier,

even

if

its

specific

identifier

is

private.

If

a

module

procedure

contains

a

private

dummy

argument

or

function

result

whose

type

has

private

accessibility,

the

module

procedure

must

be

declared

to

have

private

accessibility

and

must

not

have

a

generic

identifier

that

has

public

accessibility.

IBM

Extension

Although

an

entity

with

public

accessibility

cannot

have

the

STATIC

attribute,

public

entities

in

a

module

are

unaffected

by

IMPLICIT

STATIC

statements

in

the

module.

End

of

IBM

Extension

��

PUBLIC

access_id_list

::

��

PROTECTED

350

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Attributes

Compatible

with

the

PUBLIC

Attribute

v

ALLOCATABLE

v

DIMENSION

v

EXTERNAL

v

INTRINSIC

v

PARAMETER

v

POINTER

v

PROTECTED

v

SAVE

v

TARGET

v

VOLATILE

Examples

MODULE

MC

PRIVATE

!

Default

accessibility

declared

as

private

PUBLIC

GEN

!

GEN

declared

as

public

INTERFACE

GEN

MODULE

PROCEDURE

SUB1

END

INTERFACE

CONTAINS

SUBROUTINE

SUB1(I)

INTEGER

I

I

=

I

+

1

END

SUBROUTINE

SUB1

END

MODULE

MC

PROGRAM

ABC

USE

MC

K

=

5

CALL

GEN(K)

!

SUB1

referenced

because

GEN

has

public

!

accessibility

and

appropriate

argument

!

is

passed

PRINT

*,

K

!

Value

printed

is

6

END

PROGRAM

Related

Information

v

“PRIVATE”

on

page

346

v

“Modules”

on

page

146

READ

Purpose

The

READ

statement

is

the

data

transfer

input

statement.

Syntax

format

is

a

format

identifier,

described

below

under

FMT=format.

In

addition,

it

cannot

be

a

Hollerith

constant.

name

is

a

namelist

group

name

��

READ

name

format

,

input_item_list

(

io_control_list

)

input_item_list

��

PUBLIC

Statements

and

Attributes

351

input_item

is

an

input

list

item.

An

input

list

specifies

the

data

to

be

transferred.

An

input

list

item

can

be:

v

A

variable

name,

but

not

for

an

assumed-size

array.

An

array

is

treated

as

if

all

of

its

elements

were

specified

in

the

order

they

are

arranged

in

storage.

A

pointer

must

be

associated

with

a

definable

target,

and

an

allocatable

object

must

be

allocated.

A

derived-type

object

cannot

have

any

ultimate

component

that

is

outside

the

scoping

unit

of

this

statement.

The

evaluation

of

input_item

cannot

result

in

a

derived-type

object

that

contains

a

pointer.

The

structure

components

of

a

structure

in

a

formatted

statement

are

treated

as

if

they

appear

in

the

order

of

the

derived-type

definition;

in

an

unformatted

statement,

the

structure

components

are

treated

as

a

single

value

in

their

internal

representation

(including

padding).

v

An

implied-DO

list,

as

described

under

“Implied-DO

List”

on

page

355.

io_control

is

a

list

that

must

contain

one

unit

specifier

(UNIT=)

and

can

also

contain

one

of

each

of

the

other

valid

specifiers

described

below.

[UNIT=]

u

is

a

unit

specifier

that

specifies

the

unit

to

be

used

in

the

input

operation.

u

is

an

external

unit

identifier

or

internal

file

identifier.

IBM

Extension

An

external

unit

identifier

refers

to

an

external

file.

It

is

one

of

the

following:

v

An

integer

expression

whose

value

is

in

the

range

0

through

2,147,483,647.

v

An

asterisk,

which

identifies

external

unit

5

and

is

preconnected

to

standard

input.

End

of

IBM

Extension

An

internal

file

identifier

refers

to

an

internal

file.

It

is

the

name

of

a

character

variable

that

cannot

be

an

array

section

with

a

vector

subscript.

If

the

optional

characters

UNIT=

are

omitted,

u

must

be

the

first

item

in

io_control_list.

If

the

optional

characters

UNIT=

are

specified,

either

the

optional

characters

FMT=

or

the

optional

characters

NML=

must

also

be

present.

[FMT=]

format

is

a

format

specifier

that

specifies

the

format

to

be

used

in

the

input

operation.

format

is

a

format

identifier

that

can

be:

v

The

statement

label

of

a

FORMAT

statement.

The

FORMAT

statement

must

be

in

the

same

scoping

unit.

v

The

name

of

a

scalar

INTEGER(4)

or

INTEGER(8)

variable

that

was

assigned

the

statement

label

of

a

FORMAT

statement.

The

FORMAT

statement

must

be

in

the

same

scoping

unit.

READ

352

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Fortran

95

Fortran

95

does

not

permit

assigning

of

a

statement

label.

End

of

Fortran

95

v

A

character

constant.

It

must

begin

with

a

left

parenthesis

and

end

with

a

right

parenthesis.

Only

the

format

codes

described

in

the

FORMAT

statement

can

be

used

between

the

parentheses.

Blank

characters

can

precede

the

left

parenthesis,

or

follow

the

right

parenthesis.

v

A

character

variable

that

contains

character

data

whose

leftmost

character

positions

constitute

a

valid

format.

A

valid

format

begins

with

a

left

parenthesis

and

ends

with

a

right

parenthesis.

Only

the

format

codes

listed

under

“FORMAT”

on

page

293

can

be

used

between

the

parentheses.

Blank

characters

can

precede

the

left

parenthesis

or

follow

the

right

parenthesis.

If

format

is

an

array

element,

the

format

identifier

must

not

exceed

the

length

of

the

array

element.

v

An

array

of

noncharacter

intrinsic

type.

The

data

must

be

a

valid

format

identifier

as

described

under

character

array.

v

Any

character

expression,

except

one

involving

concatenation

of

an

operand

that

specifies

inherited

length,

unless

the

operand

is

the

name

of

a

constant.

v

An

asterisk,

specifying

list-directed

formatting.

v

A

namelist

specifier

that

specifies

the

name

of

a

namelist

list

that

you

have

previously

defined.

If

the

optional

characters

FMT=

are

omitted,

format

must

be

the

second

item

in

io_control_list

and

the

first

item

must

be

the

unit

specifier

with

the

optional

characters

UNIT=

omitted.

Both

NML=

and

FMT=

cannot

be

specified

in

the

same

input

statement.

POS=integer_expr

integer_expr

is

a

scalar

integer

expression

greater

than

0.

POS=

specifies

the

file

position

of

the

file

storage

unit

to

be

read

in

a

file

connected

for

stream

access.

You

must

not

use

POS=

for

a

file

that

cannot

be

positioned.

REC=

integer_expr

is

a

record

specifier

that

specifies

the

number

of

the

record

to

be

read

in

a

file

connected

for

direct

access.

The

REC=

specifier

is

only

permitted

for

direct

input.

integer_expr

is

an

integer

expression

whose

value

is

positive.

A

record

specifier

is

not

valid

if

list-directed

or

namelist

formatting

is

used

and

if

the

unit

specifier

specifies

an

internal

file.

The

END=

specifier

can

appear

concurrently.

The

record

specifier

represents

the

relative

position

of

a

record

within

a

file.

The

relative

position

number

of

the

first

record

is

1.

You

must

not

specify

REC=

in

data

transfer

statements

that

specify

a

unit

connected

for

stream

access,

or

use

the

POS=

specifier.

IOSTAT=

ios

is

an

input/output

status

specifier

that

specifies

the

status

of

the

input/output

operation.

ios

is

a

variable

of

type

INTEGER(4)

or

default

integer.

Coding

the

IOSTAT=

specifier

suppresses

error

messages.

When

the

statement

finishes

execution,

ios

is

defined

with:

v

A

zero

value

if

no

error

condition,

end-of-file

condition,

or

end-of-record

condition

occurs.

v

A

positive

value

if

an

error

occurs.

READ

Statements

and

Attributes

353

v

A

negative

value

if

an

end-of-file

condition

is

encountered

and

no

error

occurs.

v

A

negative

value

that

is

different

from

the

end-of-file

value

if

an

end-of-record

condition

occurs

and

no

error

condition

or

end-of-file

condition

occurs.

ERR=

stmt_label

is

an

error

specifier

that

specifies

the

statement

label

of

an

executable

statement

to

which

control

is

to

transfer

in

the

case

of

an

error.

Coding

the

ERR=

specifier

suppresses

error

messages.

END=

stmt_label

is

an

end-of-file

specifier

that

specifies

a

statement

label

at

which

the

program

is

to

continue

if

an

endfile

record

is

encountered

and

no

error

occurs.

An

external

file

is

positioned

after

the

endfile

record;

the

IOSTAT=

specifier,

if

present,

is

assigned

a

negative

value;

and

the

NUM=

specifier,

if

present,

is

assigned

an

integer

value.

If

an

error

occurs

and

the

statement

contains

the

SIZE=

specifier,

the

specified

variable

becomes

defined

with

an

integer

value.

Coding

the

END=

specifier

suppresses

the

error

message

for

end-of-file.

This

specifier

can

be

specified

for

a

unit

connected

for

either

sequential

or

direct

access.

[NML=]

name

is

a

namelist

specifier

that

specifies

the

name

of

a

namelist

list

that

you

have

previously

defined.

If

the

optional

characters

NML=are

not

specified,

the

namelist

name

must

appear

as

the

second

parameter

in

the

list

and

the

first

item

must

be

the

unit

specifier

with

UNIT=

omitted.

If

both

NML=and

UNIT=are

specified,

all

the

parameters

can

appear

in

any

order.

The

NML=

specifier

is

an

alternative

to

FMT=;

both

NML=

and

FMT=

cannot

be

specified

in

the

same

input

statement.

ADVANCE=

char_expr

is

an

advance

specifier

that

determines

whether

nonadvancing

input

occurs

for

this

statement.

char_expr

is

a

scalar

character

expression

that

must

evaluate

to

YES

or

NO.

If

NO

is

specified,

nonadvancing

input

occurs.

If

YES

is

specified,

advancing,

formatted

sequential

or

stream

input

occurs.

The

default

value

is

YES.

ADVANCE=

can

be

specified

only

in

a

formatted

sequential

or

formatted

stream

READ

statement

with

an

explicit

format

specification

that

does

not

specify

an

internal

file

unit

specifier.

SIZE=

count

is

a

character

count

specifier

that

determines

how

many

characters

are

transferred

by

data

edit

descriptors

during

execution

of

the

current

input

statement.

count

is

a

scalar

variable

of

type

default

integer,

type

INTEGER(4).

Blanks

that

are

inserted

as

padding

are

not

included

in

the

count.

EOR=

stmt_label

is

an

end-of-record

specifier.

If

the

specifier

is

present,

an

end-of-record

condition

occurs,

and

no

error

condition

occurs

during

execution

of

the

statement.

If

PAD=

exists,

the

following

also

occur:

1.

If

the

PAD=

specifier

has

the

value

YES,

the

record

is

padded

with

blanks

to

satisfy

the

input

list

item

and

the

corresponding

data

edit

descriptor

that

requires

more

characters

than

the

record

contains.

2.

Execution

of

the

READ

statement

terminates.

3.

The

file

specified

in

the

READ

statement

is

positioned

after

the

current

record.

READ

354

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

4.

If

the

IOSTAT=

specifier

is

present,

the

specified

variable

becomes

defined

with

a

negative

value

different

from

an

end-of-file

value.

5.

If

the

SIZE=

specifier

is

present,

the

specified

variable

becomes

defined

with

an

integer

value.

6.

Execution

continues

with

the

statement

containing

the

statement

label

specified

by

the

EOR=

specifier.

7.

End-of-record

messages

are

suppressed.

Implied-DO

List

do_object

is

an

output

list

item

do_variable

is

a

named

scalar

variable

of

type

integer

or

real

arith_expr1,

arith_expr2,

and

arith_expr3

are

scalar

numeric

expressions

The

range

of

an

implied-DO

list

is

the

list

do_object_list.

The

iteration

count

and

the

values

of

the

DO

variable

are

established

from

arith_expr1,

arith_expr2,

and

arith_expr3,

the

same

as

for

a

DO

statement.

When

the

implied-DO

list

is

executed,

the

items

in

the

do_object_list

are

specified

once

for

each

iteration

of

the

implied-DO

list,

with

the

appropriate

substitution

of

values

for

any

occurrence

of

the

DO

variable.

The

DO

variable

or

an

associated

data

item

must

not

appear

as

an

input

list

item

in

the

do_object_list,

but

can

be

read

in

the

same

READ

statement

outside

of

the

implied-DO

list.

Rules

Any

statement

label

specified

by

the

ERR=,

EOR=

and

END=

specifiers

must

refer

to

a

branch

target

statement

that

appears

in

the

same

scoping

unit

as

the

READ

statement.

If

either

the

EOR=

specifier

or

the

SIZE=

specifier

is

present,

the

ADVANCE=

specifier

must

also

be

present

and

must

have

the

value

NO.

IBM

Extension

If

a

NUM=

specifier

is

present,

neither

a

format

specifier

nor

a

namelist

specifier

can

be

present.

End

of

IBM

Extension

Variables

specified

for

the

IOSTAT=,

SIZE=

and

NUM=

specifiers

must

not

be

associated

with

any

input

list

item,

namelist

list

item,

or

the

DO

variable

of

an

implied-DO

list.

If

such

a

specifier

variable

is

an

array

element,

its

subscript

values

must

not

be

affected

by

the

data

transfer,

any

implied-DO

processing,

or

the

definition

or

evaluation

of

any

other

specifier.

��

(

do_object_list

,

do_variable

=

arith_expr1,

arith_expr2

�

�

)

,

arith_expr3

��

READ

Statements

and

Attributes

355

A

READ

statement

without

io_control_list

specified

specifies

the

same

unit

as

a

READ

statement

with

io_control_list

specified

in

which

the

external

unit

identifier

is

an

asterisk.

If

the

ERR=

and

IOSTAT=

specifiers

are

set

and

an

error

is

encountered

during

a

synchronous

data

transfer,

transfer

is

made

to

the

statement

specified

by

the

ERR=

specifier

and

a

positive

integer

value

is

assigned

to

ios.

IBM

Extension

If

a

conversion

error

is

encountered

and

the

CNVERR

run-time

option

is

set

to

NO,

ERR=

is

not

branched

to,

although

IOSTAT=

may

be

set.

If

IOSTAT=

and

ERR=

are

not

specified,

v

The

program

stops

if

a

severe

error

is

encountered.

v

The

program

continues

to

the

next

statement

if

a

recoverable

error

is

encountered

and

the

ERR_RECOVERY

run-time

option

is

set

to

YES.

If

the

option

is

set

to

NO,

the

program

stops.

v

The

program

continues

to

the

next

statement

when

a

conversion

error

is

encountered

if

the

ERR_RECOVERY

run-time

option

is

set

to

YES.

If

the

CNVERR

run-time

option

is

set

to

YES,

conversion

errors

are

treated

as

recoverable

errors;

if

CNVERR=NO,

they

are

treated

as

conversion

errors.

End

of

IBM

Extension

Examples

INTEGER

A(100)

CHARACTER*4

B

READ

*,

A(LBOUND(A,1):UBOUND(A,1))

READ

(7,FMT=’(A3)’,ADVANCE=’NO’,EOR=100)

B

...
100

PRINT

*,

’end

of

record

reached’

END

Related

Information

v

Implementation

Details

of

XL

Fortran

Input/Output

in

the

User’s

Guide

v

“Conditions

and

IOSTAT

Values”

on

page

181

v

“WRITE”

on

page

392

v

“Understanding

XL

Fortran

Input/Output”

on

page

173

v

Setting

Run-time

Options

in

the

User’s

Guide

v

“Deleted

Features”

on

page

606

REAL

Purpose

A

REAL

type

declaration

statement

specifies

the

length

and

attributes

of

objects

and

functions

of

type

real.

Initial

values

can

be

assigned

to

objects.

Syntax

READ

356

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

where:

attr_spec

ALLOCATABLE

AUTOMATIC

DIMENSION

(array_spec)

EXTERNAL

INTENT

(intent_spec)

INTRINSIC

OPTIONAL

PARAMETER

POINTER

PRIVATE

PUBLIC

SAVE

STATIC

TARGET

VOLATILE

kind_selector

IBM

Extension

specifies

the

length

of

real

entities:

4,

8

or

16.

int_literal_constant

cannot

specify

a

kind

type

parameter.

End

of

IBM

Extension

attr_spec

For

detailed

information

on

rules

about

a

particular

attribute,

refer

to

the

statement

of

the

same

name.

intent_spec

is

either

IN,

OUT,

or

INOUT

::

is

the

double

colon

separator.

Use

the

double

colon

separator

when

you

specify

attributes,

=initialization_expr,

or

=>

NULL()

.

array_spec

is

a

list

of

dimension

bounds

��

REAL

kind_selector

::

,

attr_spec_list

::

entity_decl_list

��

��

(

int_initialization_expr

)

KIND

=

(1)

*

int_literal_constant

��

Notes:

1 IBM

Extension.

REAL

Statements

and

Attributes

357

entity_decl

a

is

an

object

name

or

function

name.

array_spec

cannot

be

specified

for

a

function

name

with

an

implicit

interface.

IBM

Extension

len

overrides

the

length

as

specified

in

kind_selector,

and

cannot

specify

a

kind

type

parameter.

The

entity

length

must

be

an

integer

literal

constant

that

represents

one

of

the

permissible

length

specifications.

End

of

IBM

Extension

IBM

Extension

initial_value

provides

an

initial

value

for

the

entity

specified

by

the

immediately

preceding

name.

End

of

IBM

Extension

initialization_expr

provides

an

initial

value,

by

means

of

an

initialization

expression,

for

the

entity

specified

by

the

immediately

preceding

name

Fortran

95

��

a

(1)

(2)

(

array_spec

)

*

len

(3)

(4)

(

array_spec

)

*

len

�

�

(5)

/

initial_value_list

/

=

initialization_expr

(6)

=>

NULL()

��

Notes:

1 IBM

Extension.

2 IBM

Extension.

3 IBM

Extension.

4 IBM

Extension.

5 IBM

Extension.

6 Fortran

95.

REAL

358

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

=>

NULL()

provides

the

initial

value

for

the

pointer

object

End

of

Fortran

95

Rules

Fortran

95

Within

the

context

of

a

derived

type

definition:

v

If

=>

appears

in

a

component

initialization,

the

POINTER

attribute

must

appear

in

the

attr_spec_list.

v

If

=

appears

in

a

component

initialization,

the

POINTER

attribute

cannot

appear

in

the

component

attr_spec_list.

v

The

compiler

will

evaluate

initialization_expr

within

the

scoping

unit

of

the

type

definition.

If

=>

appears

for

a

variable,

the

object

must

have

the

POINTER

attribute.

End

of

Fortran

95

If

initialization_expr

appears

for

a

variable,

the

object

cannot

have

the

POINTER

attribute.

Entities

in

type

declaration

statements

are

constrained

by

the

rules

of

any

attributes

specified

for

the

entities,

as

detailed

in

the

corresponding

attribute

statements.

The

type

declaration

statement

overrides

the

implicit

type

rules

in

effect.

You

can

use

a

type

declaration

statement

that

confirms

the

type

of

an

intrinsic

function.

The

appearance

of

a

generic

or

specific

intrinsic

function

name

in

a

type

declaration

statement

does

not

cause

the

name

to

lose

its

intrinsic

property.

An

object

cannot

be

initialized

in

a

type

declaration

statement

if

it

is

a

dummy

argument,

an

allocatable

object,

a

function

result,

an

object

in

a

blank

common

block,

an

integer

pointer,

an

external

name,

an

intrinsic

name,

or

an

automatic

object.

Nor

can

an

object

be

initialized

if

it

has

the

AUTOMATIC

attribute.

The

object

may

be

initialized

if

it

appears

in

a

named

common

block

in

a

block

data

program

unit.

IBM

Extension

The

object

also

may

be

initialized

if

it

appears

in

a

named

common

block

in

a

module.

End

of

IBM

Extension

Fortran

95

In

Fortran

95,

a

pointer

can

be

initialized.

Pointers

can

only

be

initialized

by

the

use

of

=>

NULL().

End

of

Fortran

95

REAL

Statements

and

Attributes

359

The

specification

expression

of

an

array_spec

can

be

a

nonconstant

expression

if

the

specification

expression

appears

in

an

interface

body

or

in

the

specification

part

of

a

subprogram.

Any

object

being

declared

that

uses

this

nonconstant

expression

and

is

not

a

dummy

argument

or

a

pointee

is

called

an

automatic

object.

An

attribute

cannot

be

repeated

in

a

given

type

declaration

statement,

nor

can

an

entity

be

explicitly

given

the

same

attribute

more

than

once

in

a

scoping

unit.

initialization_expr

must

be

specified

if

the

statement

contains

the

PARAMETER

attribute.

If

the

entity

you

are

declaring

is

a

variable,

and

initialization_expr

or

NULL()

is

specified,

the

variable

is

initially

defined.

Fortran

95

If

the

entity

you

are

declaring

is

a

derived

type

component,

and

initialization_expr

or

NULL()

is

specified,

the

derived

type

has

default

initialization.

End

of

Fortran

95

a

becomes

defined

with

the

value

determined

by

initialization_expr,

in

accordance

with

the

rules

for

intrinsic

assignment.

If

the

entity

is

an

array,

its

shape

must

be

specified

either

in

the

type

declaration

statement

or

in

a

previous

specification

statement

in

the

same

scoping

unit.

A

variable

or

variable

subobject

cannot

be

initialized

more

than

once.

If

a

is

a

variable,

the

presence

of

initialization_expr

or

NULL()

implies

that

a

is

a

saved

object,

except

for

an

object

in

a

named

common

block.

The

initialization

of

an

object

could

affect

the

fundamental

storage

class

of

an

object.

An

array_spec

specified

in

the

entity_decl

takes

precedence

over

the

array_spec

in

the

DIMENSION

attribute.

An

array

function

result

that

does

not

have

the

ALLOCATABLE

or

POINTER

attribute

must

have

an

explicit-shape

array

specification.

If

the

entity

declared

is

a

function,

it

must

not

have

an

accessible

explicit

interface

unless

it

is

an

intrinsic

function.

IBM

Extension

If

T

or

F,

defined

previously

as

the

name

of

a

constant,

appears

in

a

type

declaration

statement,

it

is

no

longer

an

abbreviated

logical

constant

but

the

name

of

the

named

constant.

End

of

IBM

Extension

Examples

REAL(8),

POINTER

::

RPTR

REAL(8),

TARGET

::

RTAR

Related

Information

v

“Real”

on

page

24

v

“Initialization

Expressions”

on

page

87

v

“How

Type

Is

Determined”

on

page

57,

for

details

on

the

implicit

typing

rules

v

“Array

Declarators”

on

page

67

REAL

360

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

v

“Automatic

Objects”

on

page

22

v

“Storage

Classes

for

Variables”

on

page

62

v

“DATA”

on

page

256,

for

details

on

initial

values

RECORD

IBM

Extension

Purpose

The

RECORD

statement

is

a

special

form

of

type

declaration

statement.

Unlike

other

type

declaration

statements,

attributes

for

entities

declared

on

the

RECORD

statement

cannot

be

specified

on

the

statement

itself.

Syntax

record_stmt:

��

�

,

RECORD

/

type_name

/

record_obj_dcl_list

::

��

record_obj_dcl:

��

record_object_name

(-array_spec-)

��

where

type_name

must

be

the

name

of

a

derived

type

that

is

accessible

in

the

scoping

unit.

Rules

Entities

cannot

be

initialized

in

a

RECORD

statement.

A

record_stmt

declares

an

entity

to

be

of

the

derived

type,

specified

by

the

type_name

that

most

immediately

precedes

it.

The

RECORD

keyword

cannnot

appear

as

the

type_spec

of

an

IMPLICIT

or

FUNCTION

statement.

��

�

,

RECORD

/

type_name

/

record_obj_dcl_list

::

��

record_obj_dcl:

��

record_object_name

(-array_spec-)

��

REAL

Statements

and

Attributes

361

Examples

In

the

following

example,

a

RECORD

statement

is

used

to

declare

a

derived

type

variable.

STRUCTURE

/S/

INTEGER

I

END

STRUCTURE

STRUCTURE

/DT/

INTEGER

I

END

STRUCTURE

RECORD/DT/REC1,REC2,/S/REC3,REC4

Related

Information

v

For

further

information

on

record

structures

and

derived

types,

see

“Derived

Types”

on

page

33

End

of

IBM

Extension

RETURN

Purpose

The

RETURN

statement:

v

In

a

function

subprogram,

ends

the

execution

of

the

subprogram

and

returns

control

to

the

referencing

statement.

The

value

of

the

function

is

available

to

the

referencing

procedure.

v

In

a

subroutine

subprogram,

ends

the

subprogram

and

transfers

control

to

the

first

executable

statement

after

the

procedure

reference

or

to

an

alternate

return

point,

if

one

is

specified.

IBM

Extension

v

In

the

main

program,

ends

execution

of

the

executable

program.

End

of

IBM

Extension

Syntax

arith_expr

is

a

scalar

integer,

real,

or

complex

expression.

If

the

value

of

the

expression

is

noninteger,

it

is

converted

to

INTEGER(4)

before

use.

arith_expr

cannot

be

a

Hollerith

constant.

��

RETURN

(1)

arith_expr

��

Notes:

1 Real

or

complex

expressions

are

an

IBM

Extension.

RECORD

362

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Rules

arith_expr

can

be

specified

in

a

subroutine

subprogram

only,

and

it

specifies

an

alternate

return

point.

Letting

m

be

the

value

of

arith_expr,

if

1

≤

m

≤

the

number

of

asterisks

in

the

SUBROUTINE

or

ENTRY

statement,

the

mth

asterisk

in

the

dummy

argument

list

is

selected.

Control

then

returns

to

the

invoking

procedure

at

the

statement

whose

statement

label

is

specified

as

the

mth

alternate

return

specifier

in

the

CALL

statement.

For

example,

if

the

value

of

m

is

5,

control

returns

to

the

statement

whose

statement

label

is

specified

as

the

fifth

alternate

return

specifier

in

the

CALL

statement.

If

arith_expr

is

omitted

or

if

its

value

(m)

is

not

in

the

range

1

through

the

number

of

asterisks

in

the

SUBROUTINE

or

ENTRY

statement,

a

normal

return

is

executed.

Control

returns

to

the

invoking

procedure

at

the

statement

following

the

CALL

statement.

Executing

a

RETURN

statement

terminates

the

association

between

the

dummy

arguments

of

the

subprogram

and

the

actual

arguments

supplied

to

that

instance

of

the

subprogram.

All

entities

local

to

the

subprogram

become

undefined,

except

as

noted

under

“Events

Causing

Undefinition”

on

page

60.

A

subprogram

can

contain

more

than

one

RETURN

statement,

but

it

does

not

require

one.

An

END

statement

in

a

function

or

subroutine

subprogram

has

the

same

effect

as

a

RETURN

statement.

Examples

CALL

SUB(A,B)

CONTAINS

SUBROUTINE

SUB(A,B)

INTEGER

::

A,B

IF

(A.LT.B)

RETURN

!

Control

returns

to

the

calling

procedure

ELSE

...

END

IF

END

SUBROUTINE

END

Related

Information

v

“Asterisks

as

Dummy

Arguments”

on

page

164

v

“Actual

Argument

Specification”

on

page

153

for

a

description

of

alternate

return

points

v

“Events

Causing

Undefinition”

on

page

60

REWIND

Purpose

The

REWIND

statement

positions

an

external

file

connected

for

sequential

access

at

the

beginning

of

the

first

record

of

the

file.

For

stream

access,

the

REWIND

statement

positions

a

file

at

its

initial

point.

Syntax

RETURN

Statements

and

Attributes

363

u

is

an

external

unit

identifier.

The

value

of

u

must

not

be

an

asterisk

or

a

Hollerith

constant.

position_list

is

a

list

that

must

contain

one

unit

specifier

([UNIT=]u)

and

can

also

contain

one

of

each

of

the

other

valid

specifiers.

The

valid

specifiers

are:

[UNIT=]

u

is

a

unit

specifier

in

which

u

must

be

an

external

unit

identifier

whose

value

is

not

an

asterisk.

An

external

unit

identifier

refers

to

an

external

file

that

is

represented

by

a

scalar

integer

expression,

whose

value

is

in

the

range

1

through

2,147,483,647.

If

the

optional

characters

UNIT=

are

omitted,

u

must

be

the

first

item

in

position_list.

IOSTAT=

ios

is

an

input/output

status

specifier

that

specifies

the

status

of

the

input/output

operation.

ios

is

a

scalar

variable

of

type

INTEGER(4)

or

default

integer.

When

the

REWIND

statement

finishes

executing,

ios

is

defined

with:

v

A

zero

value

if

no

error

condition

occurs

v

A

positive

value

if

an

error

occurs.

ERR=

stmt_label

is

an

error

specifier

that

specifies

the

statement

label

of

an

executable

statement

in

the

same

scoping

unit

to

which

control

is

to

transfer

in

the

case

of

an

error.

Coding

the

ERR=

specifier

suppresses

error

messages.

Rules

If

the

unit

is

not

connected,

an

implicit

OPEN

specifying

sequential

access

is

performed

to

a

default

file

named

fort.n,

where

n

is

the

value

of

u

with

leading

zeros

removed.

If

the

external

file

connected

to

the

specified

unit

does

not

exist,

the

REWIND

statement

has

no

effect.

If

it

exists,

an

end-of-file

marker

is

created,

if

necessary,

and

the

file

is

positioned

at

the

beginning

of

the

first

record.

If

the

file

is

already

positioned

at

its

initial

point,

the

REWIND

statement

has

no

effect.

The

REWIND

statement

causes

a

subsequent

READ

or

WRITE

statement

referring

to

u

to

read

data

from

or

write

data

to

the

first

record

of

the

external

file

associated

with

u.

If

the

ERR=

and

IOSTAT=

specifiers

are

set

and

an

error

is

encountered,

transfer

is

made

to

the

statement

specified

by

the

ERR=

specifier

and

a

positive

integer

value

is

assigned

to

ios.

IBM

Extension

If

IOSTAT=

and

ERR=

are

not

specified,

v

the

program

stops

if

a

severe

error

is

encountered.

v

the

program

continues

to

the

next

statement

if

a

recoverable

error

is

encountered

and

the

ERR_RECOVERY

run-time

option

is

set

to

YES.

If

the

option

is

set

to

NO,

the

program

stops.

End

of

IBM

Extension

��

REWIND

u

(

position_list

)

��

REWIND

364

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Examples

REWIND

(9,

IOSTAT=IOSS)

Related

Information

v

“Conditions

and

IOSTAT

Values”

on

page

181

v

“Understanding

XL

Fortran

Input/Output”

on

page

173

v

Setting

Run-time

Options

in

the

User’s

Guide

SAVE

Purpose

The

SAVE

attribute

specifies

the

names

of

objects

and

named

common

blocks

whose

definition

status

you

want

to

retain

after

control

returns

from

the

subprogram

where

you

define

the

variables

and

named

common

blocks.

Syntax

Rules

A

SAVE

statement

without

a

list

is

treated

as

though

it

contains

the

names

of

all

common

items

and

local

variables

in

the

scoping

unit.

A

common

block

name

having

the

SAVE

attribute

has

the

effect

of

specifying

all

the

entities

in

that

named

common

block.

Within

a

function

or

subroutine

subprogram,

a

variable

whose

name

you

specify

with

the

SAVE

attribute

does

not

become

undefined

as

a

result

of

a

RETURN

or

END

statement

in

the

subprogram.

object_name

cannot

be

the

name

of

a

dummy

argument,

pointee,

procedure,

automatic

object,

or

common

block

entity.

If

a

local

entity

specified

with

the

SAVE

attribute

(and

not

in

a

common

block)

is

in

a

defined

state

at

the

time

that

a

RETURN

or

END

statement

is

encountered

in

a

subprogram,

that

entity

is

defined

with

the

same

value

at

the

next

reference

of

that

subprogram.

Saved

objects

are

shared

by

all

instances

of

the

subprogram.

IBM

Extension

XL

Fortran

permits

function

results

to

have

the

SAVE

attribute.

To

indicate

that

a

function

result

is

to

have

the

SAVE

attribute,

the

function

result

name

must

be

explicitly

specified

with

the

SAVE

attribute.

That

is,

a

SAVE

statement

without

a

list

does

not

provide

the

SAVE

attribute

for

the

function

result.

End

of

IBM

Extension

��

�

SAVE

,

object_name

::

/

common_block_name

/

��

REWIND

Statements

and

Attributes

365

Attributes

Compatible

with

the

SAVE

Attribute

v

ALLOCATABLE

v

DIMENSION

v

POINTER

v

PRIVATE

v

PROTECTED

v

PUBLIC

v

STATIC

v

TARGET

v

VOLATILE

Examples

LOGICAL

::

CALLED=.FALSE.

CALL

SUB(CALLED)

CALLED=.TRUE.

CALL

SUB(CALLED)

CONTAINS

SUBROUTINE

SUB(CALLED)

INTEGER,

SAVE

::

J

LOGICAL

::

CALLED

IF

(CALLED.EQV..FALSE.)

THEN

J=2

ELSE

J=J+1

ENDIF

PRINT

*,

J

!

Output

on

first

call

is

2

!

Output

on

second

call

is

3

END

SUBROUTINE

END

Related

Information

v

“COMMON”

on

page

247

v

“Definition

Status

of

Variables”

on

page

57

v

“Storage

Classes

for

Variables”

on

page

62

v

Item

2

under

Appendix

A,

“Compatibility

Across

Standards,”

on

page

603

SELECT

CASE

Purpose

The

SELECT

CASE

statement

is

the

first

statement

of

a

CASE

construct.

It

provides

a

concise

syntax

for

selecting,

at

most,

one

of

a

number

of

statement

blocks

for

execution.

Syntax

case_construct_name

is

a

name

that

identifies

the

CASE

construct

case_expr

is

a

scalar

expression

of

type

integer,

character

or

logical

��

SELECT

CASE

(

case_expr

)

case_construct_name

:

��

SAVE

366

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Rules

When

a

SELECT

CASE

statement

is

executed,

the

case_expr

is

evaluated.

The

resulting

value

is

called

the

case

index,

which

is

used

for

evaluating

control

flow

within

the

case

construct.

If

the

case_construct_name

is

specified,

it

must

appear

on

the

END

CASE

statement

and

optionally

on

any

CASE

statements

within

the

construct.

IBM

Extension

The

case_expr

must

not

be

a

typeless

constant

or

a

BYTE

data

object.

End

of

IBM

Extension

Examples

ZERO:

SELECT

CASE(N)

!

start

of

CASE

construct

ZERO

CASE

DEFAULT

ZERO

OTHER:

SELECT

CASE(N)

!

start

of

CASE

construct

OTHER

CASE(:-1)

SIGNUM

=

-1

CASE(1:)

OTHER

SIGNUM

=

1

END

SELECT

OTHER

CASE

(0)

SIGNUM

=

0

END

SELECT

ZERO

Related

Information

v

“CASE

Construct”

on

page

119

v

“CASE”

on

page

238

v

“END

(Construct)”

on

page

277,

for

details

on

the

END

SELECT

statement

SEQUENCE

Purpose

The

SEQUENCE

statement

specifies

that

the

order

of

the

components

in

a

derived-type

definition

establishes

the

storage

sequence

for

objects

of

that

type.

Such

a

type

becomes

a

sequence

derived

type.

Syntax

Rules

The

SEQUENCE

statement

can

be

specified

only

once

in

a

derived-type

definition.

If

a

component

of

a

sequence

derived

type

is

of

derived

type,

that

derived

type

must

also

be

a

sequence

derived

type.

��

SEQUENCE

��

SELECT

CASE

Statements

and

Attributes

367

IBM

Extension

The

size

of

a

sequence

derived

type

is

equal

to

the

number

of

bytes

of

storage

needed

to

hold

all

of

the

components

of

that

derived

type.

End

of

IBM

Extension

Use

of

sequence

derived

types

can

lead

to

misaligned

data,

which

can

adversely

affect

the

performance

of

a

program.

Examples

TYPE

PERSON

SEQUENCE

CHARACTER*1

GENDER

!

Offset

0

INTEGER(4)

AGE

!

Offset

1

CHARACTER(30)

NAME

!

Offset

5

END

TYPE

PERSON

Related

Information

v

“Derived

Types”

on

page

33

v

“Derived

Type”

on

page

261

v

“END

TYPE”

on

page

280

Statement

Function

Purpose

A

statement

function

defines

a

function

in

a

single

statement.

Syntax

name

is

the

name

of

the

statement

function.

It

must

not

be

supplied

as

a

procedure

argument.

dummy_argument

can

only

appear

once

in

the

dummy

argument

list

of

any

statement

function.

The

dummy

arguments

have

the

scope

of

the

statement

function

statement,

and

the

same

types

and

type

parameters

as

the

entities

of

the

same

names

in

the

scoping

unit

containing

the

statement

function.

Rules

A

statement

function

is

local

to

the

scoping

unit

in

which

it

is

defined.

It

must

not

be

defined

in

the

scope

of

a

module.

name

determines

the

data

type

of

the

value

returned

from

the

statement

function.

If

the

data

type

of

name

does

not

match

that

of

the

scalar

expression,

the

value

of

the

scalar

expression

is

converted

to

the

type

of

name

in

accordance

with

the

rules

for

assignment

statements.

��

name

(

)

=

scalar_expression

dummy_argument_list

��

SEQUENCE

368

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

The

names

of

the

function

and

all

the

dummy

arguments

must

be

specified,

explicitly

or

implicitly,

to

be

scalar

data

objects.

The

scalar

expression

can

be

composed

of

constants,

references

to

variables,

references

to

functions

and

function

dummy

procedures,

and

intrinsic

operations.

If

the

expression

contains

a

reference

to

a

function

or

function

dummy

procedure,

the

reference

must

not

require

an

explicit

interface,

the

function

must

not

require

an

explicit

interface

or

be

a

transformational

intrinsic,

and

the

result

must

be

scalar.

If

an

argument

to

a

function

or

function

dummy

procedure

is

array-valued,

it

must

be

an

array

name.

IBM

Extension

With

XL

Fortran,

the

scalar

expression

can

also

reference

a

structure

constructor.

End

of

IBM

Extension

The

scalar

expression

can

reference

another

statement

function

that

is

either:

v

Declared

previously

in

the

same

scoping

unit,

or

v

Declared

in

the

host

scoping

unit.

Named

constants

and

arrays

whose

elements

are

referenced

in

the

expression

must

be

declared

earlier

in

the

scoping

unit

or

be

made

accessible

by

use

or

host

association.

Variables

that

are

referenced

in

the

expression

must

be

either:

v

Dummy

arguments

of

the

statement

function,

or

v

Accessible

in

the

scoping

unit

If

an

entity

in

the

expression

is

typed

by

the

implicit

typing

rules,

its

type

must

agree

with

the

type

and

type

parameters

given

in

any

subsequent

type

declaration

statement.

An

external

function

reference

in

the

scalar

expression

must

not

cause

any

dummy

arguments

of

the

statement

function

to

become

undefined

or

redefined.

If

the

statement

function

is

defined

in

an

internal

subprogram

and

if

it

has

the

same

name

as

an

accessible

entity

from

the

host,

precede

the

statement

function

definition

with

an

explicit

declaration

of

the

statement

function

name.

For

example,

use

a

type

declaration

statement.

The

length

specification

for

a

statement

function

of

type

character

or

a

statement

function

dummy

argument

of

type

character

must

be

a

constant

specification

expression.

Examples

PARAMETER

(PI

=

3.14159)

REAL

AREA,CIRCUM,R,RADIUS

AREA(R)

=

PI

*

(R**2)

!

Define

statement

functions

CIRCUM(R)

=

2

*

PI

*

R

!

AREA

and

CIRCUM

!

Reference

the

statement

functions

PRINT

*,’The

area

is:

’,AREA(RADIUS)

PRINT

*,’The

circumference

is:

’,CIRCUM(RADIUS)

Statement

Function

Statements

and

Attributes

369

Related

Information

v

“Dummy

Arguments”

on

page

155

v

“Function

Reference”

on

page

151

v

“How

Type

Is

Determined”

on

page

57,

for

information

on

how

the

type

of

the

statement

function

is

determined

STATIC

IBM

Extension

Purpose

The

STATIC

attribute

specifies

that

a

variable

has

a

storage

class

of

static;

that

is,

the

variable

remains

in

memory

for

the

duration

of

the

program

and

its

value

is

retained

between

calls

to

the

procedure.

Syntax

stat_variable

is

a

variable

name

or

an

array

declarator

that

can

specify

an

explicit_shape_spec_list

or

a

deferred_shape_spec_list.

initial_value

provides

an

initial

value

for

the

variable

specified

by

the

immediately

preceding

name.

Initialization

occurs

as

described

in

“DATA”

on

page

256.

Rules

If

stat_variable

is

a

result

variable,

it

must

not

be

of

type

character

or

of

derived

type.

Dummy

arguments,

automatic

objects

and

pointees

must

not

have

the

STATIC

attribute.

A

variable

that

is

explicitly

declared

with

the

STATIC

attribute

cannot

be

a

common

block

item.

A

variable

must

not

have

the

STATIC

attribute

specified

more

than

once

in

the

same

scoping

unit.

Local

variables

have

a

default

storage

class

of

automatic.

See

the

-qsave

Option

in

the

User’s

Guide

for

details

on

the

default

settings

with

regard

to

the

invocation

commands.

Attributes

Compatible

with

the

STATIC

Attribute

v

ALLOCATABLE

v

DIMENSION

v

POINTER

v

PRIVATE

v

PROTECTED

v

SAVE

v

TARGET

v

VOLATILE

��

�

,

STATIC

stat_variable

::

/

initial_value_list

/

��

Statement

Function

370

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Examples

LOGICAL

::

CALLED=.FALSE.

CALL

SUB(CALLED)

CALLED=.TRUE.

CALL

SUB(CALLED)

CONTAINS

SUBROUTINE

SUB(CALLED)

INTEGER,

STATIC

::

J

LOGICAL

::

CALLED

IF

(CALLED.EQV..FALSE.)

THEN

J=2

ELSE

J=J+1

ENDIF

PRINT

*,

J

!

Output

on

first

call

is

2

!

Output

on

second

call

is

3

END

SUBROUTINE

END

Related

Information

v

“Storage

Classes

for

Variables”

on

page

62

v

“COMMON”

on

page

247

End

of

IBM

Extension

STOP

Purpose

When

the

STOP

statement

is

executed,

the

program

stops

executing

and,

if

a

character

constant

or

digit

string

is

specified,

prints

the

keyword

STOP

followed

by

the

constant

or

digit

string

to

unit

0.

Syntax

char_constant

is

a

scalar

character

constant

that

is

not

a

Hollerith

constant

digit_string

is

a

string

of

one

through

five

digits

Rules

IBM

Extension

If

neither

char_constant

nor

digit_string

are

specified,

nothing

is

printed

to

standard

error

(unit

0).

End

of

IBM

Extension

��

STOP

char_constant

digit_string

��

STATIC

(IBM

Extension)

Statements

and

Attributes

371

A

STOP

statement

cannot

terminate

the

range

of

a

DO

or

DO

WHILE

construct.

IBM

Extension

If

you

specify

digit_string,

XL

Fortran

sets

the

system

return

code

to

MOD

(digit_string,256).

The

system

return

code

is

available

in

the

Korn

shell

command

variable

$?.

End

of

IBM

Extension

Examples

STOP

’Abnormal

Termination’

!

Output:

STOP

Abnormal

Termination

END

STOP

!

No

output

END

SUBROUTINE

Purpose

The

SUBROUTINE

statement

is

the

first

statement

of

a

subroutine

subprogram.

Syntax

prefix

is

one

of

the

following:

v

ELEMENTAL

v

PURE

v

RECURSIVE

Note:

type_spec

is

not

permitted

as

a

prefix

in

a

subroutine.

name

is

the

name

of

the

subroutine

subprogram

Rules

At

most

one

of

each

kind

of

prefix

can

be

specified.

The

subroutine

name

cannot

appear

in

any

other

statement

in

the

scope

of

the

subroutine,

unless

recursion

has

been

specified.

The

RECURSIVE

keyword

must

be

specified

if,

directly

or

indirectly,

v

The

subroutine

invokes

itself.

v

The

subroutine

invokes

a

procedure

defined

by

an

ENTRY

statement

in

the

same

subprogram.

v

An

entry

procedure

in

the

same

subprogram

invokes

itself.

��

�

SUBROUTINE

name

prefix

(

)

dummy_argument_list

��

STOP

372

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

v

An

entry

procedure

in

the

same

subprogram

invokes

another

entry

procedure

in

the

same

subprogram.

v

An

entry

procedure

in

the

same

subprogram

invokes

the

subprogram

defined

by

the

SUBROUTINE

statement.

If

the

RECURSIVE

keyword

is

specified,

the

procedure

interface

is

explicit

within

the

subprogram.

Fortran

95

Using

the

PURE

or

ELEMENTAL

prefix

indicates

that

the

subroutine

may

be

invoked

by

the

compiler

in

any

order

as

it

is

free

of

side

effects.For

elemental

procedures,

the

keyword

ELEMENTAL

must

be

specified.

If

the

ELEMENTAL

keyword

is

specified,

the

RECURSIVE

keyword

cannot

be

specified.

End

of

Fortran

95

IBM

Extension

You

can

also

call

external

procedures

recursively

when

you

specify

the

-qrecur

compiler

option,

although

XL

Fortran

disregards

this

option

if

the

SUBROUTINE

statement

specifies

the

RECURSIVE

keyword.

End

of

IBM

Extension

Examples

RECURSIVE

SUBROUTINE

SUB(X,Y)

INTEGER

X,Y

IF

(X.LT.Y)

THEN

RETURN

ELSE

CALL

SUB(X,Y+1)

END

IF

END

SUBROUTINE

SUB

Related

Information

v

“Function

and

Subroutine

Subprograms”

on

page

150

v

“Dummy

Arguments”

on

page

155

v

“Recursion”

on

page

166

v

“CALL”

on

page

237

v

“ENTRY”

on

page

283

v

“RETURN”

on

page

362

v

“Definition

Status

of

Variables”

on

page

57

v

“Pure

Procedures”

on

page

167

v

-qrecur

Option

in

the

User’s

Guide

TARGET

Purpose

Data

objects

with

the

TARGET

attribute

can

be

associated

with

pointers.

SUBROUTINE

Statements

and

Attributes

373

Syntax

Rules

If

a

data

object

has

the

TARGET

attribute,

then

all

of

the

data

object’s

nonpointer

subobjects

will

also

have

the

TARGET

attribute.

A

data

object

that

does

not

have

the

TARGET

attribute

cannot

be

associated

with

an

accessible

pointer.

A

target

cannot

appear

in

an

EQUIVALENCE

statement.

IBM

Extension

A

target

cannot

be

an

integer

pointer

or

a

pointee.

End

of

IBM

Extension

Attributes

Compatible

with

the

TARGET

Attribute

v

ALLOCATABLE

v

AUTOMATIC

v

DIMENSION

v

INTENT

v

OPTIONAL

v

PRIVATE

v

PROTECTED

v

PUBLIC

v

SAVE

v

STATIC

v

VALUE

v

VOLATILE

Examples

REAL,

POINTER

::

A,B

REAL,

TARGET

::

C

=

3.14

B

=>

C

A

=>

B

!

A

points

to

C

Related

Information

v

“POINTER

(Fortran

90)”

on

page

340

v

“ALLOCATED(ARRAY)

or

ALLOCATED(SCALAR)”

on

page

432

v

“DEALLOCATE”

on

page

260

v

“Pointer

Assignment”

on

page

113

v

“Pointer

Association”

on

page

133

TYPE

Purpose

A

TYPE

type

declaration

statement

specifies

the

type

and

attributes

of

objects

and

functions

of

derived

type.

Initial

values

can

be

assigned

to

objects.

��

�

,

TARGET

variable_name

::

(

array_spec

)

��

TARGET

374

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Syntax

where:

attr_spec

ALLOCATABLE

AUTOMATIC

DIMENSION

(array_spec)

EXTERNAL

INTENT

(intent_spec)

INTRINSIC

OPTIONAL

PARAMETER

POINTER

PRIVATE

PUBLIC

SAVE

STATIC

TARGET

VOLATILE

type_name

is

the

name

of

a

derived

type

attr_spec

For

detailed

information

on

rules

about

a

particular

attribute,

refer

to

the

statement

of

the

same

name.

intent_spec

is

either

IN,

OUT,

or

INOUT

::

is

the

double

colon

separator.

It

is

required

if

attributes

are

specified,

=

initialization_expr

is

used,

or

=>NULL()

appears

as

part

of

any

entity_decl.

array_spec

is

a

list

of

dimension

bounds

entity_decl

��

TYPE

(

type_name

)

::

,

attr_spec_list

::

entity_decl_list

��

��

a

(

array_spec

)

(1)

/

initial_value_list

/

=

initialization_expr

(2)

=>

NULL()

��

Notes:

1 IBM

Extension.

2 Fortran

95.

TYPE

Statements

and

Attributes

375

a

is

an

object

name

or

function

name.

array_spec

cannot

be

specified

for

a

function

with

an

implicit

interface.

IBM

Extension

initial_value

provides

an

initial

value

for

the

entity

specified

by

the

immediately

preceding

name.

Initialization

occurs

as

described

in

“DATA”

on

page

256.

End

of

IBM

Extension

initialization_expr

provides

an

initial

value,

by

means

of

an

initialization

expression,

for

the

entity

specified

by

the

immediately

preceding

name

Fortran

95

=>

NULL()

provides

the

initial

value

for

a

pointer

object

End

of

Fortran

95

Rules

Fortran

95

Within

the

context

of

a

derived

type

definition:

v

If

=>

appears

in

a

component

initialization,

the

POINTER

attribute

must

appear

in

the

attr_spec_list.

v

If

=

appears

in

a

component

initialization,

the

POINTER

attribute

cannot

appear

in

the

component

attr_spec_list.

v

The

compiler

will

evaluate

initialization_expr

within

the

scoping

unit

of

the

type

definition.

If

=>

appears

for

a

variable,

the

object

must

have

the

POINTER

attribute.

End

of

Fortran

95

If

initialization_expr

appears

for

a

variable,

the

object

cannot

have

the

POINTER

attribute.

Entities

in

type

declaration

statements

are

constrained

by

the

rules

of

any

attributes

specified

for

the

entities,

as

detailed

in

the

corresponding

attribute

statements.

Once

a

derived

type

has

been

defined,

you

can

use

it

to

define

your

data

items

using

the

TYPE

type

declaration

statement.

When

an

entity

is

explicitly

declared

to

be

of

a

derived

type,

that

derived

type

must

have

been

previously

defined

in

the

scoping

unit

or

is

accessible

by

use

or

host

association.

The

data

object

becomes

an

object

of

derived

type

or

a

structure.

Each

structure

component

is

a

subobject

of

the

object

of

derived

type.

If

you

specify

the

DIMENSION

attribute,

you

are

creating

an

array

whose

elements

have

a

data

type

of

that

derived

type.

TYPE

376

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Other

than

in

specification

statements,

you

can

use

objects

of

derived

type

as

actual

and

dummy

arguments,

and

they

can

also

appear

as

items

in

input/output

lists

(unless

the

object

has

a

component

with

the

POINTER

attribute),

assignment

statements,

structure

constructors,

and

the

right

side

of

a

statement

function

definition.

If

a

structure

component

is

not

accessible,

a

derived-type

object

cannot

be

used

in

an

input/output

list

or

as

a

structure

constructor.

Objects

of

nonsequence

derived

type

cannot

be

used

as

data

items

in

EQUIVALENCE

and

COMMON

statements.

Objects

of

nonsequence

data

types

cannot

be

integer

pointees.

A

nonsequence

derived-type

dummy

argument

must

specify

a

derived

type

that

is

accessible

through

use

or

host

association

to

ensure

that

the

same

derived-type

definition

defines

both

the

actual

and

dummy

arguments.

The

type

declaration

statement

overrides

the

implicit

type

rules

in

effect.

An

object

cannot

be

initialized

in

a

type

declaration

statement

if

it

is

a

dummy

argument,

allocatable

object,

function

result,

object

in

a

blank

common

block,

integer

pointer,

external

name,

intrinsic

name,

or

automatic

object.

Nor

can

an

object

be

initialized

if

it

has

the

AUTOMATIC

attribute.

The

object

may

be

initialized

if

it

appears

in

a

named

common

block

in

a

block

data

program

unit

or

if

it

appears

in

a

named

common

block

in

a

module.

Fortran

95

In

Fortran

95,

a

pointer

can

be

initialized.

Pointers

can

only

be

initialized

by

the

use

of

=>

NULL().

End

of

Fortran

95

The

specification

expression

of

an

array_spec

can

be

a

nonconstant

expression

if

the

specification

expression

appears

in

an

interface

body

or

in

the

specification

part

of

a

subprogram.

Any

object

being

declared

that

uses

this

nonconstant

expression

and

is

not

a

dummy

argument

or

a

pointee

is

called

an

automatic

object.

An

attribute

cannot

be

repeated

in

a

given

type

declaration

statement,

nor

can

an

entity

be

explicitly

given

the

same

attribute

more

than

once

in

a

scoping

unit.

initialization_expr

must

be

specified

if

the

statement

contains

the

PARAMETER

attribute.

If

the

entity

you

are

declaring

is

a

variable,

and

initialization_expr

or

NULL()

is

specified,

the

variable

is

initially

defined.

Fortran

95

If

the

entity

you

are

declaring

is

a

derived

type

component,

and

initialization_expr

or

NULL()

is

specified,

the

derived

type

has

default

initialization.

End

of

Fortran

95

a

becomes

defined

with

the

value

determined

by

initialization_expr,

in

accordance

with

the

rules

for

intrinsic

assignment.

If

the

entity

is

an

array,

its

shape

must

be

specified

either

in

the

type

declaration

statement

or

in

a

previous

specification

statement

in

the

same

scoping

unit.

A

variable

or

variable

subobject

cannot

be

initialized

more

than

once.

If

a

is

a

variable,

the

presence

of

initialization_expr

TYPE

Statements

and

Attributes

377

or

NULL()

implies

that

a

is

a

saved

object,

except

for

an

object

in

a

named

common

block.

The

initialization

of

an

object

could

affect

the

fundamental

storage

class

of

an

object.

An

array_spec

specified

in

the

entity_decl

takes

precedence

over

the

array_spec

in

the

DIMENSION

attribute.

An

array

function

result

that

does

not

have

the

ALLOCTABLE

or

POINTER

attribute

must

have

an

explicit-shape

array

specification.

If

the

entity

declared

is

a

function,

it

must

not

have

an

accessible

explicit

interface

unless

it

is

an

intrinsic

function.

The

derived

type

can

be

specified

on

the

FUNCTION

statement,

provided

the

derived

type

is

defined

within

the

body

of

the

function

or

is

accessible

via

host

or

use

association.

IBM

Extension

If

T

or

F,

defined

previously

as

the

name

of

a

constant,

appears

in

a

type

declaration

statement,

it

is

no

longer

an

abbreviated

logical

constant

but

the

name

of

the

named

constant.

End

of

IBM

Extension

Examples

TYPE

PEOPLE

!

Defining

derived

type

PEOPLE

INTEGER

AGE

CHARACTER*20

NAME

END

TYPE

PEOPLE

TYPE(PEOPLE)

::

SMITH

=

PEOPLE(25,’John

Smith’)

END

Related

Information

v

“Derived

Types”

on

page

33

v

“Derived

Type”

on

page

261

v

“Initialization

Expressions”

on

page

87

v

“How

Type

Is

Determined”

on

page

57,

for

details

on

the

implicit

typing

rules

v

“Array

Declarators”

on

page

67

v

“Automatic

Objects”

on

page

22

v

“Storage

Classes

for

Variables”

on

page

62

Type

Declaration

Purpose

A

type

declaration

statement

specifies

the

type,

length,

and

attributes

of

objects

and

functions.

Initial

values

can

be

assigned

to

objects.

TYPE

378

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Syntax

where:

type_spec

attr_spec

v

BYTE

�1�

v

CHARACTER

[char_selector]

v

COMPLEX

[kind_selector]

v

DOUBLE

COMPLEX

�1�

v

DOUBLE

PRECISION

v

INTEGER

[kind_selector]

v

LOGICAL

[kind_selector]

v

REAL

[kind_selector]

v

TYPE

(type_name)

v

ALLOCATABLE

v

AUTOMATIC

v

DIMENSION

(array_spec)

v

EXTERNAL

v

INTENT

(intent_spec)

v

INTRINSIC

v

OPTIONAL

v

PARAMETER

v

POINTER

v

PRIVATE

v

PROTECTED

v

PUBLIC

v

SAVE

v

STATIC

v

TARGET

v

VALUE

v

VOLATILE

Notes:

1.

IBM

Extension.

type_name

is

the

name

of

a

derived

type

kind_selector

represents

one

of

the

permissible

length

specifications

for

its

associated

type.

��

type_spec

entity_decl_list

::

,

attr_spec_list

::

��

��

(

int_initialization_expr

)

KIND

=

(1)

*

int_literal_constant

��

Notes:

1 IBM

Extension.

Type

Declaration

Statements

and

Attributes

379

IBM

Extension

int_literal_constant

cannot

specify

a

kind

type

parameter.

End

of

IBM

Extension

char_selector

specifies

the

character

length

IBM

Extension

In

XL

Fortran,

this

is

the

number

of

characters

between

0

and

256

MB.

Values

exceeding

256

MB

are

set

to

256

MB,

while

negative

values

result

in

a

length

of

zero.

If

not

specified,

the

default

length

is

1.

The

kind

type

parameter,

if

specified,

must

be

1,

which

specifies

the

ASCII

character

representation.

End

of

IBM

Extension

type_param_value

is

a

specification

expression

or

an

asterisk

(*)

int_init_expr

is

a

scalar

integer

initialization

expression

that

must

evaluate

to

1

char_length

is

either

a

scalar

integer

literal

constant

(which

cannot

specify

a

kind

type

parameter)

or

a

type_param_value

enclosed

in

parentheses

attr_spec

For

detailed

information

on

rules

about

a

particular

attribute,

refer

to

the

statement

of

the

same

name.

intent_spec

is

either

IN,

OUT,

or

INOUT

::

is

the

double

colon

separator.

Use

the

double

colon

separator

when

you

specify

attributes,

=initialization_expr,

or

=>

NULL()

.

array_spec

is

a

list

of

dimension

bounds.

entity_decl

��

(

LEN

=

type_param_value

,

KIND

=

int_init_expr

)

type_param_value

,

int_init_expr

KIND

=

KIND

=

int_init_expr

,

LEN

=

type_param_value

type_param_value

LEN

=

*

char_length

,

��

Type

Declaration

380

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

a

is

an

object

name

or

function

name.

array_spec

cannot

be

specified

for

a

function

with

an

implicit

interface.

IBM

Extension

char_length

overrides

the

length

as

specified

in

kind_selector

and

char_selector,

and

is

only

permitted

in

statements

where

the

length

can

be

specified

with

the

initial

keyword.

A

character

entity

can

specify

char_length,

as

defined

above.

A

noncharacter

entity

can

only

specify

an

integer

literal

constant

that

represents

one

of

the

permissible

length

specifications

for

its

associated

type.

End

of

IBM

Extension

IBM

Extension

initial_value

provides

an

initial

value

for

the

entity

specified

by

the

immediately

preceding

name.

End

of

IBM

Extension

initialization_expr

provides

an

initial

value,

by

mean

of

an

initialization

expression,

for

the

entity

specified

by

the

immediately

preceding

name.

Fortran

95

=>

NULL()

provides

the

initial

value

for

the

pointer

object.

End

of

Fortran

95

��

a

*

char_length

(

array_spec

)

(

array_spec

)

*

char_length

�

�

(1)

/

initial_value_list

/

=

initialization_expr

(2)

=>

NULL()

��

Notes:

1 IBM

Extension

2 Fortran

95

Type

Declaration

Statements

and

Attributes

381

Rules

Fortran

95

Within

the

context

of

a

derived

type

definition:

v

If

=>

appears

in

a

component

initialization,

the

POINTER

attribute

must

appear

in

the

attr_spec_list.

v

If

=

appears

in

a

component

initialization,

the

POINTER

attribute

cannot

appear

in

the

component

attr_spec_list.

v

The

compiler

will

evaluate

initialization_expr

within

the

scoping

unit

of

the

type

definition.

If

=>

appears

for

a

variable,

the

object

must

have

the

POINTER

attribute.

End

of

Fortran

95

If

initialization_expr

appears

for

a

variable,

the

object

cannot

have

the

POINTER

attribute.

Entities

in

type

declaration

statements

are

constrained

by

the

rules

of

any

attributes

specified

for

the

entities,

as

detailed

in

the

corresponding

attribute

statements.

The

type

declaration

statement

overrides

the

implicit

type

rules

in

effect.

You

can

use

a

type

declaration

statement

that

confirms

the

type

of

an

intrinsic

function.

The

appearance

of

a

generic

or

specific

intrinsic

function

name

in

a

type

declaration

statement

does

not

cause

the

name

to

lose

its

intrinsic

property.

An

object

cannot

be

initialized

in

a

type

declaration

statement

if

it

is

a

dummy

argument,

allocatable

object,

function

result,

object

in

a

blank

common

block,

integer

pointer,

external

name,

intrinsic

name,

or

automatic

object.

Nor

can

an

object

be

initialized

if

it

has

the

AUTOMATIC

attribute.

The

object

may

be

initialized

if

it

appears

in

a

named

common

block

in

a

block

data

program

unit

or

if

it

appears

in

a

named

common

block

in

a

module.

Fortran

95

In

Fortran

95,

a

pointer

can

be

initialized.

Pointers

can

only

be

initialized

by

the

use

of

=>

NULL().

End

of

Fortran

95

The

specification

expression

of

a

type_param_value

or

an

array_spec

can

be

a

nonconstant

expression

if

the

specification

expression

appears

in

an

interface

body

or

in

the

specification

part

of

a

subprogram.

Any

object

being

declared

that

uses

this

nonconstant

expression

and

is

not

a

dummy

argument

or

a

pointee

is

called

an

automatic

object.

An

attribute

cannot

be

repeated

in

a

given

type

declaration

statement,

nor

can

an

entity

be

explicitly

given

the

same

attribute

more

than

once

in

a

scoping

unit.

initialization_expr

must

be

specified

if

the

statement

contains

the

PARAMETER

attribute.

If

the

entity

you

are

declaring

is

a

variable,

and

initialization_expr

or

NULL()

is

specified,

the

variable

is

initially

defined.

Type

Declaration

382

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Fortran

95

If

the

entity

you

are

declaring

is

a

derived

type

component,

and

initialization_expr

or

NULL()

is

specified,

the

derived

type

has

default

initialization.

End

of

Fortran

95

a

becomes

defined

with

the

value

determined

by

initialization_expr,

in

accordance

with

the

rules

for

intrinsic

assignment.

If

the

entity

is

an

array,

its

shape

must

be

specified

either

in

the

type

declaration

statement

or

in

a

previous

specification

statement

in

the

same

scoping

unit.

A

variable

or

variable

subobject

cannot

be

initialized

more

than

once.

If

a

is

a

variable,

the

presence

of

initialization_expr

or

NULL()

implies

that

a

is

a

saved

object,

except

for

an

object

in

a

named

common

block.

The

initialization

of

an

object

could

affect

the

fundamental

storage

class

of

an

object.

An

array_spec

specified

in

an

entity_decl

takes

precedence

over

the

array_spec

in

the

DIMENSION

attribute.

An

array

function

result

that

does

not

have

the

ALLOCATABLE

or

POINTER

attribute

must

have

an

explicit-shape

array

specification.

If

the

entity

declared

is

a

function,

it

must

not

have

an

accessible

explicit

interface

unless

it

is

an

intrinsic

function.

IBM

Extension

If

T

or

F,

defined

previously

as

the

name

of

a

constant,

appears

in

a

type

declaration

statement,

it

is

no

longer

an

abbreviated

logical

constant

but

the

name

of

the

named

constant.

End

of

IBM

Extension

The

optional

comma

after

char_length

in

a

CHARACTER

type

declaration

statement

is

permitted

only

if

no

double

colon

separator

(::)

appears

in

the

statement.

If

the

CHARACTER

type

declaration

statement

is

in

the

scope

of

a

module,

block

data

program

unit,

or

main

program,

and

you

specify

the

length

of

the

entity

as

an

inherited

length,

the

entity

must

be

the

name

of

a

named

character

constant.

The

character

constant

assumes

the

length

of

its

corresponding

expression

defined

by

the

PARAMETER

attribute.

If

the

CHARACTER

type

declaration

statement

is

in

the

scope

of

a

procedure

and

the

length

of

the

entity

is

inherited,

the

entity

name

must

be

the

name

of

a

dummy

argument

or

a

named

character

constant.

If

the

statement

is

in

the

scope

of

an

external

function,

it

can

also

be

the

function

or

entry

name

in

a

FUNCTION

or

ENTRY

statement

in

the

same

program

unit.

If

the

entity

name

is

the

name

of

a

dummy

argument,

the

dummy

argument

assumes

the

length

of

the

associated

actual

argument

for

each

reference

to

the

procedure.

If

the

entity

name

is

the

name

of

a

character

constant,

the

character

constant

assumes

the

length

of

its

corresponding

expression

defined

by

the

PARAMETER

attribute.

If

the

entity

name

is

a

function

or

entry

name,

the

entity

assumes

the

length

specified

in

the

calling

scoping

unit.

Type

Declaration

Statements

and

Attributes

383

The

length

of

a

character

function

is

either

a

specification

expression

(which

must

be

a

constant

expression

if

the

function

type

is

not

declared

in

an

interface

block)

or

it

is

an

asterisk,

indicating

the

length

of

a

dummy

procedure

name.

The

length

cannot

be

an

asterisk

if

the

function

is

an

internal

or

module

function,

if

it

is

recursive,

or

if

it

returns

array

or

pointer

values.

Examples

CHARACTER(KIND=1,LEN=6)

APPLES

/’APPLES’/

CHARACTER*7,

TARGET

::

ORANGES

=

’ORANGES’

CALL

TEST(APPLES)

END

SUBROUTINE

TEST(VARBL)

CHARACTER*(*),

OPTIONAL

::

VARBL

!

VARBL

inherits

a

length

of

6

COMPLEX,

DIMENSION

(2,3)

::

ABC(3)

!

ABC

has

3

(not

6)

array

elements

REAL,

POINTER

::

XCONST

TYPE

PEOPLE

!

Defining

derived

type

PEOPLE

INTEGER

AGE

CHARACTER*20

NAME

END

TYPE

PEOPLE

TYPE(PEOPLE)

::

SMITH

=

PEOPLE(25,’John

Smith’)

END

Related

Information

v

“Data

Types

and

Data

Objects”

on

page

21

v

“Initialization

Expressions”

on

page

87

v

“How

Type

Is

Determined”

on

page

57,

for

details

on

the

implicit

typing

rules

v

“Array

Declarators”

on

page

67

v

“Automatic

Objects”

on

page

22

v

“Storage

Classes

for

Variables”

on

page

62

v

“DATA”

on

page

256,

for

details

on

initial

values

USE

Purpose

The

USE

statement

is

a

module

reference

that

provides

local

access

to

the

public

entities

of

a

module.

Syntax

rename

is

the

assignment

of

a

local

name

to

an

accessible

data

entity:

local_name

=>

use_name

only

is

a

rename,

a

generic

specification,

or

the

name

of

a

variable,

procedure,

derived

type,

named

constant,

or

namelist

group

��

USE

module_name

,

rename_list

,

ONLY

:

only_list

��

Type

Declaration

384

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Rules

The

USE

statement

can

only

appear

prior

to

all

other

statements

in

specification_part.

Multiple

USE

statements

may

appear

within

a

scoping

unit.

IBM

Extension

At

the

time

the

file

containing

the

USE

statement

is

being

compiled,

the

specified

module

must

precede

the

USE

statement

in

the

file

or

the

module

must

have

been

already

compiled

in

another

file.

Each

referenced

entity

must

be

the

name

of

a

public

entity

in

the

module.

End

of

IBM

Extension

Entities

in

the

scoping

unit

become

use-associated

with

the

module

entities,

and

the

local

entities

have

the

attributes

of

the

corresponding

module

entities.

In

addition

to

the

PRIVATE

attribute,

the

ONLY

clause

of

the

USE

statement

provides

further

constraint

on

which

module

entities

can

be

accessed.

If

the

ONLY

clause

is

specified,

only

entities

named

in

the

only_list

are

accessible.

If

no

list

follows

the

keyword,

no

module

entities

are

accessible.

If

the

ONLY

clause

is

absent,

all

public

entities

are

accessible.

If

a

scoping

unit

contains

multiple

USE

statements,

all

specifying

the

same

module,

and

one

of

the

statements

does

not

include

the

ONLY

clause,

all

public

entities

are

accessible.

If

each

USE

statement

includes

the

ONLY

clause,

only

those

entities

named

in

one

or

more

of

the

only_lists

are

accessible.

You

can

rename

an

accessible

entity

for

local

use.

A

module

entity

can

be

accessed

by

more

than

one

local

name.

If

no

renaming

is

specified,

the

name

of

the

use-associated

entity

becomes

the

local

name.

The

local

name

of

a

use-associated

entity

cannot

be

redeclared.

However,

if

the

USE

statement

appears

in

the

scoping

unit

of

a

module,

the

local

name

can

appear

in

a

PUBLIC

or

PRIVATE

statement.

If

multiple

generic

interfaces

that

are

accessible

to

a

scoping

unit

have

the

same

local

name,

operator,

or

assignment,

they

are

treated

as

a

single

generic

interface.

In

such

a

case,

one

of

the

generic

interfaces

can

contain

an

interface

body

to

an

accessible

procedure

with

the

same

name.

Otherwise,

any

two

different

use-associated

entities

can

only

have

the

same

name

if

the

name

is

not

used

to

refer

to

an

entity

in

the

scoping

unit.

If

a

use-associated

entity

and

host

entity

share

the

same

name,

the

host

entity

becomes

inaccessible

through

host

association

by

that

name.

A

module

must

not

reference

itself,

either

directly

or

indirectly.

For

example,

module

X

cannot

reference

module

Y

if

module

Y

references

module

X.

Consider

the

situation

where

a

module

(for

example,

module

B)

has

access

through

use

association

to

the

public

entities

of

another

module

(for

example,

module

A).

The

accessibility

of

module

B’s

local

entities

(which

includes

those

entities

that

are

use-associated

with

entities

from

module

A)

to

other

program

units

is

determined

by

the

PRIVATE

and

PUBLIC

attributes,

or,

if

absent,

through

the

default

accessibility

of

module

B.

Of

course,

other

program

units

can

access

the

public

entities

of

module

A

directly.

USE

Statements

and

Attributes

385

Examples

MODULE

A

REAL

::

X=5.0

END

MODULE

A

MODULE

B

USE

A

PRIVATE

::

X

!

X

cannot

be

accessed

through

module

B

REAL

::

C=80,

D=50

END

MODULE

B

PROGRAM

TEST

INTEGER

::

TX=7

CALL

SUB

CONTAINS

SUBROUTINE

SUB

USE

B,

ONLY

:

C

USE

B,

T1

=>

C

USE

B,

TX

=>

C

!

C

is

given

another

local

name

USE

A

PRINT

*,

TX

!

Value

written

is

80

because

use-associated

!

entity

overrides

host

entity

END

SUBROUTINE

END

Related

Information

v

“Modules”

on

page

146

v

“PRIVATE”

on

page

346

v

“PUBLIC”

on

page

350

v

“Order

of

Statements

and

Execution

Sequence”

on

page

19

VALUE

IBM

Extension

Purpose

The

VALUE

attribute

specifies

an

argument

association

between

a

dummy

and

an

actual

argument.

This

association

allows

you

to

pass

the

dummy

argument

with

the

value

of

the

actual

argument.

This

pass

by

value

implementation

from

the

Fortran

2003

Draft

Standard

provides

a

standard

conforming

option

to

the

%VAL

built-in

function.

An

actual

argument

and

the

associated

dummy

argument

can

change

independently.

Changes

to

the

value

or

definition

status

of

the

dummy

argument

do

not

affect

the

actual

argument.

A

dummy

argument

with

the

VALUE

attribute

becomes

associated

with

a

temporary

variable

with

an

initial

value

identical

to

the

value

of

the

actual

argument.

Syntax

��

VALUE

dummy_argument_name_list

::

��

USE

386

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Rules

You

must

specify

the

VALUE

attribute

for

dummy

arguments

only.

You

must

not

use

the

%VAL

or

%REF

built-in

functions

to

reference

a

dummy

argument

with

the

VALUE

attribute,

or

the

associated

actual

argument.

A

referenced

procedure

that

has

a

dummy

argument

with

the

VALUE

attribute

must

have

an

explicit

interface.

A

dummy

argument

with

the

VALUE

attribute

can

be

of

character

type

if

you

omit

the

length

parameter

or

specify

it

using

an

intitalization

expression

with

a

value

of

1.

You

must

not

specify

the

VALUE

attribute

with

the

following:

v

Arrays

v

Derived

types

with

ALLOCATABLE

components

v

Dummy

procedures

Attributes

Compatible

with

the

VALUE

Attribute

v

INTENT(IN)

v

OPTIONAL

v

TARGET

If

a

dummy

argument

has

both

the

VALUE

and

TARGET

attributes,

any

pointers

associated

with

that

dummy

argument

become

undefined

after

the

execution

of

the

procedure.

Examples

Program

validexm1

integer

::

x

=

10,

y

=

20

print

*,

’before

calling:

’,

x,

y

call

intersub(x,

y)

print

*,

’after

calling:

’,

x,

y

contains

subroutine

intersub(x,y)

integer,

value

::

x

integer

y

x

=

x

+

y

y

=

x*y

print

*,

’in

subroutine

after

changing:

’,

x,

y

end

subroutine

end

program

validexm1

Expected

output:

before

calling:

10

20

in

subroutine

after

changing:

30

600

after

calling:

10

600

Related

Information

For

more

information,

see

the

%VAL

built-in

function.

End

of

IBM

Extension

VALUE

Statements

and

Attributes

387

VIRTUAL

IBM

Extension

Purpose

The

VIRTUAL

statement

specifies

the

name

and

dimensions

of

an

array.

It

is

an

alternative

form

of

the

DIMENSION

statement,

although

there

is

no

VIRTUAL

attribute.

Syntax

Rules

IBM

Extension

You

can

specify

arrays

with

a

maximum

of

20

dimensions

End

of

IBM

Extension

Only

one

array

specification

for

an

array

name

can

appear

in

a

scoping

unit.

Examples

VIRTUAL

A(10),

ARRAY(5,5,5),

LIST(10,100)

VIRTUAL

ARRAY2(1:5,1:5,1:5),

LIST2(I,M)

!

adjustable

array

VIRTUAL

B(0:24),

C(-4:2),

DATA(0:9,-5:4,10)

VIRTUAL

ARRAY

(M*N*J,*)

!

assumed-size

array

Related

Information

v

“Array

Concepts”

on

page

65

v

“DIMENSION”

on

page

262

End

of

IBM

Extension

VOLATILE

IBM

Extension

Purpose

The

VOLATILE

attribute

is

used

to

designate

a

data

object

as

being

mapped

to

memory

that

can

be

accessed

by

independent

input/output

processes.

Code

that

manipulates

volatile

data

objects

is

not

optimized.

Syntax

��

VIRTUAL

array_declarator_list

��

VIRTUAL

388

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Rules

If

an

array

name

is

declared

volatile,

each

element

of

the

array

is

considered

volatile.

If

a

common

block

is

declared

volatile,

each

variable

in

the

common

block

is

considered

volatile.

An

element

of

a

common

block

can

be

declared

volatile

without

affecting

the

status

of

the

other

elements

in

the

common

block.

If

a

common

block

is

declared

in

multiple

scopes,

and

if

it

(or

one

or

more

of

its

elements)

is

declared

volatile

in

one

of

those

scopes,

you

must

specify

the

VOLATILE

attribute

in

each

scope

where

you

require

the

common

block

(or

one

or

more

of

its

elements)

to

be

considered

volatile.

If

a

derived

type

name

is

declared

volatile,

all

variables

declared

with

that

type

are

considered

volatile.

If

an

object

of

derived

type

is

declared

volatile,

all

of

its

components

are

considered

volatile.

If

a

component

of

a

derived

type

is

itself

derived,

the

component

does

not

inherit

the

volatile

attribute

from

its

type.

A

derived

type

name

that

is

declared

volatile

must

have

had

the

VOLATILE

attribute

prior

to

any

use

of

the

type

name

in

a

type

declaration

statement.

If

a

pointer

is

declared

volatile,

the

storage

of

the

pointer

itself

is

considered

volatile.

The

VOLATILE

attribute

has

no

effect

on

any

associated

pointer

targets.

If

you

declare

an

object

to

be

volatile

and

then

use

it

in

an

EQUIVALENCE

statement,

all

of

the

objects

that

are

associated

with

the

volatile

object

through

equivalence

association

are

considered

volatile.

If

the

actual

argument

associated

with

a

dummy

argument

is

a

variable

that

is

declared

volatile,

you

must

declare

the

dummy

argument

volatile

if

you

require

the

dummy

argument

to

be

considered

volatile.

If

a

dummy

argument

is

declared

volatile,

and

you

require

the

associated

actual

argument

to

be

considered

volatile,

you

must

declare

the

actual

argument

as

volatile.

Declaring

a

statement

function

as

volatile

has

no

effect

on

the

statement

function.

Within

a

function

subprogram,

the

function

result

variable

can

be

declared

volatile.

Any

entry

result

variables

will

be

considered

volatile.

An

ENTRY

name

must

not

be

specified

with

the

VOLATILE

attribute.

Attributes

Compatible

with

the

VOLATILE

Attribute

v

ALLOCATABLE

v

AUTOMATIC

v

DIMENSION

v

INTENT

v

OPTIONAL

v

POINTER

v

PRIVATE

v

PROTECTED

v

PUBLIC

v

SAVE

v

STATIC

v

TARGET

��

�

,

VOLATILE

variable_name

::

/

common_block_name

/

derived_type_name

��

VOLATILE

(IBM

Extension)

Statements

and

Attributes

389

Examples

FUNCTION

TEST

()

REAL

ONE,

TWO,

THREE

COMMON

/BLOCK1/A,

B,

C

...

VOLATILE

/BLOCK1/,

ONE,

TEST

!

Common

block

elements

A,

B

and

C

are

considered

volatile

!

since

common

block

BLOCK1

is

declared

volatile.

...

EQUIVALENCE

(ONE,

TWO),

(TWO,

THREE)

!

Variables

TWO

and

THREE

are

volatile

as

they

are

equivalenced

!

with

variable

ONE

which

is

declared

volatile.

END

FUNCTION

Related

Information

v

“Direct

Access”

on

page

175

End

of

IBM

Extension

WHERE

Purpose

The

WHERE

statement

masks

the

evaluation

of

expressions

and

assignments

of

values

in

array

assignment

statements.

It

does

this

according

to

the

value

of

a

logical

array

expression.

The

WHERE

statement

can

be

the

initial

statement

of

the

WHERE

construct.

Syntax

mask_expr

is

a

logical

array

expression

Fortran

95

where_construct_name

is

a

name

that

identifies

the

WHERE

construct

End

of

Fortran

95

Rules

If

a

where_assignment_statement

is

present,

the

WHERE

statement

is

not

the

first

statement

of

a

WHERE

construct.

If

a

where_assignment_statement

is

absent,

the

WHERE

statement

is

the

first

statement

of

the

WHERE

construct,

and

is

referred

to

as

a

WHERE

construct

statement.

An

END

WHERE

statement

must

follow.

See

“WHERE

Construct”

on

page

104

for

more

information.

��

(1)

WHERE

(

mask_expr

)

where_construct_name

:

where_assignment_statement

��

Notes:

1 Fortran

95

(where_construct_name).

VOLATILE

(IBM

Extension)

390

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

If

the

WHERE

statement

is

not

the

first

statement

of

a

WHERE

construct,

you

can

use

it

as

the

terminal

statement

of

a

DO

or

DO

WHILE

construct.

Fortran

95

You

can

nest

WHERE

statements

within

a

WHERE

construct.

A

where_assignment_statement

that

is

a

defined

assignment

must

be

an

elemental

defined

assignment.

End

of

Fortran

95

In

each

where_assignment_statement,

the

mask_expr

and

the

variable

being

defined

must

be

arrays

of

the

same

shape.

Each

mask_expr

in

a

WHERE

construct

must

have

the

same

shape.

Fortran

95

A

WHERE

statement

that

is

part

of

a

where_body_construct

must

not

be

a

branch

target

statement.

End

of

Fortran

95

The

execution

of

a

function

reference

in

the

mask_expr

of

a

WHERE

statement

can

affect

entities

in

the

where_assignment_statement.

See

“Interpreting

Masked

Array

Assignments”

on

page

106

for

information

on

interpreting

mask

expressions.

Fortran

95

If

a

where_construct_name

appears

on

a

WHERE

construct

statement,

it

must

also

appear

on

the

corresponding

END

WHERE

statement.

A

construct

name

is

optional

on

any

masked

ELSEWHERE

and

ELSEWHERE

statements

in

the

WHERE

construct.

A

where_construct_name

can

only

appear

on

a

WHERE

construct

statement.

End

of

Fortran

95

Examples

REAL,

DIMENSION(10)

::

A,B,C

!

In

the

following

WHERE

statement,

the

LOG

of

an

element

of

A

!

is

assigned

to

the

corresponding

element

of

B

only

if

that

!

element

of

A

is

a

positive

value.

WHERE

(A>0.0)

B

=

LOG(A)

...
END

Fortran

95

The

following

example

shows

an

elemental

defined

assignment

in

a

WHERE

statement:

WHERE

Statements

and

Attributes

391

INTERFACE

ASSIGNMENT(=)

ELEMENTAL

SUBROUTINE

MY_ASSIGNMENT(X,

Y)

LOGICAL,

INTENT(OUT)

::

X

REAL,

INTENT(IN)

::

Y

END

SUBROUTINE

MY_ASSIGNMENT

END

INTERFACE

INTEGER

A(10)

REAL

C(10)

LOGICAL

L_ARR(10)

C

=

(/

-10.,

15.2,

25.5,

-37.8,

274.8,

1.1,

-37.8,

-36.2,

140.1,

127.4

/)

A

=

(/

1,

2,

7,

8,

3,

4,

9,

10,

5,

6

/)

L_ARR

=

.FALSE.

WHERE

(A

<

5)

L_ARR

=

C

!

DATA

IN

ARRAY

L_ARR

AT

THIS

POINT:

!

!

L_ARR

=

F,

T,

F,

F,

T,

T,

F,

F,

F,

F

END

ELEMENTAL

SUBROUTINE

MY_ASSIGNMENT(X,

Y)

LOGICAL,

INTENT(OUT)

::

X

REAL,

INTENT(IN)

::

Y

IF

(Y

<

0.0)

THEN

X

=

.FALSE.

ELSE

X

=

.TRUE.

ENDIF

END

SUBROUTINE

MY_ASSIGNMENT

End

of

Fortran

95

Related

Information

v

“WHERE

Construct”

on

page

104

v

“ELSEWHERE”

on

page

274

v

“END

(Construct)”

on

page

277,

for

details

on

the

END

WHERE

statement

WRITE

Purpose

The

WRITE

statement

is

a

data

transfer

output

statement.

Syntax

output_item

is

an

output

list

item.

An

output

list

specifies

the

data

to

be

transferred.

An

output

list

item

can

be:

��

WRITE

(

io_control_list

)

output_item_list

��

WHERE

392

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

v

A

variable

name.

An

array

is

treated

as

if

all

of

its

elements

were

specified

in

the

order

in

which

they

are

arranged

in

storage.

A

pointer

must

be

associated

with

a

target,

and

an

allocatable

object

must

be

allocated.

A

derived-type

object

cannot

have

any

ultimate

component

that

is

outside

the

scoping

unit

of

this

statement.

The

evaluation

of

output_item

cannot

result

in

a

derived-type

object

that

contains

a

pointer.

The

structure

components

of

a

structure

in

a

formatted

statement

are

treated

as

if

they

appear

in

the

order

of

the

derived-type

definition;

in

an

unformatted

statement,

the

structure

components

are

treated

as

a

single

value

in

their

internal

representation

(including

padding).

v

An

expression

v

An

implied-DO

list,

as

described

under

“Implied-DO

List”

on

page

395

io_control

is

a

list

that

must

contain

one

unit

specifier

(UNIT=),

and

can

also

contain

one

of

each

of

the

other

valid

specifiers:

[UNIT=]

u

is

a

unit

specifier

that

specifies

the

unit

to

be

used

in

the

output

operation.

u

is

an

external

unit

identifier

or

internal

file

identifier.

IBM

Extension

An

external

unit

identifier

refers

to

an

external

file.

It

is

one

of

the

following:

v

An

integer

expression

whose

value

is

in

the

range

0

through

2,147,483,647.

v

An

asterisk,

which

identifies

external

unit

6

and

is

preconnected

to

standard

output.

End

of

IBM

Extension

An

internal

file

identifier

refers

to

an

internal

file.

It

is

the

name

of

a

character

variable,

which

cannot

be

an

array

section

with

a

vector

subscript.

If

the

optional

characters

UNIT=

are

omitted,

u

must

be

the

first

item

in

io_control_list.

If

UNIT=

is

specified,

FMT=

must

also

be

specified.

[FMT=]

format

is

a

format

specifier

that

specifies

the

format

to

be

used

in

the

output

operation.

format

is

a

format

identifier

that

can

be:

v

The

statement

label

of

a

FORMAT

statement.

The

FORMAT

statement

must

be

in

the

same

scoping

unit.

v

The

name

of

a

scalar

INTEGER(4)

or

INTEGER(8)

variable

that

was

assigned

the

statement

label

of

a

FORMAT

statement.

The

FORMAT

statement

must

be

in

the

same

scoping

unit.

Fortran

95

Fortran

95

does

not

permit

assigning

of

a

statement

label.

End

of

Fortran

95

WRITE

Statements

and

Attributes

393

v

A

character

constant

enclosed

in

parentheses.

Only

the

format

codes

listed

under

“FORMAT”

on

page

293

can

be

used

between

the

parentheses.

Blank

characters

can

precede

the

left

parenthesis

or

follow

the

right

parenthesis.

v

A

character

variable

that

contains

character

data

whose

leftmost

character

positions

constitute

a

valid

format.

A

valid

format

begins

with

a

left

parenthesis

and

ends

with

a

right

parenthesis.

Only

the

format

codes

described

in

the

FORMAT

statement

can

be

used

between

the

parentheses.

Blank

characters

can

precede

the

left

parenthesis

or

follow

the

right

parenthesis.

If

format

is

an

array

element,

the

format

identifier

must

not

exceed

the

length

of

the

array

element.

v

An

array

of

noncharacter

intrinsic

type.

The

data

must

be

a

valid

format

identifier

as

described

under

character

array.

v

Any

character

expression,

except

one

involving

concatenation

of

an

operand

that

specifies

inherited

length,

unless

the

operand

is

the

name

of

a

constant.

v

An

asterisk,

specifying

list-directed

formatting.

v

A

namelist

specifier

that

specifies

the

name

of

a

namelist

list

that

you

have

previously

defined.

If

the

optional

characters

FMT=

are

omitted,

format

must

be

the

second

item

in

io_control_list,

and

the

first

item

must

be

the

unit

specifier

with

UNIT=

omitted.

NML=

and

FMT=

cannot

both

be

specified

in

the

same

output

statement.

POS=integer_expr

integer_expr

is

a

scalar

integer

expression

greater

than

0.

POS=

specifies

the

file

position

of

the

file

storage

unit

to

be

written

in

a

file

connected

for

stream

access.

You

must

not

use

POS=

for

a

file

that

cannot

be

positioned.

REC=

integer_expr

is

a

record

specifier

that

specifies

the

number

of

the

record

to

be

written

in

a

file

connected

for

direct

access.

The

REC=

specifier

is

only

permitted

for

direct

output.

integer_expr

is

an

integer

expression

whose

value

is

positive.

A

record

specifier

is

not

valid

if

formatting

is

list-directed

or

if

the

unit

specifier

specifies

an

internal

file.

The

record

specifier

represents

the

relative

position

of

a

record

within

a

file.

The

relative

position

number

of

the

first

record

is

1.

You

must

not

specify

REC=

in

data

transfer

statements

that

specify

a

unit

connected

for

stream

access,

or

use

the

POS=

specifier.

IOSTAT=

ios

is

an

input/output

status

specifier

that

specifies

the

status

of

the

input/output

operation.

ios

is

a

scalar

variable

of

type

INTEGER(4)

or

default

integer.

Coding

the

IOSTAT=

specifier

suppresses

error

messages.

When

the

statement

finishes

execution,

ios

is

defined

with:

v

A

zero

value

if

no

error

condition

occurs

v

A

positive

value

if

an

error

occurs.

ERR=

stmt_label

is

an

error

specifier

that

specifies

the

statement

label

of

an

executable

statement

in

the

same

scoping

unit

to

which

control

is

to

transfer

in

the

case

of

an

error.

Coding

the

ERR=

specifier

suppresses

error

messages.

IBM

Extension

WRITE

394

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

NUM=

integer_variable

is

a

number

specifier

that

specifies

the

number

of

bytes

of

data

transmitted

between

the

I/O

list

and

the

file.

integer_variable

is

a

variable

name

of

type

INTEGER(4),

or

type

default

integer.

The

NUM=

specifier

is

only

permitted

for

unformatted

output.

Coding

the

NUM

parameter

suppresses

the

indication

of

an

error

that

would

occur

if

the

number

of

bytes

represented

by

the

output

list

is

greater

than

the

number

of

bytes

that

can

be

written

into

the

record.

In

this

case,

integer_variable

is

set

to

a

value

that

is

the

maximum

length

record

that

can

be

written.

Data

from

remaining

output

list

items

is

not

written

into

subsequent

records.

End

of

IBM

Extension

[NML=]

name

is

a

namelist

specifier

that

specifies

the

name

of

a

namelist

list

that

you

have

previously

defined.

If

the

optional

characters

NML=

are

not

specified,

the

namelist

name

must

appear

as

the

second

parameter

in

the

list,

and

the

first

item

must

be

the

unit

specifier

with

UNIT=

omitted.

If

both

NML=

and

UNIT=

are

specified,

all

the

parameters

can

appear

in

any

order.

The

NML=

specifier

is

an

alternative

to

FMT=.

Both

NML=

and

FMT=

cannot

be

specified

in

the

same

output

statement.

ADVANCE=

char_expr

is

an

advance

specifier

that

determines

whether

nonadvancing

output

occurs

for

this

statement.

char_expr

is

a

character

expression

that

must

evaluate

to

YES

or

NO.

If

NO

is

specified,

nonadvancing

output

occurs.

If

YES

is

specified,

advancing,

formatted

sequential

or

formatted

stream

output

occurs.

The

default

value

is

YES.

ADVANCE=

can

be

specified

only

in

a

formatted

sequential

WRITE

statement

with

an

explicit

format

specification

that

does

not

specify

an

internal

file

unit

specifier.

Implied-DO

List

do_object

is

an

output

list

item

do_variable

is

a

named

scalar

variable

of

type

integer

or

real

arith_expr1,

arith_expr2,

and

arith_expr3

are

scalar

numeric

expressions

The

range

of

an

implied-DO

list

is

the

list

do_object_list.

The

iteration

count

and

values

of

the

DO

variable

are

established

from

arith_expr1,

arith_expr2,

and

arith_expr3,

the

same

as

for

a

DO

statement.

When

the

implied-DO

list

is

executed,

the

items

in

the

do_object_list

are

specified

once

for

each

iteration

of

the

implied-DO

list,

with

the

appropriate

substitution

of

values

for

any

occurrence

of

the

DO

variable.

��

(

do_object_list

,

do_variable

=

arith_expr1,

arith_expr2

�

�

)

,

arith_expr3

��

WRITE

Statements

and

Attributes

395

Rules

IBM

Extension

If

a

NUM=

specifier

is

present,

neither

a

format

specifier

nor

a

namelist

specifier

can

be

present.

End

of

IBM

Extension

Variables

specified

for

the

IOSTAT=

and

NUM=

specifiers

must

not

be

associated

with

any

output

list

item,

namelist

list

item,

or

DO

variable

of

an

implied-DO

list.

If

such

a

specifier

variable

is

an

array

element,

its

subscript

values

must

not

be

affected

by

the

data

transfer,

any

implied-DO

processing,

or

the

definition

or

evaluation

of

any

other

specifier.

If

the

ERR=

and

IOSTAT=

specifiers

are

set

and

an

error

is

encountered

during

a

synchronous

data

transfer,

transfer

is

made

to

the

statement

specified

by

the

ERR=

specifier

and

a

positive

integer

value

is

assigned

to

ios.

IBM

Extension

If

a

conversion

error

is

encountered

and

the

CNVERR

run-time

option

is

set

to

NO,

ERR=

is

not

branched

to,

although

IOSTAT=

may

be

set.

If

IOSTAT=

and

ERR=

are

not

specified,

v

The

program

stops

if

a

severe

error

is

encountered.

v

The

program

continues

to

the

next

statement

if

a

recoverable

error

is

encountered

and

the

ERR_RECOVERY

run-time

option

is

set

to

YES.

If

the

option

is

set

to

NO,

the

program

stops.

v

The

program

continues

to

the

next

statement

when

a

conversion

error

is

encountered

if

the

ERR_RECOVERY

run-time

option

is

set

to

YES.

If

the

CNVERR

run-time

option

is

set

to

YES,

conversion

errors

are

treated

as

recoverable

errors;

when

CNVERR=NO,

they

are

treated

as

conversion

errors.

End

of

IBM

Extension

PRINT

format

has

the

same

effect

as

WRITE(*,format).

Examples

WRITE

(6,FMT=’(10F8.2)’)

(LOG(A(I)),I=1,N+9,K),G

Related

Information

v

Implementation

Details

of

XL

Fortran

Input/Output

in

the

User’s

Guide

v

“Conditions

and

IOSTAT

Values”

on

page

181

v

“Understanding

XL

Fortran

Input/Output”

on

page

173

v

“READ”

on

page

351

v

Setting

Run-time

Options

for

Input/Output

in

the

User’s

Guide

v

“Deleted

Features”

on

page

606

WRITE

396

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

General

Directives

IBM

Extension

This

section

provides

an

alphabetical

reference

to

directives

that

apply

to

all

platforms.

For

a

detailed

description

of

directives

exclusive

to

the

PowerPC

platform,

see

“Hardware–Specific

Directives”

on

page

573.

This

section

contains

the

following

sections:

v

“Comment

and

Noncomment

Form

Directives”

v

“Directives

and

Optimization”

on

page

399

v

“Detailed

Directive

Descriptions”

on

page

400

Comment

and

Noncomment

Form

Directives

XL

Fortran

directives

belong

to

one

of

two

groups:

comment

form

directives

and

noncomment

form

directives.

Comment

Form

Directives

This

section

provides

a

detailed

description

of

the

following

comment

form

directives:

COLLAPSE

SNAPSHOT

SOURCEFORM

SUBSCRIPTORDER

Additional

comment

form

directives

included

in

this

section

can

be

found

in

“Directives

and

Optimization”

on

page

399.

Format

trigger_head

is

one

of

!,

*,

C,

or

c

for

fixed

source

form

and

!

for

free

source

form.

trigger_constant

is

IBM*

by

default.

Specifying

the

-qdirective

compiler

option

will

allow

you

to

define

other

trigger

constants.

Rules

The

default

value

for

the

trigger_constant

is

IBM*.

You

can

specify

an

alternate

or

additional

trigger_constant

with

the

-qdirective

compiler

option.

See

the

-qdirective

compiler

option

in

the

User’s

Guide

for

more

details.

The

compiler

treats

all

comment

form

directives,

with

the

exception

of

those

using

the

default

trigger_constant

as

comments,

unless

you

define

the

appropriate

trigger_constant

using

the

-qdirective

compiler

option.

��

trigger_head

trigger_constant

directive

��

©

Copyright

IBM

Corp.

1990,

2003

397

XLF

directives

include

directives

that

are

common

to

other

vendors.

If

you

use

these

directives

in

your

code,

you

can

enable

whichever

trigger_constant

that

vendor

has

selected.

Specifying

the

trigger

constant

by

using

the

-qdirective

compiler

option

will

enable

the

trigger_constant

the

vendor

has

selected.

Refer

to

the

-qdirective

compiler

option

in

the

User’s

Guide

for

details

on

specifying

alternative

trigger_constants.

The

trigger_head

follows

the

rules

of

comment

lines

either

in

Fortran

90

free

source

form

or

fixed

source

form.

If

the

trigger_head

is

!,

it

does

not

have

to

be

in

column

1.

There

must

be

no

blanks

between

the

trigger_head

and

the

trigger_constant.

You

can

specify

the

directive_trigger

(defined

as

the

trigger_head

combined

with

the

trigger_constant,

!IBM*

for

example)

and

any

directive

keywords

in

uppercase,

lowercase,

or

mixed

case.

You

can

specify

inline

comments

on

directive

lines.

!IBM*

INDEPENDENT,

NEW(i)

!This

is

a

comment

A

directive

cannot

follow

another

statement

or

another

directive

on

the

same

line.

All

comment

form

directives

can

be

continued.

You

cannot

embed

a

directive

within

a

continued

statement,

nor

can

you

embed

a

statement

within

a

continued

directive.

You

must

specify

the

directive_trigger

on

all

continuation

lines.

However,

the

directive_trigger

on

a

continuation

line

need

not

be

identical

to

the

directive_trigger

that

is

used

in

the

continued

line.

For

example:

!IBM*

INDEPENDENT

&

!TRIGGER&

,

REDUCTION

(X)

&

!IBM*&

,

NEW

(I)

The

above

is

equivalent

to:

!IBM*

INDEPENDENT,

REDUCTION

(X),

NEW

(I)

provided

both

IBM*

and

TRIGGER

are

active

trigger_constants.

For

more

information,

see

“Lines

and

Source

Formats”

on

page

11.

You

can

specify

a

directive

as

a

free

source

form

or

fixed

source

form

comment,

depending

on

the

current

source

form.

Fixed

Source

Form

Rules:

If

the

trigger_head

is

one

of

C,

c,

or

*,

it

must

be

in

column

1.

The

maximum

length

of

the

trigger_constant

in

fixed

source

form

is

4

for

directives

that

are

continued

on

one

or

more

lines.

This

rule

applies

to

the

continued

lines

only,

not

to

the

initial

line.

Otherwise,

the

maximum

length

of

the

trigger_constant

is

15.

We

recommend

that

initial

line

triggers

have

a

maximum

length

of

4.

The

maximum

allowable

length

of

15

is

permitted

for

the

purposes

of

backwards

compatibility.

If

the

trigger_constant

has

a

length

of

4

or

less,

the

first

line

of

a

comment

directive

must

have

either

white

space

or

a

zero

in

column

6.

Otherwise,

the

character

in

column

6

is

part

of

the

trigger_constant.

IBM

Extension

398

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

The

directive_trigger

of

a

continuation

line

of

a

comment

directive

must

appear

in

columns

1-5.

Column

6

of

a

continuation

line

must

have

a

character

that

is

neither

white

space

nor

a

zero.

For

more

information,

see

“Fixed

Source

Form”

on

page

12.

Free

Source

Form

Rules:

The

maximum

length

of

the

trigger_constant

is

15.

An

ampersand

(&)

at

the

end

of

a

line

indicates

that

the

directive

will

continue.

When

you

continue

a

directive

line,

a

directive_trigger

must

appear

at

the

beginning

of

all

continuation

lines.

If

you

are

beginning

a

continuation

line

with

an

ampersand,

the

directive_trigger

must

precede

the

ampersand.

For

example:

!IBM*

INDEPENDENT

&

!IBM*&

,

REDUCTION

(X)

&

!IBM*&

,

NEW

(I)

For

more

information,

see

“Free

Source

Form”

on

page

15.

Noncomment

Form

Directives

This

section

provides

a

detailed

description

of

the

following

noncomment

form

directives:

EJECT

INCLUDE

#LINE

@PROCESS

Format

Rules

The

compiler

always

recognizes

noncomment

form

directives.

Noncomment

form

directives

cannot

be

continued.

Additional

statements

cannot

be

included

on

the

same

line

as

a

directive.

Source

format

rules

concerning

white

space

apply

to

directive

lines.

Directives

and

Optimization

The

following

are

comment

form

directives

useful

for

optimizing

source

code.

See

the

User’s

Guide

for

information

on

optimizing

XL

Fortran

programs

and

the

compiler

options

that

affect

performance.

Assertive

Directives

Assertive

directives

gather

information

about

source

code

that

is

otherwise

unavailable

to

the

compiler.

Providing

this

information

can

increase

performance.

ASSERT

CNCALL

INDEPENDENT

PERMUTATION

��

directive

��

IBM

Extension

General

Directives

399

Directives

for

Loop

Unrolling

The

following

directives

provide

different

methods

of

loop

unrolling

to

optimize

the

effectives

of

the

DO

CONSTRUCT

in

source

code:

STREAM_UNROLL

UNROLL

UNROLL_AND_FUSE

Detailed

Directive

Descriptions

ASSERT

The

ASSERT

directive

provides

information

to

the

compiler

about

the

characteristics

of

DO

loops.

This

assists

the

compiler

in

optimizing

the

source

code.

The

directive

only

takes

effect

if

you

specify

the

-qhot

compiler

option.

Syntax

assertion

is

ITERCNT(n)

or

NODEPS.

ITERCNT(n)

and

NODEPS

are

not

mutually

exclusive,

and

you

can

specify

both

for

the

same

DO

loop.

You

can

use

at

most

one

of

each

argument

for

the

same

DO

loop.

ITERCNT(n)

where

n

specifies

the

number

of

iterations

for

a

given

DO

loop.

n

must

be

a

positive,

scalar,

integer

initialization

expression.

NODEPS

specifies

that

no

loop-carried

dependencies

exist

within

a

given

DO

loop.

Rules

The

first

noncomment

line

(not

including

other

directives)

following

the

ASSERT

directive

must

be

a

DO

loop.

This

line

cannot

be

an

infinite

DO

or

DO

WHILE

loop.

The

ASSERT

directive

applies

only

to

the

DO

loop

immediately

following

the

directive,

and

not

to

any

nested

DO

loops.

ITERCNT

provides

an

estimate

to

the

compiler

about

roughly

how

many

iterations

the

DO

loop

will

typically

run.

There

is

no

requirement

that

the

value

be

accurate;

ITERCNT

will

only

affect

performance,

never

correctness.

When

NODEPS

is

specified,

the

user

is

explicitly

declaring

to

the

compiler

that

no

loop-carried

dependencies

exist

within

the

DO

loop

or

any

procedures

invoked

from

within

the

DO

loop.

A

loop-carried

dependency

involves

two

iterations

within

a

DO

loop

interfering

with

one

another.

Interference

occurs

in

the

following

situations:

v

Two

operations

that

define,

undefine,

or

redefine

the

same

atomic

object

(data

that

has

no

subobjects)

interfere.

v

Definition,

undefinition,

or

redefinition

of

an

atomic

object

interferes

with

any

use

of

the

value

of

the

object.

��

ASSERT

(

assertion_list

)

��

IBM

Extension

400

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

v

Any

operation

that

causes

the

association

status

of

a

pointer

to

become

defined

or

undefined

interferes

with

any

reference

to

the

pointer

or

any

other

operation

that

causes

the

association

status

to

become

defined

or

undefined.

v

Transfer

of

control

outside

the

DO

loop

or

execution

of

an

EXIT,

STOP,

or

PAUSE

statement

interferes

with

all

other

iterations.

v

If

any

two

input/output

(I/O)

operations

associated

with

the

same

file

or

external

unit

interfere

with

each

other.

The

exceptions

to

this

rule

are:

–

If

the

two

I/O

operations

are

two

INQUIRE

statements;

or

–

If

the

two

I/O

operations

are

accessing

distinct

areas

of

a

stream

access

file;

or

–

If

the

two

I/O

operations

are

accessing

distinct

records

of

a

direct

access

file.
v

A

change

in

the

allocation

status

of

an

allocatable

object

between

iterations

causes

interference.

It

is

possible

for

two

complementary

ASSERT

directives

to

apply

to

any

given

DO

loop.

However,

an

ASSERT

directive

cannot

be

followed

by

a

contradicting

ASSERT

directive

for

a

given

DO

loop:

!IBM*

ASSERT

(ITERCNT(10))

!IBM*

INDEPENDENT,

REDUCTION

(A)

!IBM*

ASSERT

(ITERCNT(20))

!

invalid

DO

I

=

1,

N

A(I)

=

A(I)

*

I

END

DO

In

the

example

above,

the

ASSERT(ITERCNT(20))

directive

contradicts

the

ASSERT(ITERCNT(10))

directive

and

is

invalid.

The

ASSERT

directive

overrides

the

-qassert

compiler

option

for

the

DO

loop

on

which

the

ASSERT

directive

is

specified.

Examples

Example

1:

!

An

example

of

the

ASSERT

directive

with

NODEPS.

PROGRAM

EX1

INTEGER

A(100)

!IBM*

ASSERT

(NODEPS)

DO

I

=

1,

100

A(I)

=

A(I)

*

FNC1(I)

END

DO

END

PROGRAM

EX1

FUNCTION

FNC1(I)

FNC1

=

I

*

I

END

FUNCTION

FNC1

Example

2:

!

An

example

of

the

ASSERT

directive

with

NODEPS

and

ITERCNT.

SUBROUTINE

SUB2

(N)

INTEGER

A(N)

!IBM*

ASSERT

(NODEPS,ITERCNT(100))

DO

I

=

1,

N

A(I)

=

A(I)

*

FNC2(I)

END

DO

END

SUBROUTINE

SUB2

ASSERT

General

Directives

401

FUNCTION

FNC2

(I)

FNC2

=

I

*

I

END

FUNCTION

FNC2

Related

Information

v

-qassert

Option

in

the

User’s

Guide

v

-qdirective

in

the

User’s

Guide

v

-qhot

Option

in

the

User’s

Guide

v

“DO”

on

page

263

CNCALL

When

the

CNCALL

directive

is

placed

before

a

DO

loop,

you

are

explicitly

declaring

to

the

compiler

that

no

loop-carried

dependencies

exist

within

any

procedure

called

from

the

DO

loop.

The

directive

only

takes

effect

if

you

specify

the

-qhot

compiler

option.

Syntax

Rules

The

first

noncomment

line

(not

including

other

directives)

that

is

following

the

CNCALL

directive

must

be

a

DO

loop.

This

line

cannot

be

an

infinite

DO

or

DO

WHILE

loop.

The

CNCALL

directive

applies

only

to

the

DO

loop

that

is

immediately

following

the

directive

and

not

to

any

nested

DO

loops.

When

specifying

the

CNCALL

directive,

you

are

explicitly

declaring

to

the

compiler

that

no

procedures

invoked

within

the

DO

loop

have

any

loop-carried

dependencies.

If

the

DO

loop

invokes

a

procedure,

separate

iterations

of

the

loop

must

be

able

to

concurrently

call

that

procedure.

The

CNCALL

directive

does

not

assert

that

other

operations

in

the

loop

do

not

have

dependencies,

it

is

only

an

assertion

about

procedure

references.

A

loop-carried

dependency

occurs

when

two

iterations

within

a

DO

loop

interfere

with

one

another.

See

the

ASSERT

directive

for

the

definition

of

interference.

Examples

!

An

example

of

CNCALL

where

the

procedure

invoked

has

!

no

loop-carried

dependency

but

the

code

within

the

!

DO

loop

itself

has

a

loop-carried

dependency.

PROGRAM

EX3

INTEGER

A(100)

!IBM*

CNCALL

DO

I

=

1,

N

A(I)

=

A(I)

*

FNC3(I)

A(I)

=

A(I)

+

A(I-1)

!

This

has

loop-carried

dependency

END

DO

END

PROGRAM

EX3

FUNCTION

FNC3

(I)

FNC3

=

I

*

I

END

FUNCTION

FNC3

��

CNCALL

��

ASSERT

402

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Related

Information

v

“INDEPENDENT”

on

page

406

v

-qdirective

in

the

User’s

Guide

v

-qhot

Option

in

the

User’s

Guide

v

“DO”

on

page

263

COLLAPSE

The

COLLAPSE

directive

reduces

an

entire

array

dimension

to

a

single

element

by

specifying

that

only

the

element

in

the

lower

bound

of

an

array

dimension

is

accessible.

If

you

do

not

specify

a

lower

bound,

the

default

lower

bound

is

one.

Used

with

discretion,

the

COLLAPSE

directive

can

facilitate

an

increase

in

performance

by

reducing

repetitive

memory

access

associated

with

multiple-dimension

arrays.

Syntax

where

collapse_array

is:

where

expression_list

is

a

comma

separated

list

of

expression.

array

name

is

the

array

name.

expression

is

a

constant

scalar

integer

expression.

You

may

only

specify

positive

integer

values.

Rules

The

COLLAPSE

directive

must

contain

at

least

one

array.

The

COLLAPSE

directive

applies

only

to

the

scoping

unit

in

which

it

is

specified.

The

declarations

of

arrays

contained

in

a

COLLAPSE

directive

must

appear

in

the

same

scoping

unit

as

the

directive.

An

array

that

is

accessible

in

a

scoping

unit

by

use

or

host

association

must

not

specified

in

a

COLLAPSE

directive

in

that

scoping

unit.

The

lowest

value

you

can

specify

in

expression_list

is

one.

The

highest

value

must

not

be

greater

than

the

number

of

dimensions

in

the

corresponding

array.

A

single

scoping

unit

can

contain

multiple

COLLAPSE

declarations,

though

you

can

only

specify

an

array

once

for

a

particular

scoping

unit.

You

can

not

specify

an

array

in

both

a

COLLAPSE

directive

and

an

EQUIVALENCE

statement.

��

COLLAPSE

(

collapse_array_list

)

��

��

array_name

(

expression_list

)

��

CNCALL

General

Directives

403

You

can

not

use

the

COLLAPSE

directive

with

arrays

that

are

components

of

derived

types.

If

you

apply

both

the

COLLAPSE

and

SUBSCRIPTORDER

directives

to

an

array,

you

must

specify

the

SUBSCRIPTORDER

directive

first.

The

COLLAPSE

directive

applies

to:

v

Assumed-shape

arrays

in

which

all

lower

bounds

must

be

constant

expressions.

v

Explicit-shape

arrays

in

which

all

lower

bounds

must

be

constant

expressions.

Examples

Example

1:

In

the

following

example,

the

COLLAPSE

directive

is

applied

to

the

explicit-shape

arrays

A

and

B.

Referencing

A(m,2:100,2:100)

and

B(m,2:100,2:100)

in

the

inner

loops,

become

A(m,1,1)

and

B(m,1,1).

!IBM*

COLLAPSE(A(2,3),B(2,3))

REAL*8

A(5,100,100),

B(5,100,100),

c(5,100,100)

DO

I=1,100

DO

J=1,100

DO

M=1,5

A(M,J,I)

=

SIN(C(M,J,I))

B(M,J,I)

=

COS(C(M,J,I))

END

DO

DO

M=1,5

DO

N=1,M

C(M,J,I)

=

C(M,J,I)

+

A(N,J,I)*B(6-N,J,I)

END

DO

END

DO

END

DO

END

DO

END

Related

Information

For

more

information

on

the

SUBSCRIPTORDER

directive,

see“SUBSCRIPTORDER”

on

page

415

EJECT

EJECT

directs

the

compiler

to

start

a

new

full

page

of

the

source

listing.

If

there

has

been

no

source

listing

requested,

the

compiler

will

ignore

this

directive.

Syntax

Rules

The

EJECT

compiler

directive

can

have

an

inline

comment

and

a

label.

However,

if

you

specify

a

statement

label,

the

compiler

discards

it.

Therefore,

you

must

not

reference

any

label

on

an

EJECT

directive.

An

example

of

using

the

directive

would

be

placing

it

before

a

DO

loop

that

you

do

not

want

split

across

pages

in

the

listing.

If

you

send

the

source

listing

to

a

printer,

the

EJECT

directive

provides

a

page

break.

INCLUDE

The

INCLUDE

compiler

directive

inserts

a

specified

statement

or

a

group

of

statements

into

a

program

unit.

��

EJECT

��

COLLAPSE

404

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Syntax

name,

char_literal_constant

(delimiters

are

optional)

specifies

filename,

the

name

of

an

include

file

You

are

not

required

to

specify

the

full

path

of

the

desired

file,

but

must

specify

the

file

extension

if

one

exists.

name

must

contain

only

characters

allowable

in

the

XL

Fortran

character

set.

See

“Characters”

on

page

9

for

the

character

set

supported

by

XL

Fortran.

char_literal_constant

is

a

character

literal

constant.

n

is

the

value

the

compiler

uses

to

decide

whether

to

include

the

file

during

compilation.

It

can

be

any

number

from

1

through

255,

and

cannot

specify

a

kind

type

parameter.

If

you

specify

n,

the

compiler

includes

the

file

only

if

the

number

appears

as

a

suboption

in

the

-qci

(conditional

include)

compiler

option.

If

you

do

not

specify

n,

the

compiler

always

includes

the

file.

A

feature

called

conditional

INCLUDE

provides

a

means

for

selectively

activating

INCLUDE

compiler

directives

within

the

Fortran

source

during

compilation.

You

specify

the

included

files

by

means

of

the

-qci

compiler

option.

In

fixed

source

form,

the

INCLUDE

compiler

directive

must

start

after

column

6,

and

can

have

a

label.

You

can

add

an

inline

comment

to

the

INCLUDE

line.

Rules

An

included

file

can

contain

any

complete

Fortran

source

statements

and

compiler

directives,

including

other

INCLUDE

compiler

directives.

Recursive

INCLUDE

compiler

directives

are

not

allowed.

An

END

statement

can

be

part

of

the

included

group.

The

first

and

last

included

lines

must

not

be

continuation

lines.

The

statements

in

the

include

file

are

processed

with

the

source

form

of

the

including

file.

If

the

SOURCEFORM

directive

appears

in

an

include

file,

the

source

form

reverts

to

that

of

the

including

file

once

processing

of

the

include

file

is

complete.

After

the

inclusion

of

all

groups,

the

resulting

Fortran

program

must

follow

all

of

the

Fortran

rules

for

statement

order.

For

an

INCLUDE

compiler

directive

with

the

left

and

right

parentheses

syntax,

XL

Fortran

translates

the

file

name

to

lowercase

unless

the

-qmixed

compiler

option

is

on.

The

file

system

locates

the

specified

filename

as

follows:

v

If

the

first

nonblank

character

of

filename

is

/,

filename

specifies

an

absolute

file

name.

v

If

the

first

nonblank

character

is

not

/,

the

operating

system

searches

directories

in

order

of

decreasing

priority:

��

INCLUDE

char_literal_constant

(

name

)

n

��

INCLUDE

General

Directives

405

–

If

you

specify

any

-I

compiler

option,

filename

is

searched

for

in

the

directories

specified.

–

If

the

operating

system

cannot

find

filename

then

it

searches:

-

the

current

directory

for

file

filename.

-

the

resident

directory

of

the

compiling

source

file

for

file

filename.

-

directory

/xlf/8.1/include

for

file

filename.

Examples

INCLUDE

’/u/userid/dc101’

!

full

absolute

file

name

specified

INCLUDE

’/u/userid/dc102.inc’

!

INCLUDE

file

name

has

an

extension

INCLUDE

’userid/dc103’

!

relative

path

name

specified

INCLUDE

(ABCdef)

!

includes

file

abcdef

INCLUDE

’../Abc’

!

includes

file

Abc

from

parent

directory

!

of

directory

being

searched

Related

Information

-qci

Option

in

the

User’s

Guide

INDEPENDENT

The

INDEPENDENT

directive,

if

used,

must

precede

a

DO

loop,

FORALL

statement,

or

FORALL

construct.

It

specifies

that

each

operation

in

the

FORALL

statement

or

FORALL

construct,

can

be

executed

in

any

order

without

affecting

the

semantics

of

the

program.

It

also

specifies

each

iteration

of

the

DO

loop,

can

be

executed

without

affecting

the

semantics

of

the

program.

The

directive

only

takes

effect

if

you

specify

the

-qhot

compiler

option.

Syntax

Rules

The

first

noncomment

line

(not

including

other

directives)

following

the

INDEPENDENT

directive

must

be

a

DO

loop,

FORALL

statement,

or

the

first

statement

of

a

FORALL

construct.

This

line

cannot

be

an

infinite

DO

or

DO

WHILE

loop.

The

INDEPENDENT

directive

applies

only

to

the

DO

loop

that

is

immediately

following

the

directive

and

not

to

any

nested

DO

loops.

An

INDEPENDENT

directive

can

have

at

most

one

NEW

clause

and

at

most

one

REDUCTION

clause.

If

the

directive

applies

to

a

DO

loop,

no

iteration

of

the

loop

can

interfere

with

any

other

iteration.

Interference

occurs

in

the

following

situations:

v

Two

operations

that

define,

undefine,

or

redefine

the

same

atomic

object

(data

that

has

no

subobjects)

interfere,

unless

the

parent

object

appears

in

the

NEW

clause

or

REDUCTION

clause.

You

must

define

nested

DO

loop

index

variables

in

the

NEW

clause.

��

�

INDEPENDENT

,

NEW

(

named_variable_list

)

,

REDUCTION

(

named_variable_list

)

��

INCLUDE

406

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

v

Definition,

undefinition,

or

redefinition

of

an

atomic

object

interferes

with

any

use

of

the

value

of

the

object.

The

exception

is

if

the

parent

object

appeared

in

the

NEW

clause

or

REDUCTION

clause.

v

Any

operation

that

causes

the

association

status

of

a

pointer

to

become

defined

or

undefined

interferes

with

any

reference

to

the

pointer

or

any

other

operation

that

causes

the

association

status

to

become

defined

or

undefined.

v

Transfer

of

control

outside

the

DO

loop

or

execution

of

an

EXIT,

STOP,

or

PAUSE

statement

interferes

with

all

other

iterations.

v

If

any

two

I/O

operations

associated

with

the

same

file

or

external

unit

interfere

with

each

other.

The

exceptions

to

this

rule

are:

–

If

the

two

I/O

operations

are

two

INQUIRE

statements;

or

–

If

the

two

I/O

operations

are

accessing

distinct

areas

of

a

stream

access

file;

or.

–

If

the

two

I/O

operations

are

accessing

distinct

records

of

a

direct

access

file.
v

A

change

in

the

allocation

status

of

an

allocatable

object

between

iterations

causes

interference.

If

the

NEW

clause

is

specified,

the

directive

must

apply

to

a

DO

loop.

The

NEW

clause

modifies

the

directive

and

any

surrounding

INDEPENDENT

directives

by

accepting

any

assertions

made

by

such

directive(s)

as

true.

It

does

this

even

if

the

variables

specified

in

the

NEW

clause

are

modified

by

each

iteration

of

the

loop.

Variables

specified

in

the

NEW

clause

behave

as

if

they

are

private

to

the

body

of

the

DO

loop.

That

is,

the

program

is

unaffected

if

these

variables

(and

any

variables

associated

with

them)

were

to

become

undefined

both

before

and

after

each

iteration

of

the

loop.

Any

variable

you

specify

in

the

NEW

clause

or

REDUCTION

clause

must

not:

v

Be

a

dummy

argument

v

Be

a

pointee

v

Be

use-associated

or

host-associated

v

Be

a

common

block

variable

v

Have

either

the

SAVE

or

STATIC

attribute

v

Have

either

the

POINTER

or

TARGET

attribute

v

Appear

in

an

EQUIVALENCE

statement

For

FORALL,

no

combination

of

index

values

affected

by

the

INDEPENDENT

directive

assigns

to

an

atomic

storage

unit

that

is

required

by

another

combination.

If

a

DO

loop,

FORALL

statement,

or

FORALL

construct

all

have

the

same

body

and

each

is

preceded

by

an

INDEPENDENT

directive,

they

behave

the

same

way.

The

REDUCTION

clause

asserts

that

updates

to

named

variables

will

occur

within

REDUCTION

statements

in

the

INDEPENDENT

loop.

Furthermore,

the

intermediate

values

of

the

REDUCTION

variables

are

not

used

within

the

parallel

section,

other

than

in

the

updates

themselves.

Thus,

the

value

of

the

REDUCTION

variable

after

the

construct

is

the

result

of

a

reduction

tree.

If

you

specify

the

REDUCTION

clause,

the

directive

must

apply

to

a

DO

loop.

The

only

reference

to

a

REDUCTION

variable

in

an

INDEPENDENT

DO

loop

must

be

within

a

reduction

statement.

A

REDUCTION

variable

must

be

of

intrinsic

type,

but

must

not

be

of

type

character.

A

REDUCTION

variable

must

not

be

an

allocatable

array.

INDEPENDENT

General

Directives

407

A

REDUCTION

variable

must

not

occur

in:

v

A

NEW

clause

in

the

same

INDEPENDENT

directive

v

A

NEW

or

REDUCTION

clause

in

an

INDEPENDENT

directive

in

the

body

of

the

following

DO

loop

A

REDUCTION

statement

can

have

one

of

the

following

forms:

where:

reduction_var_ref

is

a

variable

or

subobject

of

a

variable

that

appears

in

a

REDUCTION

clause

reduction_op

is

one

of:

+,

−,

*,

.AND.,

.OR.,

.EQV.,

.NEQV.,

or

.XOR.

reduction_function

is

one

of:

MAX,

MIN,

IAND,

IOR,

or

IEOR

The

following

rules

apply

to

REDUCTION

statements:

1.

A

reduction

statement

is

an

assignment

statement

that

occurs

in

the

range

of

an

INDEPENDENT

DO

loop.

A

variable

in

the

REDUCTION

clause

must

only

occur

in

a

REDUCTION

statement

within

the

INDEPENDENT

DO

loop.

2.

The

two

reduction_var_refs

that

appear

in

a

REDUCTION

statement

must

be

lexically

identical.

3.

The

syntax

of

the

INDEPENDENT

directive

does

not

allow

you

to

designate

an

array

element

or

array

section

as

a

REDUCTION

variable

in

the

REDUCTION

clause.

Although

such

a

subobject

may

occur

in

a

REDUCTION

statement,

it

is

the

entire

array

that

is

treated

as

a

REDUCTION

variable.

4.

You

cannot

use

the

following

form

of

the

REDUCTION

statement:

Examples

Example

1:

INTEGER

A(10),B(10,12),F

!IBM*

INDEPENDENT

!

The

NEW

clause

cannot

be

FORALL

(I=1:9:2)

A(I)=A(I+1)

!

specified

before

a

FORALL

!IBM*

INDEPENDENT,

NEW(J)

DO

M=1,10

��

reduction_var_ref

=

expr

reduction_op

reduction_var_ref

��

��

reduction_var_ref

=

reduction_var_ref

reduction_op

expr

��

��

reduction_var_ref

=

reduction_function

(expr,

reduction_var_ref)

��

��

reduction_var_ref

=

reduction_function

(reduction_var_ref,

expr)

��

��

reduction_var_ref

=

expr

-

reduction_var_ref

��

INDEPENDENT

408

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

J=F(M)

!

’J’

is

used

as

a

scratch

A(M)=J*J

!

variable

in

the

loop

!IBM*

INDEPENDENT,

NEW(N)

DO

N=1,12

!

The

first

executable

statement

B(M,N)=M+N*N

!

following

the

INDEPENDENT

must

END

DO

!

be

either

a

DO

or

FORALL

END

DO

END

Example

2:

X=0

!IBM*

INDEPENDENT,

REDUCTION(X)

DO

J

=

1,

M

X

=

X

+

J**2

END

DO

Example

3:

INTEGER

A(100),

B(100,

100)

!IBM*

INDEPENDENT,

REDUCTION(A),

NEW(J)

!

Example

showing

an

array

used

DO

I=1,100

!

for

a

reduction

variable

DO

J=1,

100

A(I)=A(I)+B(J,

I)

END

DO

END

DO

Related

Information

v

“DO

Construct”

on

page

121

v

“FORALL”

on

page

289

v

-qdirective

in

the

User’s

Guide

v

-qhot

Option

in

the

User’s

Guide

#LINE

The

#line

directive

associates

code

that

is

created

by

cpp

or

any

other

Fortran

source

code

generator

with

input

code

created

by

the

programmer.

Because

the

preprocessor

may

cause

lines

of

code

to

be

inserted

or

deleted,

the

#line

directive

can

be

useful

in

error

reporting

and

debugging

because

it

identifies

which

lines

in

the

original

source

caused

the

preprocessor

to

generate

the

corresponding

lines

in

the

intermediate

file.

Syntax

The

#line

directive

is

a

noncomment

directive

and

follows

the

syntax

rules

for

this

type

of

directive.

line_number

is

a

positive,

unsigned

integer

literal

constant

without

a

KIND

parameter.

You

must

specify

line_number.

filename

is

a

character

literal

constant,

with

no

kind

type

parameter.

The

filename

may

specify

a

full

or

relative

path.

The

filename

as

specified

will

be

��

#line

line_number

filename

��

INDEPENDENT

General

Directives

409

recorded

for

use

later.

If

you

specify

a

relative

path,

when

you

debug

the

program

the

debugger

will

use

its

directory

search

list

to

resolve

the

filename.

Rules

The

#line

directive

follows

the

same

rules

as

other

noncomment

directives,

with

the

following

exceptions:

v

You

cannot

have

Inline

comments

on

the

same

line

as

the

#line

directive.

v

White

space

is

optional

between

the

#

character

and

line

in

free

source

form.

v

White

space

may

not

be

embedded

between

the

characters

of

the

word

line

in

fixed

or

free

source

forms.

v

The

#line

directive

can

start

anywhere

on

the

line

in

fixed

source

form.

The

#line

directive

indicates

the

origin

of

all

code

following

the

directive

in

the

current

file.

Another

#line

directive

will

override

a

previous

one.

If

you

supply

a

filename,

the

subsequent

code

in

the

current

file

will

be

as

if

it

originated

from

that

filename.

If

you

omit

the

filename,

and

no

previous

#line

directive

with

a

specified

filename

exists

in

the

current

file,

the

code

in

the

current

file

is

treated

as

if

it

originated

from

the

current

file

at

the

line

number

specified.

If

a

previous

#line

directive

with

a

specified

filename

does

exist

in

the

current

file,

the

filename

from

the

previous

directive

is

used.

line_number

indicates

the

position,

in

the

appropriate

file,

of

the

line

of

code

following

the

directive.

Subsequent

lines

in

that

file

are

assumed

to

have

a

one

to

one

correspondence

with

subsequent

lines

in

the

source

file

until

another

#line

directive

is

specified

or

the

file

ends.

When

XL

Fortran

invokes

cpp

for

a

file,

the

preprocessor

will

emit

#line

directives

unless

you

also

specify

the

-d

option.

Examples

The

file

test.F

contains:

!

File

test.F,

Line

1

#include

"test.h"

PRINT*,

"test.F

Line

3"

...

PRINT*,

"test.F

Line

6"

#include

"test.h"

PRINT*,

"test.F

Line

8"

END

The

file

test.h

contains:

!

File

test.h

line

1

RRINT*,1

!

Syntax

Error

PRINT*,2

After

the

C

preprocessor

(/lib/cpp)

processes

the

file

test.F

with

the

default

options:

#line

1

"test.F"

!

File

test.F,

Line

1

#line

1

"test.h"

!

File

test.h

Line

1

RRINT*,1

!

Syntax

Error

PRINT*,2

#line

3

"test.F"

PRINT*,

"test.F

Line

3"

...

#line

6

#line

410

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

PRINT*,

"test.F

Line

6"

#line

1

"test.h"

!

File

test.h

Line

1

RRINT*,1

!

Syntax

Error

PRINT*,2

#line

8

"test.F"

PRINT*,

"test.F

Line

8"

END

The

compiler

displays

the

following

messages

after

it

processes

the

file

that

is

created

by

the

C

preprocessor:

2

2

|RRINT*,1

!Syntax

error

......a................

a

-

"test.h",

line

2.6:

1515-019

(S)

Syntax

is

incorrect.

4

2

|RRINT*,1

!Syntax

error

......a................

a

-

"test.h",

line

2.6:

1515-019

(S)

Syntax

is

incorrect.

Related

Information

v

-d

Option

in

the

User’s

Guide

v

Passing

Fortran

Files

through

the

C

Preprocessor

in

the

User’s

Guide

PERMUTATION

The

PERMUTATION

directive

specifies

that

the

elements

of

each

array

that

is

listed

in

the

integer_array_name_list

have

no

repeated

values.

This

directive

is

useful

when

you

use

array

elements

as

subscripts

for

other

array

references.

The

PERMUTATION

directive

only

takes

effect

if

you

specify

the

-qhot

compiler

option.

Syntax

integer_array_name

is

an

integer

array

with

no

repeated

values.

Rules

The

first

noncomment

line

(not

including

other

directives)

that

is

following

the

PERMUTATION

directive

must

be

a

DO

loop.

This

line

cannot

be

an

infinite

DO

or

DO

WHILE

loop.

The

PERMUTATION

directive

applies

only

to

the

DO

loop

that

is

immediately

following

the

directive,

and

not

to

any

nested

DO

loops.

Examples

PROGRAM

EX3

INTEGER

A(100),

B(100)

!IBM*

PERMUTATION

(A)

DO

I

=

1,

100

A(I)

=

I

B(A(I))

=

B(A(I))

+

A(I)

END

DO

END

PROGRAM

EX3

��

PERMUTATION

(

integer_array_name_list

)

��

#line

General

Directives

411

Related

Information

v

-qhot

Option

in

the

User’s

Guide

v

“DO”

on

page

263

@PROCESS

You

can

specify

compiler

options

to

affect

an

individual

compilation

unit

by

putting

the

@PROCESS

compiler

directive

in

the

source

file.

It

can

override

options

that

are

specified

in

the

configuration

file,

in

the

default

settings,

or

on

the

command

line.

Syntax

option

is

the

name

of

a

compiler

option,

without

the

-q

suboption

is

a

suboption

of

a

compiler

option

Rules

In

fixed

source

form,

@PROCESS

can

start

in

column

1

or

after

column

6.

In

free

source

form,

the

@PROCESS

compiler

directive

can

start

in

any

column.

You

cannot

place

a

statement

label

or

inline

comment

on

the

same

line

as

an

@PROCESS

compiler

directive.

By

default,

any

option

settings

you

designate

with

the

@PROCESS

compiler

directive

are

effective

only

for

the

compilation

unit

in

which

the

statement

appears.

If

the

file

has

more

than

one

compilation

unit,

the

option

setting

is

reset

to

its

original

state

before

the

next

unit

is

compiled.

Trigger

constants

specified

by

the

DIRECTIVE

option

are

in

effect

until

the

end

of

the

file

(or

until

NODIRECTIVE

is

processed).

The

@PROCESS

compiler

directive

must

usually

appear

before

the

first

statement

of

a

compilation

unit.

The

only

exceptions

are

for

SOURCE

and

NOSOURCE,

which

you

can

put

in

@PROCESS

directives

anywhere

in

the

compilation

unit.

Related

Information

See

Compiler

Option

Details

in

the

User’s

Guide

for

details

on

compiler

options.

SNAPSHOT

You

can

use

the

SNAPSHOT

directive

to

specify

a

safe

location

where

a

breakpoint

can

be

set

with

a

debug

program,

and

provide

a

set

of

variables

that

must

remain

visible

to

the

debug

program.

There

may

be

a

slight

performance

hit

at

the

point

where

the

SNAPSHOT

directive

is

set,

because

the

variables

must

be

kept

in

memory

for

the

debug

program

to

access.

Variables

made

visible

by

the

SNAPSHOT

directive

are

read-only.

Undefined

behavior

will

occur

if

these

variables

are

modified

through

the

debugger.

Use

with

discretion.

��

�

,

@PROCESS

option

(

suboption_list

)

��

PERMUTATION

412

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Syntax

named_variable

is

a

named

variable

that

must

be

accessible

in

the

current

scope.

Rules

To

use

the

SNAPSHOT

directive,

you

must

specify

the

-qdbg

compiler

option

at

compilation.

Related

Information

See

the

User’s

Guide

for

details

on

the

-qdbg

compiler

option.

SOURCEFORM

The

SOURCEFORM

compiler

directive

indicates

that

all

subsequent

lines

are

to

be

processed

in

the

specified

source

form

until

the

end

of

the

file

is

reached

or

until

an

@PROCESS

directive

or

another

SOURCEFORM

directive

specifies

a

different

source

form.

Syntax

source

is

one

of

the

following:

FIXED,

FIXED(right_margin),

FREE(F90),

FREE(IBM),

or

FREE.

FREE

defaults

to

FREE(F90).

right_margin

is

an

unsigned

integer

specifying

the

column

position

of

the

right

margin.

The

default

is

72.

The

maximum

is

132.

Rules

The

SOURCEFORM

directive

can

appear

anywhere

within

a

file.

An

include

file

is

compiled

with

the

source

form

of

the

including

file.

If

the

SOURCEFORM

directive

appears

in

an

include

file,

the

source

form

reverts

to

that

of

the

including

file

once

processing

of

the

include

file

is

complete.

The

SOURCEFORM

directive

cannot

specify

a

label.

��

SNAPSHOT

(

named_variable_list

)

��

��

SOURCEFORM

(

source

)

��

SNAPSHOT

General

Directives

413

Tip

To

modify

your

existing

files

to

Fortran

90

free

source

form

where

include

files

exist:

1.

Convert

your

include

files

to

Fortran

90

free

source

form:

add

a

SOURCEFORM

directive

to

the

top

of

each

include

file.

For

example:

!CONVERT*SOURCEFORM

(FREE(F90))

Define

your

own

trigger_constant

for

this

conversion

process.

2.

Once

all

the

include

files

are

converted,

convert

the

.f

files.

Add

the

same

SOURCEFORM

directive

to

the

top

of

each

file,

or

ensure

that

the

.f

file

is

compiled

with

-qfree=f90.

3.

Once

all

files

have

been

converted,

you

can

disable

the

processing

of

the

directives

with

the

-qnodirective

compiler

option.

Ensure

that

-qfree=f90

is

used

at

compile

time.

You

may

also

delete

any

unnecessary

SOURCEFORM

directives.

Examples

@PROCESS

DIRECTIVE(CONVERT*)

PROGRAM

MAIN

!

Main

program

not

yet

converted

A=1;

B=2

INCLUDE

’freeform.f’

PRINT

*,

RESULT

!

Reverts

to

fixed

form

END

where

file

freeform.f

contains:

!CONVERT*

SOURCEFORM(FREE(F90))

RESULT

=

A

+

B

STREAM_UNROLL

The

STREAM_UNROLL

directive

instructs

the

compiler

to

apply

the

combined

functionality

of

software

prefetch

and

loop

unrolling

to

DO

loops

with

a

large

iteration

count.

Stream

unrolling

functionality

is

available

only

on

PowerPC

970

platforms

or

higher,

and

optimizes

DO

loops

to

use

multiple

streams.

You

can

specify

STREAM_UNROLL

for

both

inner

and

outer

DO

loops,

and

the

compiler

will

use

an

optimal

number

of

streams

to

perform

stream

unrolling

where

applicable.

Applying

STREAM_UNROLL

to

a

loop

with

dependencies

will

produce

unexpected

results.

Syntax

unroll_factor

The

unroll_factor

must

be

a

positive

integer

initialization

expression

of

1

or

greater.

An

unroll_factor

of

1

disables

loop

unrolling.

If

you

do

not

specify

an

unroll_factor,

stream

unrolling

is

compiler

dependent.

��

STREAM_UNROLL

(

unroll_factor

)

��

SOURCEFORM

414

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Rules

You

must

specify

the

-qhot

or

–qipa=level=2

compiler

option

to

enable

stream

unrolling.

An

optimization

level

of

–O4

or

higher

also

allows

the

compiler

to

perform

stream

unrolling.

For

stream

unrolling

to

occur,

a

STREAM_UNROLL

directive

must

precede

a

DO

loop.

You

must

not

specify

the

STREAM_UNROLL

directive

more

than

once,

or

combine

the

directive

with

UNROLL,

NOUNROLL,

UNROLL_AND_FUSE,

or

NOUNROLL_AND_FUSE

directives

for

the

same

DO

construct.

You

must

not

specify

the

STREAM_UNROLL

directive

for

a

DO

WHILE

loop

or

an

infinite

DO

loop.

Examples

The

following

is

an

example

of

how

STREAM_UNROLL

can

increase

performance.

integer,

dimension(1000)

::

a,

b,

c

integer

i,

m,

n

!IBM*

stream_unroll(4)

do

i

=1,

n

a(i)

=

b(i)

+

c(i)

enddo

end

An

unroll

factor

reduces

the

number

of

iterations

from

n

to

n/4,

as

follows:

m

=

n/4

do

i

=1,

n/4

a(i)

=

b(i)

+

c(i)

a(i+m)

=

b(i+m)

+

c(i+m)

a(i+2*m)

=

b(i+2*m)

+

c(i+2*m)

a(i+3*m)

=

b(i+3*m)

+

c(i+3*m)

enddo

The

increased

number

of

read

and

store

operations

are

distributed

among

a

number

of

streams

determined

by

the

compiler,

reducing

computation

time

and

boosting

performance.

Related

Information

v

For

further

information

on

using

prefetch

techniques

in

XL

Fortran

see

the

PREFETCH

directive

set.

v

For

additional

methods

on

optimizing

using

loop

unrolling,

see

the

UNROLL

and

the

UNROLL_AND

FUSE

directives.

SUBSCRIPTORDER

The

SUBSCRIPTORDER

directive

rearranges

the

subscripts

of

an

array.

This

results

in

a

new

array

shape,

since

the

directive

changes

the

order

of

array

dimensions

in

the

declaration.

All

references

to

the

array

are

correspondingly

rearranged

to

match

the

new

array

shape.

Used

with

discretion,

the

SUBSCRIPTORDER

directive

may

improve

performance

by

increasing

the

number

of

cache

hits

and

the

amount

of

data

prefetching.

You

may

have

to

experiment

with

this

directive

until

you

find

the

arrangement

that

yields

the

most

performance

benefits.

You

may

find

SUBSCRIPTORDER

especially

useful

when

porting

code

originally

intended

for

a

non-cached

hardware

architecture.

STREAM_UNROLL

General

Directives

415

In

a

cached

hardware

architecture,

such

as

the

PowerPC,

an

entire

cache

line

of

data

is

often

loaded

into

the

processor

in

order

to

access

each

data

element.

Changing

the

storage

arrangement

can

be

used

to

ensure

that

consecutively

accessed

elements

are

stored

adjacently.

This

may

result

in

a

performance

improvement,

as

there

are

more

element

accesses

for

each

cache

line

referenced.

Additionally,

adjacently

storing

array

elements

which

are

consecutively

accessed

may

help

to

better

exploit

the

processor’s

prefetching

facility.

Syntax

where

subscriptorder_array

is:

array

name

is

the

name

of

an

array.

subscriptorder_number

is

an

integer

constant.

Rules

The

SUBSCRIPTORDER

directive

must

appear

in

a

scoping

unit

preceding

all

declarations

and

references

to

the

arrays

in

the

subscriptorder_array

list.

The

directive

only

applies

to

that

scoping

unit

and

must

contain

at

least

one

array.

If

multiple

scoping

units

share

an

array,

then

you

must

apply

the

SUBSCRIPTORDER

directive

to

each

of

the

applicable

scoping

units

with

identical

subscript

arrangements.

Examples

of

methods

of

array

sharing

between

scoping

units

include

COMMON

statements,

USE

statements,

and

subroutine

arguments.

The

lowest

subscript

number

in

a

subscriptorder_number

list

must

be

1.

The

highest

number

must

be

equal

to

the

number

of

dimensions

in

the

corresponding

array.

Every

integer

number

between

these

two

limits,

including

the

limits,

signifies

a

subscript

number

prior

to

rearrangement

and

must

be

included

exactly

once

in

the

list.

You

must

not

apply

a

SUBSCRIPTORDER

directive

multiple

times

to

a

particular

array

in

a

scoping

unit.

You

must

maintain

array

shape

conformance

in

passing

arrays

as

actual

arguments

to

elemental

procedures,

if

one

of

the

arrays

appears

in

a

SUBSCRIPTORDER

directive.

You

must

also

adjust

the

actual

arguments

of

the

SHAPE,

SIZE,

LBOUND,

and

UBOUND

inquiry

intrinsic

procedures

and

of

most

transformational

intrinsic

procedures.

��

�

,

SUBSCRIPTORDER

(

subscriptorder_array

)

��

��

�

,

array_name

(

subscriptorder_number

)

��

SUBSCRIPTORDER

416

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

You

must

manually

modify

data

in

input

data

files

and

in

explicit

initializations

for

arrays

that

appear

in

the

SUBSCRIPTORDER

directive.

On

arrays

to

which

the

COLLAPSE

directive

is

also

applied,

the

COLLAPSE

directive

always

refers

to

the

pre-subscriptorder

dimension

numbers.

You

must

not

rearrange

the

last

dimension

of

an

assumed-size

array.

Examples

Example

1:

In

the

following

example,

the

SUBSCRIPTORDER

directive

is

applied

to

an

explicit-shape

array

and

swaps

the

subscripts

in

every

reference

to

the

array,

without

affecting

the

program

output.

!IBM*

SUBSCRIPTORDER(A(2,1))

INTEGER

COUNT/1/,

A(3,2)

DO

J

=

1,

3

DO

K

=

1,

2

!

Inefficient

coding:

innermost

index

is

accessing

rightmost

!

dimension.

The

subscriptorder

directive

compensates

by

!

swapping

the

subscripts

in

the

array’s

declaration

and

!

access

statements.

!

A(J,K)

=

COUNT

PRINT*,

J,

K,

A(J,K)

COUNT

=

COUNT

+

1

END

DO

END

DO

Without

the

directive

above,

the

array

shape

is

(3,2)

and

the

array

elements

would

be

stored

in

the

following

order:

A(1,1)

A(2,1)

A(3,1)

A(1,2)

A(2,2)

A(3,2)

With

the

directive,

the

array

shape

is

(2,3)

and

the

array

elements

are

stored

in

the

following

order:

A(1,1)

A(2,1)

A(1,2)

A(2,2)

A(1,3)

A(2,3)

Related

Information

For

more

information

on

the

COLLAPSE

directive,

see

“COLLAPSE”

on

page

403

UNROLL

The

UNROLL

directive

instructs

the

compiler

to

attempt

loop

unrolling

where

applicable.

Loop

unrolling

replicates

the

body

of

the

DO

loop

to

reduce

the

number

of

iterations

required

to

complete

the

loop.

You

can

control

loop

unrolling

for

an

entire

file

using

the

-qunroll

compiler

option.

Specifying

the

directive

for

a

particular

DO

loop

always

overrides

the

compiler

option.

Syntax

��

UNROLL

(

unroll_factor

)

NOUNROLL

��

SUBSCRIPTORDER

General

Directives

417

unroll_factor

The

unroll_factor

must

be

a

positive

integer

initialization

expression

of

1

or

greater.

An

unroll_factor

of

1

disables

loop

unrolling.

If

you

do

not

specify

an

unroll_factor,

loop

unrolling

is

compiler

dependent.

Rules

For

loop

unrolling

to

occur,

an

UNROLL

directive

must

precede

a

DO

loop.

You

must

not

specify

the

UNROLL

directive

more

than

once,

or

combine

the

directive

with

NOUNROLL,

STREAM_UNROLL,

UNROLL_AND_FUSE,

or

NOUNROLL_AND_FUSE

directives

for

the

same

DO

construct.

You

must

not

specify

the

UNROLL

directive

for

a

DO

WHILE

loop

or

an

infinite

DO

loop.

Examples

Example

1:

In

this

example,

the

UNROLL(2)

directive

is

used

to

tell

the

compiler

that

the

body

of

the

loop

can

be

replicated

so

that

the

work

of

two

iterations

is

performed

in

a

single

iteration.

Instead

of

performing

1000

iterations,

if

the

compiler

unrolls

the

loop,

it

will

only

perform

500

iterations.

!IBM*

UNROLL(2)

DO

I

=

1,

1000

A(I)

=

I

END

DO

If

the

compiler

chooses

to

unroll

the

previous

loop,

the

compiler

translates

the

loop

so

that

it

is

essentially

equivalent

to

the

following:

DO

I

=

1,

1000,

2

A(I)

=

I

A(I+1)

=

I

+

1

END

DO

Example

2:

In

the

first

DO

loop,

UNROLL(3)

is

used.

If

unrolling

is

performed,

the

compiler

will

unroll

the

loop

so

that

the

work

of

three

iterations

is

done

in

a

single

iteration.

In

the

second

DO

loop,

the

compiler

determines

how

to

unroll

the

loop

for

maximum

performance.

PROGRAM

GOODUNROLL

INTEGER

I,

X(1000)

REAL

A,

B,

C,

TEMP,

Y(1000)

!IBM*

UNROLL(3)

DO

I

=

1,

1000

X(I)

=

X(I)

+

1

END

DO

!IBM*

UNROLL

DO

I

=

1,

1000

A

=

-I

B

=

I

+

1

C

=

I

+

2

TEMP

=

SQRT(B*B

-

4*A*C)

Y(I)

=

(-B

+

TEMP)

/

(2*A)

END

DO

END

PROGRAM

GOODUNROLL

Related

Information

v

The

directives

“STREAM_UNROLL”

on

page

414

and

“UNROLL_AND_FUSE”

on

page

419

provide

additional

methods

for

optimizing

using

loop

unrolling.

UNROLL

418

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

UNROLL_AND_FUSE

The

UNROLL_AND_FUSE

directive

instructs

the

compiler

to

attempt

a

loop

unroll

and

fuse

where

applicable.

Loop

unrolling

replicates

the

body

of

multiple

DO

loops

and

combines

the

necessary

iterations

into

a

single

unrolled

loop.

Using

a

fused

loop

can

minimize

the

required

number

of

loop

iterations,

while

reducing

the

frequency

of

cache

misses.

Applying

UNROLL_AND_FUSE

to

a

loop

with

dependencies

will

produce

unexpected

results.

Syntax

unroll_factor

The

unroll_factor

must

be

a

positive

integer

initialization

expression

of

1

or

greater.

An

unroll_factor

of

1

disables

loop

unrolling.

If

you

do

not

specify

an

unroll_factor,

loop

unrolling

is

compiler

dependent.

Rules

For

loop

unrolling

to

occur,

an

UNROLL_AND_FUSE

directive

must

precede

a

DO

loop.

You

must

not

specify

the

UNROLL_AND_FUSE

directive

for

the

innermost

DO

loop.

You

must

not

specify

the

UNROLL_AND_FUSE

directive

more

than

once,

or

combine

the

directive

with

NOUNROLL_AND_FUSE,

NOUNROLL,

UNROLL,

or

STREAM_UNROLL

directives

for

the

same

DO

construct.

You

must

not

specify

the

UNROLL_AND_FUSE

directive

for

a

DO

WHILE

loop

or

an

infinite

DO

loop.

Examples

Example

1:

In

the

the

following

example,

the

UNROLL_AND_FUSE

directive

replicates

and

fuses

the

body

of

the

loop.

This

reduces

the

number

of

cache

misses

for

Array

B.

INTEGER,

DIMENSION(1000,

1000)

::

A,

B,

C

!IBM*

UNROLL_AND_FUSE(2)

DO

I

=

1,

1000

DO

J

=

1,

1000

A(J,I)

=

B(I,J)

*

C(J,I)

END

DO

END

DO

END

The

DO

loop

below

shows

a

possible

result

of

applying

the

UNROLL_AND_FUSE

directive.

DO

I

=

1,

1000,

2

DO

J

=

1,

1000

A(J,I)

=

B(I,J)

*

C(J,I)

A(J,I+1)

=

B(I+1,

J)

*

C(J,

I+1)

END

DO

END

DO

Example

2:

The

following

example

uses

multiple

UNROLL_AND_FUSE

directives:

��

UNROLL_AND_FUSE

(

unroll_factor

)

NOUNROLL_AND_FUSE

��

UNROLL

General

Directives

419

INTEGER,

DIMENSION(1000,

1000)

::

A,

B,

C,

D,

H

!IBM*

UNROLL_AND_FUSE(4)

DO

I

=

1,

1000

!IBM*

UNROLL_AND_FUSE(2)

DO

J

=

1,

1000

DO

k

=

1,

1000

A(J,I)

=

B(I,J)

*

C(J,I)

+

D(J,K)*H(I,K)

END

DO

END

DO

END

DO

END

Related

Information

v

The

directives

“STREAM_UNROLL”

on

page

414

and

“UNROLL”

on

page

417

provide

additional

methods

for

optimizing

using

loop

unrolling.

End

of

IBM

Extension

UNROLL

420

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Intrinsic

Procedures

Fortran

defines

a

number

of

procedures,

called

intrinsic

procedures,

that

are

available

to

any

program.

This

section

provides

an

alphabetical

reference

to

these

procedures.

Related

Information:

1.

“Intrinsic

Procedures”

on

page

152

provides

background

information

that

you

may

need

to

be

familiar

with

before

proceeding

with

this

section.

2.

“INTRINSIC”

on

page

322

is

a

related

statement.

Classes

of

Intrinsic

Procedures

There

are

five

classes

of

intrinsic

procedures:

inquiry

functions,

elemental

procedures,

system

inquiry

functions,

transformational

functions,

and

subroutines.

Inquiry

Intrinsic

Functions

The

result

of

an

inquiry

function

depends

on

the

properties

of

its

principal

argument,

not

on

the

value

of

the

argument.

The

value

of

the

argument

does

not

have

to

be

defined.

v

ALLOCATED

v

ASSOCIATED

v

BIT_SIZE

v

DIGITS

v

EPSILON

v

HUGE

v

KIND

v

LBOUND

v

LEN

v

LOC

�1�

v

MAXEXPONENT

v

MINEXPONENT

v

PRECISION

v

PRESENT

v

RADIX

v

RANGE

v

SHAPE

v

SIZE

v

SIZEOF�1�

v

TINY

v

UBOUND

Notes:

1.

IBM

Extension.

Elemental

Intrinsic

Procedures

Some

intrinsic

functions

and

one

intrinsic

subroutine

(MVBITS)

are

elemental.

That

is,

they

can

be

specified

for

scalar

arguments,

but

also

accept

arguments

that

are

arrays.

If

all

arguments

are

scalar,

the

result

is

a

scalar.

If

any

argument

is

an

array,

all

INTENT(OUT)

and

INTENT(INOUT)

arguments

must

be

arrays

of

the

same

shape,

and

the

remaining

arguments

must

be

conformable

with

them.

The

shape

of

the

result

is

the

shape

of

the

argument

with

the

greatest

rank.

The

elements

of

the

result

are

the

same

as

if

the

function

was

applied

individually

to

the

corresponding

elements

of

each

argument.

©

Copyright

IBM

Corp.

1990,

2003

421

ABS

ACHAR

ACOS

ACOSD

�1�

ADJUSTL

ADJUSTR

AIMAG

AINT

ANINT

ASIN

ASIND

�1�

ATAN

ATAND

�1�

ATAN2

ATAN2D

�1�

BTEST

CEILING

CHAR

CMPLX

CONJG

COS

COSD

�1�

COSH

CVMGx

�1�

DBLE

DCMPLX

�1�

DIM

DPROD

ERF

�1�

ERFC

�1�

EXP

EXPONENT

FLOOR

FRACTION

GAMMA

�1�

HFIX

�1�

IACHAR

IAND

IBCLR

IBITS

IBSET

ICHAR

IEOR

ILEN

�1�

INDEX

INT

INT2�1�

IOR

ISHFT

ISHFTC

LEADZ

�1�

LEN_TRIM

LGAMMA

�1�

LGE

LGT

LLE

LLT

LOG

LOG10

LOGICAL

LSHIFT

�1�

MAX

MERGE

MIN

MOD

MODULO

MVBITS

NEAREST

NINT

NOT

QCMPLX

�1�

QEXT

�1�

REAL

RRSPACING

RSHIFT

SCALE

SCAN

SET_EXPONENT

SIGN

SIN

SIND

�1�

SINH

SPACING

SQRT

TAN

TAND

�1�

TANH

VERIFY

Notes:

1.

IBM

Extension.

System

Inquiry

Intrinsic

Functions

IBM

Extension

The

system

inquiry

functions

may

be

used

in

restricted

expressions.

They

cannot

be

used

in

initialization

expressions,

nor

can

they

be

passed

as

actual

arguments.

v

NUMBER_OF_PROCESSORS

v

PROCESSORS_SHAPE

End

of

IBM

Extension

Transformational

Intrinsic

Functions

All

other

intrinsic

functions

are

classified

as

transformational

functions.

They

generally

accept

array

arguments

and

return

array

results

that

depend

on

the

values

of

elements

in

the

argument

arrays.

422

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

v

ALL

v

ANY

v

COUNT

v

CSHIFT

v

DOT_PRODUCT

v

EOSHIFT

v

MATMUL

v

MAXLOC

v

MAXVAL

v

MINLOC

v

MINVAL

v

NULL�1�

v

PACK

v

PRODUCT

v

REPEAT

v

RESHAPE

v

SELECTED_INT_KIND

v

SELECTED_REAL_KIND

v

SPREAD

v

SUM

v

TRANSFER

v

TRANSPOSE

v

TRIM

v

UNPACK

Notes:

1.

Fortran

95.

For

background

information

on

arrays,

see

“Array

Concepts”

on

page

65.

Intrinsic

Subroutines

Some

intrinsic

procedures

are

subroutines.

They

perform

a

variety

of

tasks.

v

ABORT

�1�

v

CPU_TIME

�2�

v

DATE_AND_TIME

v

GETENV

�1�

v

MVBITS

v

RANDOM_NUMBER

v

RANDOM_SEED

v

SIGNAL

�1�

v

SRAND

�1�

v

SYSTEM

�1�

v

SYSTEM_CLOCK

Notes:

1.

IBM

Extension.

2.

Fortran

95.

Data

Representation

Models

Integer

Bit

Model

The

following

model

shows

how

the

processor

represents

each

bit

of

a

nonnegative

scalar

integer

object:

j

is

the

integer

value

s

is

the

number

of

bits

wk

is

binary

digit

w

located

at

position

k

IBM

Extension

XL

Fortran

implements

the

following

s

parameters

for

the

XL

Fortran

integer

kind

type

parameters:

Integer

Kind

Parameter

s

Parameter

1

8

Intrinsic

Procedures

423

Integer

Kind

Parameter

s

Parameter

2

16

4

32

8

64

End

of

IBM

Extension

The

following

intrinsic

functions

use

this

model:

BTEST

IAND

IBCLR

IBITS

IBSET

IEOR

IOR

ISHFT

ISHFTC

MVBITS

NOT

Integer

Data

Model

i

is

the

integer

value

s

is

the

sign

(±1)

q

is

the

number

of

digits

(positive

integer)

wk

is

a

nonnegative

digit

<

r

r

is

the

radix

IBM

Extension

XL

Fortran

implements

this

model

with

the

following

r

and

q

parameters:

Integer

Kind

Parameter

r

Parameter

q

Parameter

1

2

7

2

2

15

4

2

31

8

2

63

End

of

IBM

Extension

The

following

intrinsic

functions

use

this

model:

DIGITS

HUGE

RADIX

RANGE

∑
q

k = 1

i s= x
1rwk

k
x

−

424

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Real

Data

Model

x

is

the

real

value

s

is

the

sign

(±1)

b

is

an

integer

>

1

e

is

an

integer,

where

emin

≤

e

≤

emax

p

is

an

integer

>

1

fk

is

a

nonnegative

integer

<

b

(f1

≠

0)

Note:

If

x=0,

then

e=0

and

all

fk=0.

IBM

Extension

XL

Fortran

implements

this

model

with

the

following

parameters:

Real

Kind

parameter

b

Parameter

p

Parameter

emin

Parameter

emax

Parameter

4

2

24

-125

128

8

2

53

-1021

1024

16

2

106

-1021

1024

End

of

IBM

Extension

The

following

intrinsic

functions

use

this

model:

DIGITS

EPSILON

EXPONENT

FRACTION

HUGE

MAXEXPONENT

MINEXPONENT

NEAREST

PRECISION

RADIX

RANGE

RRSPACING

SCALE

SET_EXPONENT

SPACING

TINY

Detailed

Descriptions

of

Intrinsic

Procedures

The

following

is

an

alphabetical

list

of

all

generic

names

for

intrinsic

procedures.

For

each

procedure,

several

items

of

information

are

listed.

Notes:

1.

The

argument

names

listed

in

the

title

can

be

used

as

the

names

for

keyword

arguments

when

calling

the

procedure.

p

0 or

k = 1

x =
s bx x

e bfk
kx

Intrinsic

Procedures

425

2.

For

those

procedures

with

specific

names,

a

table

lists

each

specific

name

along

with

information

about

the

specific

function:

v

When

a

function

return

type

or

argument

type

is

shown

in

lowercase,

that

indicates

that

the

type

is

specified

as

shown,

but

the

compiler

may

actually

substitute

a

call

to

a

different

specific

name

depending

on

the

settings

of

the

-qintsize,

-qrealsize,

and

-qautodbl

options.

For

example,

references

to

SINH

are

replaced

by

references

to

DSINH

when

-qrealsize=8

is

in

effect,

and

references

to

DSINH

are

replaced

by

references

to

QSINH.

v

The

column

labeled

“Pass

as

Arg?”

indicates

whether

or

not

you

can

pass

that

specific

name

as

an

actual

argument

to

a

procedure.

Only

the

specific

name

of

an

intrinsic

procedure

may

be

passed

as

an

actual

argument,

and

only

for

some

specific

names.

A

specific

name

passed

this

way

may

only

be

referenced

with

scalar

arguments.
3.

The

index

contains

entries

for

each

specific

name,

if

you

know

the

specific

name

but

not

the

generic

one.

ABORT()

IBM

Extension

Terminates

the

program.

It

truncates

all

open

output

files

to

the

current

position

of

the

file

pointer,

closes

all

open

files,

and

sends

the

signal

to

the

current

process.

If

the

is

neither

caught

nor

ignored,

and

if

the

current

directory

is

writable,

the

system

produces

a

core

file

in

the

current

directory.

Class

Subroutine

Examples

The

following

is

an

example

of

a

statement

using

the

ABORT

subroutine.

IF

(ERROR_CONDITION)

CALL

ABORT

End

of

IBM

Extension

ABS(A)

Absolute

value.

A

must

be

of

type

integer,

real,

or

complex.

Class

Elemental

function

Result

Type

and

Attributes

The

same

as

A,

except

that

if

A

is

complex,

the

result

is

real.

Result

Value

v

If

A

is

of

type

integer

or

real,

the

result

is

|A|.

v

If

A

is

of

type

complex

with

value

(x,y),

the

result

approximates

426

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Examples

ABS

((3.0,

4.0))

has

the

value

5.0.

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

IABS

any

integer

�2�

same

as

argument

yes

ABS

default

real

default

real

yes

DABS

double

precision

real

double

precision

real

yes

QABS

�1�

REAL(16)

REAL(16)

yes

CABS

default

complex

default

real

yes

CDABS

�1�

double

complex

double

precision

real

yes

ZABS

�1�

double

complex

double

precision

real

yes

CQABS

�1�

COMPLEX(16)

REAL(16)

yes

Notes:

1.

IBM

Extension.

2.

IBM

Extension:

the

ability

to

specify

a

nondefault

integer

argument.

ACHAR(I)

Returns

the

character

in

a

specified

position

of

the

ASCII

collating

sequence.

It

is

the

inverse

of

the

IACHAR

function.

Argument

Type

and

Attributes

I

must

be

of

type

integer.

Class

Elemental

function

Result

Type

and

Attributes

Character

of

length

one

with

the

same

kind

type

parameter

as

KIND

(’A’).

Result

Value

v

If

I

has

a

value

in

the

range

0

≤

I

≤

127,

the

result

is

the

character

in

position

I

of

the

ASCII

collating

sequence,

provided

that

the

character

corresponding

to

I

is

representable.

v

If

I

is

outside

the

allowed

value

range,

the

result

is

undefined.

Examples

ACHAR

(88)

has

the

value

’X’.

ACOS(X)

Arccosine

(inverse

cosine)

function.

x y+
2 2√

Intrinsic

Procedures

427

Argument

Type

and

Attributes

X

must

be

of

type

real

with

a

value

that

satisfies

the

inequality

|X|

≤

1.

Class

Elemental

function

Result

Type

and

Attributes

Same

as

X.

Result

Value

v

It

is

expressed

in

radians,

and

approximates

arccos(X).

v

It

is

in

the

range

0

≤

ACOS(X)

≤

π.

Examples

ACOS

(1.0)

has

the

value

0.0.

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

ACOS

default

real

default

real

yes

DACOS

double

precision

real

double

precision

real

yes

QACOS

�1�

REAL(16)

REAL(16)

yes

QARCOS

�1�

REAL(16)

REAL(16)

yes

Notes:

1.

IBM

Extension.

ACOSD(X)

IBM

Extension

Arccosine

(inverse

cosine)

function.

Result

in

degrees.

Argument

Type

and

Attributes

X

must

be

of

type

real.

Its

value

must

satisfy

the

inequality

|X|

≤

1.

Class

Elemental

function

Result

Type

and

Attributes

Same

as

X.

Result

Value

v

It

is

expressed

in

degrees

and

approximates

arccos(X).

v

It

is

in

the

range

0°

≤

ACOSD(X)

≤

180°.

Examples

ACOSD

(0.5)

has

the

value

60.0.

428

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

ACOSD

default

real

default

real

yes

DACOSD

double

precision

real

double

precision

real

yes

QACOSD

REAL(16)

REAL(16)

yes

End

of

IBM

Extension

ADJUSTL(STRING)

Adjust

to

the

left,

removing

leading

blanks

and

inserting

trailing

blanks.

Argument

Type

and

Attributes

STRING

must

be

of

type

character.

Class

Elemental

function

Result

Type

and

Attributes

Character

of

the

same

length

and

kind

type

parameter

as

STRING.

Result

Value

The

value

of

the

result

is

the

same

as

STRING

except

that

any

leading

blanks

have

been

deleted

and

the

same

number

of

trailing

blanks

have

been

inserted.

Examples

ADJUSTL

(’�WORD’)

has

the

value

’WORD�’.

ADJUSTR(STRING)

Adjust

to

the

right,

removing

trailing

blanks

and

inserting

leading

blanks.

Argument

Type

and

Attributes

STRING

must

be

of

type

character.

Class

Elemental

function

Result

Type

and

Attributes

Character

of

the

same

length

and

kind

type

parameter

as

STRING.

Result

Value

The

value

of

the

result

is

the

same

as

STRING

except

that

any

trailing

blanks

have

been

deleted

and

the

same

number

of

leading

blanks

have

been

inserted.

Examples

ADJUSTR

(’WORD�’)

has

the

value

’�WORD’.

Intrinsic

Procedures

429

AIMAG(Z),

IMAG(Z)

Imaginary

part

of

a

complex

number.

Argument

Type

and

Attributes

Z

must

be

of

type

complex.

Class

Elemental

function

Result

Type

and

Attributes

Real

with

the

same

kind

type

parameter

as

Z.

Result

Value

If

Z

has

the

value

(x,y),

the

result

has

the

value

y.

Examples

AIMAG

((2.0,

3.0))

has

the

value

3.0.

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

AIMAG

default

complex

default

real

yes

DIMAG

�1�

double

complex

double

precision

real

yes

QIMAG

�1�

COMPLEX(16)

REAL(16)

yes

Notes:

1.

IBM

Extension.

AINT(A,

KIND)

Truncates

to

a

whole

number.

Argument

Type

and

Attributes

A

must

be

of

type

real.

KIND

(optional)

must

be

a

scalar

integer

initialization

expression.

Class

Elemental

function

Result

Type

and

Attributes

v

The

result

type

is

real.

v

If

KIND

is

present,

the

kind

type

parameter

is

that

specified

by

KIND;

otherwise,

the

kind

type

parameter

is

that

of

A.

Result

Value

v

If

|A|

<

1,

the

result

is

zero.

v

If

|A|

≥

1,

the

result

has

a

value

equal

to

the

integer

whose

magnitude

is

the

largest

integer

that

does

not

exceed

the

magnitude

of

A

and

whose

sign

is

the

same

as

the

sign

of

A.

430

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Examples

AINT(3.555)

=

3.0

AINT(-3.555)

=

-3.0

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

AINT

default

real

default

real

yes

DINT

double

precision

real

double

precision

real

yes

QINT

�1�

REAL(16)

REAL(16)

yes

Notes:

1.

IBM

Extension.

ALL(MASK,

DIM)

Determines

if

all

values

in

an

entire

array,

or

in

each

vector

along

a

single

dimension,

are

true.

Argument

Type

and

Attributes

MASK

is

a

logical

array.

DIM

(optional)

is

an

integer

scalar

in

the

range

1

≤

DIM

≤

rank(MASK).

The

corresponding

actual

argument

must

not

be

an

optional

dummy

argument.

Class

Transformational

function

Result

Value

The

result

is

a

logical

array

with

the

same

type

and

type

parameters

as

MASK,

and

rank

rank(MASK)-1.

If

the

DIM

is

missing,

or

MASK

has

a

rank

of

one,

the

result

is

a

scalar

of

type

logical.

The

shape

of

the

result

is

(s1,

s2,

...,

s(DIM-1),

s(DIM+1),

...,

sn),

where

n

is

the

rank

of

MASK.

Each

element

in

the

result

array

is

.TRUE.

only

if

all

the

elements

given

by

MASK(m1,

m2,

...,

m(DIM-1),

:,

m(DIM+1),

...,

mn),

are

true.

When

the

result

is

a

scalar,

either

because

DIM

is

not

specified

or

because

MASK

is

of

rank

one,

it

is

.TRUE.

only

if

all

elements

of

MASK

are

true,

or

MASK

has

size

zero.

Examples

!

A

is

the

array

|

4

3

6

|,

and

B

is

the

array

|

3

5

2

|

!

|

2

4

1

|

|

7

8

4

|

!

Is

every

element

in

A

less

than

the

!

corresponding

one

in

B?

RES

=

ALL(A

.LT.

B)

!

result

RES

is

false

!

Are

all

elements

in

each

column

of

A

less

than

the

!

corresponding

column

of

B?

RES

=

ALL(A

.LT.

B,

DIM

=

1)

!

result

RES

is

(f,t,f)

!

Same

question,

but

for

each

row

of

A

and

B.

RES

=

ALL(A

.LT.

B,

DIM

=

2)

!

result

RES

is

(f,t)

Intrinsic

Procedures

431

ALLOCATED(ARRAY)

or

ALLOCATED(SCALAR)

Indicate

whether

or

not

an

allocatable

object

is

currently

allocated.

Argument

Type

and

Attributes

ARRAY

is

an

allocatable

array

whose

allocation

status

you

want

to

know.

SCALAR

is

an

allocatable

scalar

whose

allocation

status

you

want

to

know.

Class

Inquiry

function

Result

Type

and

Attributes

Default

logical

scalar.

Result

Value

The

result

corresponds

to

the

allocation

status

of

ARRAY

or

SCALAR:

.TRUE.

if

it

is

currently

allocated,

.FALSE.

if

it

is

not

currently

allocated,

or

undefined

if

its

allocation

status

is

undefined.

If

you

are

compiling

with

the

-qxlf90=autodealloc

compiler

option

there

is

no

undefined

allocation

status.

Examples

INTEGER,

ALLOCATABLE,

DIMENSION(:)

::

A

PRINT

*,

ALLOCATED(A)

!

A

is

not

allocated

yet.

ALLOCATE

(A(1000))

PRINT

*,

ALLOCATED(A)

!

A

is

now

allocated.

END

Related

Information

“Allocatable

Arrays”

on

page

71,

“ALLOCATE”

on

page

227,

“Allocation

Status”

on

page

61.

ANINT(A,

KIND)

Nearest

whole

number.

Argument

Type

and

Attributes

A

must

be

of

type

real.

KIND

(optional)

must

be

a

scalar

integer

initialization

expression.

Class

Elemental

function

Result

Type

and

Attributes

v

The

result

type

is

real.

v

If

KIND

is

present,

the

kind

type

parameter

is

that

specified

by

KIND;

otherwise,

the

kind

type

parameter

is

that

of

A.

432

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Result

Value

v

If

A

>

0,

ANINT(A)

=

AINT(A

+

0.5)

v

If

A

≤

0,

ANINT(A)

=

AINT(A

-

0.5)

Note:

The

addition

and

subtraction

of

0.5

are

done

in

round-to-zero

mode.

Examples

ANINT(3.555)

=

4.0

ANINT(-3.555)

=

-4.0

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

ANINT

default

real

default

real

yes

DNINT

double

precision

real

double

precision

real

yes

QNINT

�1�

REAL(16)

REAL(16)

yes

Notes:

1.

IBM

Extension.

ANY(MASK,

DIM)

Determines

if

any

of

the

values

in

an

entire

array,

or

in

each

vector

along

a

single

dimension,

are

true.

Argument

Type

and

Attributes

MASK

is

a

logical

array.

DIM

(optional)

is

an

integer

scalar

in

the

range

1

≤

DIM

≤

rank(MASK).

The

corresponding

actual

argument

must

not

be

an

optional

dummy

argument.

Class

Transformational

function

Result

Value

The

result

is

a

logical

array

of

the

same

type

and

type

parameters

as

MASK,

and

rank

of

rank(MASK)-1.

If

the

DIM

is

missing,

or

MASK

has

a

rank

of

one,

the

result

is

a

scalar

of

type

logical.

The

shape

of

the

result

is

(s1,

s2,

...,

s(DIM

-1),

s(DIM+1),

...,

sn),

where

n

is

the

rank

of

MASK.

Each

element

in

the

result

array

is

.TRUE.

if

any

of

the

elements

given

by

MASK(m1,

m2,

...,

m(DIM-1),

:,

m(DIM+1),

...,

mn)

are

true.

When

the

result

is

a

scalar,

either

because

DIM

is

not

specified

or

because

MASK

is

of

rank

one,

it

is

.TRUE.

if

any

of

the

elements

of

MASK

are

true.

Examples

!

A

is

the

array

|

9

-6

7

|,

and

B

is

the

array

|

2

7

8

|

!

|

3

-1

5

|

|

5

6

9

|

!

Is

any

element

in

A

greater

than

or

equal

to

the

Intrinsic

Procedures

433

!

corresponding

element

in

B?

RES

=

ANY(A

.GE.

B)

!

result

RES

is

true

!

For

each

column

in

A,

is

there

any

element

in

the

column

!

greater

than

or

equal

to

the

corresponding

element

in

B?

RES

=

ANY(A

.GE.

B,

DIM

=

1)

!

result

RES

is

(t,f,f)

!

Same

question,

but

for

each

row

of

A

and

B.

RES

=

ANY(A

.GE.

B,

DIM

=

2)

!

result

RES

is

(t,f)

ASIN(X)

Arcsine

(inverse

sine)

function.

Argument

Type

and

Attributes

X

must

be

of

type

real.

Its

value

must

satisfy

the

inequality

|X|

≤

1.

Class

Elemental

function

Result

Type

and

Attributes

Same

as

X.

Result

Value

v

It

is

expressed

in

radians,

and

approximates

arcsin(X).

v

It

is

in

the

range

-π/2

≤

ASIN(X)

≤

π/2.

Examples

ASIN

(1.0)

approximates

π/2.

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

ASIN

default

real

default

real

yes

DASIN

double

precision

real

double

precision

real

yes

QASIN

�1�

REAL(16)

REAL(16)

yes

QARSIN

�1�

REAL(16)

REAL(16)

yes

Notes:

1.

IBM

Extension.

ASIND(X)

IBM

Extension

Arcsine

(inverse

sine)

function.

Result

in

degrees.

Argument

Type

and

Attributes

X

must

be

of

type

real.

Its

value

must

satisfy

the

inequality

|X|

≤

1.

Class

Elemental

function

434

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Result

Type

and

Attributes

Same

as

X.

Result

Value

v

It

is

expressed

in

degrees,

and

approximates

arcsin(X).

v

It

is

in

the

range

-90°

≤

ASIND(X)

≤

90°

Examples

ASIND

(0.5)

has

the

value

30.0.

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

ASIND

default

real

default

real

yes

DASIND

double

precision

real

double

precision

real

yes

QASIND

REAL(16)

REAL(16)

yes

End

of

IBM

Extension

ASSOCIATED(POINTER,

TARGET)

Returns

the

association

status

of

its

pointer

argument,

or

indicates

whether

the

pointer

is

associated

with

the

target.

Argument

Type

and

Attributes

POINTER

A

pointer

whose

association

status

you

want

to

test.

It

can

be

of

any

type.

Its

association

status

must

not

be

undefined.

TARGET

(optional)

A

pointer

or

target

that

might

or

might

not

be

associated

with

POINTER.

Its

association

status

must

not

be

undefined.

Class

Inquiry

function

Result

Type

and

Attributes

Default

logical

scalar.

Result

Value

If

only

the

POINTER

argument

is

specified,

the

result

is

.TRUE.

if

it

is

associated

with

any

target

and

.FALSE.

otherwise.

If

TARGET

is

also

specified,

the

procedure

tests

whether

POINTER

is

associated

with

TARGET,

or

with

the

same

object

that

TARGET

is

associated

with

(if

TARGET

is

also

pointer).

The

result

is

undefined

if

either

POINTER

or

TARGET

is

associated

with

a

zero-sized

array,

or

if

TARGET

is

a

zero-sized

array.

Objects

with

different

types

or

shapes

cannot

be

associated

with

each

other.

Arrays

with

the

same

type

and

shape

but

different

bounds

can

be

associated

with

each

other.

Intrinsic

Procedures

435

Examples

REAL,

POINTER,

DIMENSION(:,:)

::

A

REAL,

TARGET,

DIMENSION(5,10)

::

B,

C

NULLIFY

(A)

PRINT

*,

ASSOCIATED

(A)

!

False,

not

associated

yet

A

=>

B

PRINT

*,

ASSOCIATED

(A)

!

True,

because

A

is

!

associated

with

B

PRINT

*,

ASSOCIATED

(A,C)

!

False,

A

is

not

!

associated

with

C

END

ATAN(X)

Arctangent

(inverse

tangent)

function.

Argument

Type

and

Attributes

X

must

be

of

type

real.

Class

Elemental

function

Result

Type

and

Attributes

Same

as

X.

Result

Value

v

It

is

expressed

in

radians

and

approximates

arctan(X).

v

It

is

in

the

range

-π/2

≤

ATAN(X)

≤

π/2.

Examples

ATAN

(1.0)

approximates

π/4.

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

ATAN

default

real

default

real

yes

DATAN

double

precision

real

double

precision

real

yes

QATAN

�1�

REAL(16)

REAL(16)

yes

Notes:

1.

IBM

Extension.

ATAND(X)

IBM

Extension

Arctangent

(inverse

tangent)

function.

Result

in

degrees.

Argument

Type

and

Attributes

X

must

be

of

type

real.

436

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Class

Elemental

function

Result

Type

and

Attributes

Same

as

X.

Result

Value

v

It

is

expressed

in

degrees

and

approximates

arctan(X).

v

It

is

in

the

range

-90°

≤

ATAND(X)

≤

90°.

Examples

ATAND

(1.0)

has

the

value

45.0.

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

ATAND

default

real

default

real

yes

DATAND

double

precision

real

double

precision

real

yes

QATAND

REAL(16)

REAL(16)

yes

End

of

IBM

Extension

ATAN2(Y,

X)

Arctangent

(inverse

tangent)

function.

The

result

is

the

principal

value

of

the

nonzero

complex

number

(X,

Y)

formed

by

the

real

arguments

Y

and

X.

Argument

Type

and

Attributes

Y

must

be

of

type

real.

X

must

be

of

the

same

type

and

kind

type

parameter

as

Y.

If

Y

has

the

value

zero,

X

must

not

have

the

value

zero.

Class

Elemental

function

Result

Type

and

Attributes

Same

as

X.

Result

Value

v

It

is

expressed

in

radians

and

has

a

value

equal

to

the

principal

value

of

the

argument

of

the

complex

number

(X,

Y).

v

It

is

in

the

range

-π

<

ATAN2(Y,

X)

≤

π.

v

If

X

≠

0,

the

result

approximates

arctan(Y/X).

v

If

Y

>

0,

the

result

is

positive.

v

If

Y

<

0,

the

result

is

negative.

v

If

Y

=

0

and

X

>

0,

the

result

is

zero.

v

If

Y

=

0

and

X

<

0,

the

result

is

π.

v

If

X

=

0,

the

absolute

value

of

the

result

is

π/2.

Intrinsic

Procedures

437

Examples

ATAN2

(1.5574077,

1.0)

has

the

value

1.0.

Given

that:

Y

=

|

1

1

|

X

=

|

-1

1

|

|

-1

-1

|

|

-1

1

|

the

value

of

ATAN2(Y,X)

is

approximately:

ATAN2

(Y,

X)

=

|

3π/4

π/4

|

|

-3π/4

-π/4

|

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

ATAN2

default

real

default

real

yes

DATAN2

double

precision

real

double

precision

real

yes

QATAN2

�1�

REAL(16)

REAL(16)

yes

Notes:

1.

IBM

Extension.

ATAN2D(Y,

X)

IBM

Extension

Arctangent

(inverse

tangent)

function.

The

result

is

the

principal

value

of

the

nonzero

complex

number

(X,

Y)

formed

by

the

real

arguments

Y

and

X.

Argument

Type

and

Attributes

Y

must

be

of

type

real.

X

must

be

of

the

same

type

and

kind

type

parameter

as

Y.

If

Y

has

the

value

zero,

X

must

not

have

the

value

zero.

Class

Elemental

function

Result

Type

and

Attributes

Same

as

X.

Result

Value

v

It

is

expressed

in

degrees

and

has

a

value

equal

to

the

principal

value

of

the

argument

of

the

complex

number

(X,

Y).

v

It

is

in

the

range

-180°

<

ATAN2D(Y,X)

≤

180°.

v

If

X≠0,

the

result

approximates

arctan(Y/X).

v

If

Y>0,

the

result

is

positive.

v

If

Y<0,

the

result

is

negative.

v

If

Y=0

and

X>0,

the

result

is

zero.

v

If

Y=0

and

X<0,

the

result

is

180°.

v

If

X=0,

the

absolute

value

of

the

result

is

90°.

438

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Examples

ATAN2D

(1.5574077,

1.0)

has

the

value

57.295780181

(approximately).

Given

that:

Y

=

|

1.0

1.0

|

X

=

|

-1.0

1.0

|

|

-1.0

-1.0

|

|

-1.0

1.0

|

then

the

value

of

ATAN2D(Y,X)

is:

ATAN2D(Y,X)

=

|

135.0000000

45.00000000

|

|

-135.0000000

-45.00000000

|

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

ATAN2D

default

real

default

real

yes

DATAN2D

double

precision

real

double

precision

real

yes

QATAN2D

REAL(16)

REAL(16)

yes

End

of

IBM

Extension

BIT_SIZE(I)

Returns

the

number

of

bits

in

an

integer

type.

Because

only

the

type

of

the

argument

is

examined,

the

argument

need

not

be

defined.

Argument

Type

and

Attributes

I

must

be

of

type

integer.

Class

Inquiry

function

Result

Type

and

Attributes

Scalar

integer

with

the

same

kind

type

parameter

as

I.

Result

Value

The

result

is

the

number

of

bits

in

the

integer

data

type

of

the

argument:

IBM

Extension

type

bits

integer(1)

08

integer(2)

16

integer(4)

32

integer(8)

64

End

of

IBM

Extension

The

bits

are

numbered

from

0

to

BIT_SIZE(I)-1,

from

right

to

left.

Examples

BIT_SIZE

(1_4)

has

the

value

32,

because

the

integer

type

with

kind

4

(that

is,

a

four-byte

integer)

contains

32

bits.

Intrinsic

Procedures

439

BTEST(I,

POS)

Tests

a

bit

of

an

integer

value.

Argument

Type

and

Attributes

I

must

be

of

type

integer.

POS

must

be

of

type

integer.

It

must

be

nonnegative

and

be

less

than

BIT_SIZE(I).

Class

Elemental

function

Result

Type

and

Attributes

The

result

is

of

type

default

logical.

Result

Value

The

result

has

the

value

.TRUE.

if

bit

POS

of

I

has

the

value

1

and

the

value

.FALSE.

if

bit

POS

of

I

has

the

value

0.

The

bits

are

numbered

from

0

to

BIT_SIZE(I)-1,

from

right

to

left.

Examples

BTEST

(8,

3)

has

the

value

.TRUE..

If

A

has

the

value

|

1

2

|

|

3

4

|

the

value

of

BTEST

(A,

2)

is

|

false

false

|

|

false

true

|

and

the

value

of

BTEST

(2,

A)

is

|

true

false

|

|

false

false

|

See

“Integer

Bit

Model”

on

page

423.

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

BTEST

�1�

any

integer

default

logical

yes

Notes:

1.

IBM

Extension.

CEILING(A,

KIND)

Returns

the

least

integer

greater

than

or

equal

to

its

argument.

Argument

Type

and

Attributes

A

must

be

of

type

real.

Fortran

95

440

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

KIND

(optional)

must

be

a

scalar

integer

initialization

expression.

End

of

Fortran

95

Class

Elemental

function

Result

Type

and

Attributes

v

It

is

of

type

integer.

Fortran

95

v

If

KIND

is

present,

the

kind

type

parameter

is

that

specified

by

KIND;

otherwise,

the

KIND

type

parameter

is

that

of

the

default

integer

type.

End

of

Fortran

95

Result

Value

The

result

has

a

value

equal

to

the

least

integer

greater

than

or

equal

to

A.

Fortran

95

The

result

is

undefined

if

the

result

cannot

be

represented

as

an

integer

of

the

specified

KIND.

End

of

Fortran

95

Examples

CEILING(-3.7)

has

the

value

-3.

CEILING(3.7)

has

the

value

4.

Fortran

95

CEILING(1000.1,

KIND=2)

has

the

value

1

001,

with

a

kind

type

parameter

of

two.

End

of

Fortran

95

CHAR(I,

KIND)

Returns

the

character

in

the

given

position

of

the

collating

sequence

associated

with

the

specified

kind

type

parameter.

It

is

the

inverse

of

the

function

ICHAR.

Argument

Type

and

Attributes

IBM

Extension

I

must

be

of

type

integer

with

a

value

in

the

range

0

≤

I

≤

127.

End

of

IBM

Extension

KIND

(optional)

must

be

a

scalar

integer

initialization

expression.

Intrinsic

Procedures

441

Class

Elemental

function

Result

Type

and

Attributes

v

Character

of

length

one.

v

If

KIND

is

present,

the

kind

type

parameter

is

that

specified

by

KIND;

otherwise,

the

kind

type

parameter

is

that

of

the

default

character

type.

Result

Value

v

The

result

is

the

character

in

position

I

of

the

collating

sequence

associated

with

the

specified

kind

type

parameter.

v

ICHAR

(CHAR

(I,

KIND

(C)))

must

have

the

value

I

for

0

≤

I

≤

127

and

CHAR

(ICHAR

(C),

KIND

(C))

must

have

the

value

C

for

any

representable

character.

Examples

IBM

Extension

CHAR

(88)

has

the

value

’X’.

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

CHAR

any

integer

default

character

yes

�1�

Notes:

1.

IBM

Extension:

the

ability

to

specify

a

nondefault

integer

argument.

2.

XL

Fortran

supports

only

the

ASCII

collating

sequence.

End

of

IBM

Extension

CMPLX(X,

Y,

KIND)

Convert

to

complex

type.

Argument

Type

and

Attributes

X

must

be

of

type

integer,

real,

or

complex.

Y

(optional)

must

be

of

type

integer

or

real.

It

must

not

be

present

if

X

is

of

type

complex.

KIND

(optional)

must

be

a

scalar

integer

initialization

expression.

Class

Elemental

function

Result

Type

and

Attributes

v

It

is

of

type

complex.

v

If

KIND

is

present,

the

kind

type

parameter

is

that

specified

by

KIND;

otherwise,

the

kind

type

parameter

is

that

of

the

default

real

type.

442

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Result

Value

v

If

Y

is

absent

and

X

is

not

complex,

it

is

as

if

Y

were

present

with

the

value

zero.

v

If

Y

is

absent

and

X

is

complex,

it

is

as

if

Y

were

present

with

the

value

AIMAG(X).

v

CMPLX(X,

Y,

KIND)

has

the

complex

value

whose

real

part

is

REAL(X,

KIND)

and

whose

imaginary

part

is

REAL(Y,

KIND).

Examples

CMPLX

(-3)

has

the

value

(-3.0,

0.0).

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

CMPLX

�1�

default

real

default

complex

no

Notes:

1.

IBM

Extension.

Related

Information

“DCMPLX(X,

Y)”

on

page

452,

“QCMPLX(X,

Y)”

on

page

507.

CONJG(Z)

Conjugate

of

a

complex

number.

Argument

Type

and

Attributes

Z

must

be

of

type

complex.

Class

Elemental

function

Result

Type

and

Attributes

Same

as

Z.

Result

Value

Given

Z

has

the

value

(x,

y),

the

result

has

the

value

(x,

-y).

Examples

CONJG

((2.0,

3.0))

has

the

value

(2.0,

-3.0).

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

CONJG

default

complex

default

complex

yes

DCONJG

�1�

double

complex

double

complex

yes

QCONJG

�1�

COMPLEX(16)

COMPLEX(16)

yes

Notes:

1.

IBM

Extension.

COS(X)

Cosine

function.

Intrinsic

Procedures

443

Argument

Type

and

Attributes

X

must

be

of

type

real

or

complex.

Class

Elemental

function

Result

Type

and

Attributes

Same

as

X.

Result

Value

v

It

has

a

value

that

approximates

cos(X).

v

If

X

is

of

type

real,

X

is

regarded

as

a

value

in

radians.

v

If

X

is

of

type

complex,

the

real

and

imaginary

parts

of

X

are

regarded

as

values

in

radians.

Examples

COS

(1.0)

has

the

value

0.54030231

(approximately).

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

COS

default

real

default

real

yes

DCOS

double

precision

real

double

precision

real

yes

QCOS

�1�

REAL(16)

REAL(16)

yes

CCOS

�2a�

default

complex

default

complex

yes

CDCOS

�1�

�2b�

double

complex

double

complex

yes

ZCOS

�1�

�2b�

double

complex

double

complex

yes

CQCOS

�1�

�2b�

COMPLEX(16)

COMPLEX(16)

yes

Notes:

1.

IBM

Extension.

2.

Given

that

X

is

a

complex

number

in

the

form

a

+

bi,

where

i

=

(-1)½

:

a.

abs(b)

must

be

less

than

or

equal

to

88.7228;

a

is

any

real

value.

b.

abs(b)

must

be

less

than

or

equal

to

709.7827;

a

is

any

real

value.

COSD(X)

IBM

Extension

Cosine

function.

Argument

in

degrees.

Argument

Type

and

Attributes

X

must

be

of

type

real.

Class

Elemental

function

Result

Type

and

Attributes

Same

as

X.

444

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Result

Value

v

It

approximates

cos(X),

where

X

has

a

value

in

degrees.

Examples

COSD

(45.0)

has

the

value

0.7071067691.

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

COSD

default

real

default

real

yes

DCOSD

double

precision

real

double

precision

real

yes

QCOSD

REAL(16)

REAL(16)

yes

End

of

IBM

Extension

COSH(X)

Hyperbolic

cosine

function.

Argument

Type

and

Attributes

X

must

be

of

type

real.

Class

Elemental

function

Result

Type

and

Attributes

Same

as

X.

Result

Value

The

result

value

approximates

cosh(X).

Examples

COSH

(1.0)

has

the

value

1.5430806

(approximately).

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

COSH

�1a�

default

real

default

real

yes

DCOSH

�1b�

double

precision

real

double

precision

real

yes

QCOSH

�1b�

�2�

REAL(16)

REAL(16)

yes

Notes:

1.

Given

that

X

is

a

complex

number

in

the

form

a

+

bi,

where

i

=

(-1)½:

a.

abs(b)

must

be

less

than

or

equal

to

88.7228;

a

is

any

real

value.

b.

abs(b)

must

be

less

than

or

equal

to

709.7827;

a

is

any

real

value.
2.

IBM

Extension.

COUNT(MASK,

DIM)

Counts

the

number

of

true

array

elements

in

an

entire

logical

array,

or

in

each

vector

along

a

single

dimension.

Typically,

the

logical

array

is

one

that

is

used

as

a

mask

in

another

intrinsic.

Intrinsic

Procedures

445

Argument

Type

and

Attributes

MASK

is

a

logical

array.

DIM

(optional)

is

an

integer

scalar

in

the

range

1

≤

DIM

≤

rank(MASK).

The

corresponding

actual

argument

must

not

be

an

optional

dummy

argument.

Class

Transformational

function

Result

Value

If

DIM

is

present,

the

result

is

an

integer

array

of

rank

rank(MASK)-1.

If

DIM

is

missing,

or

if

MASK

has

a

rank

of

one,

the

result

is

a

scalar

of

type

integer.

Each

element

of

the

resulting

array

(R(s1,

s2,

...,

s(DIM-1),

s(DIM+1),

...,

sn))

equals

the

number

of

elements

that

are

true

in

MASK

along

the

corresponding

dimension

(s1,

s2,

...,

s(DIM-1),

:,

s(DIM+1),

...,

sn).

If

MASK

is

a

zero-sized

array,

the

result

equals

zero.

Examples

!

A

is

the

array

|

T

F

F

|,

and

B

is

the

array

|

F

F

T

|

!

|

F

T

T

|

|

T

T

T

|

!

How

many

corresponding

elements

in

A

and

B

!

are

equivalent?

RES

=

COUNT(A

.EQV.

B)

!

result

RES

is

3

!

How

many

corresponding

elements

are

equivalent

!

in

each

column?

RES

=

COUNT(A

.EQV.

B,

DIM=1)

!

result

RES

is

(0,2,1)

!

Same

question,

but

for

each

row.

RES

=

COUNT(A

.EQV.

B,

DIM=2)

!

result

RES

is

(1,2)

CPU_TIME(TIME)

Fortran

95

Returns

the

CPU

time,

in

seconds,

taken

by

the

current

process

and,

possibly,

all

the

child

processes

in

all

of

the

threads.

A

call

to

CPU_TIME

will

give

the

processor

time

taken

by

the

process

from

the

start

of

the

program.

The

time

measured

only

accounts

for

the

amount

of

time

that

the

program

is

actually

running,

and

not

the

time

that

a

program

is

suspended

or

waiting.

Argument

Type

and

Attributes

TIME

Is

a

scalar

of

type

real.

It

is

an

INTENT(OUT)

argument

that

is

assigned

an

approximation

to

the

processor

time.

The

time

is

measured

in

seconds.

The

time

returned

by

CPU_TIME

is

dependent

upon

the

setting

of

the

XLFRTEOPTS

environment

variable

run-time

option

cpu_time_type.

The

valid

settings

for

cpu_time_type

are:

usertime

The

user

time

for

the

current

process.

446

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

systime

The

system

time

for

the

current

process.

alltime

The

sum

of

the

user

and

system

time

for

the

current

process

total_usertime

The

total

user

time

for

the

current

process.

The

total

user

time

is

the

sum

of

the

user

time

for

the

current

process

and

the

total

user

times

for

its

child

processes,

if

any.

total_systime

The

total

system

time

for

the

current

process.

The

total

system

time

is

the

sum

of

the

system

time

for

the

current

process

and

the

total

system

times

for

its

child

processes,

if

any.

total_alltime

The

total

user

and

system

time

for

the

current

process.

The

total

user

and

system

time

is

the

sum

of

the

user

and

system

time

for

the

current

process

and

the

total

user

and

system

times

for

their

child

processes,

if

any.

This

is

the

default

measure

of

time

for

CPU_TIME

if

you

have

not

set

the

cpu_time_type

run-time

option.

You

can

set

the

cpu_time_type

run-time

option

using

the

setrteopts

procedure.

Each

change

to

the

cpu_time_type

setting

will

affect

all

subsequent

calls

to

CPU_TIME.

Class

Subroutine

Examples

Example

1:

!

The

default

value

for

cpu_time_type

is

used

REAL

T1,

T2

...

!

First

chunk

of

code

to

be

timed

CALL

CPU_TIME(T1)

...

!

Second

chunk

of

code

to

be

timed

CALL

CPU_TIME(T2)

print

*,

’Time

taken

for

first

chunk

of

code:

’,

T1,

’seconds.’

print

*,

’Time

taken

for

both

chunks

of

code:

’,

T2,

’seconds.’

print

*,

’Time

for

second

chunk

of

code

was

’,

T2-T1,

’seconds.’

If

you

want

to

set

the

cpu_time_type

run-time

option

to

usertime,

you

would

type

the

following

command

from

a

ksh

or

bsh

command

line:

export

XLFRTEOPTS=cpu_time_type=usertime

Example

2:

!

Use

setrteopts

to

set

the

cpu_time_type

run-time

option

as

many

times

!

as

you

need

to

CALL

setrteopts

(’cpu_time_type=alltime’)

CALL

stallingloop

CALL

CPU_TIME(T1)

print

*,

’The

sum

of

the

user

and

system

time

is’,

T1,

’seconds’.

CALL

setrteopts

(’cpu_time_type=usertime’)

CALL

stallingloop

CALL

CPU_TIME(T2)

print

*,

’The

total

user

time

from

the

start

of

the

program

is’,

T2,

’seconds’.

Fortran

95

Intrinsic

Procedures

447

Related

Information

v

See

the

description

of

the

XLFRTEOPTS

environment

variable

in

the

User’s

Guide

for

more

information.

End

of

Fortran

95

CSHIFT(ARRAY,

SHIFT,

DIM)

Shifts

the

elements

of

all

vectors

along

a

given

dimension

of

an

array.

The

shift

is

circular;

that

is,

elements

shifted

off

one

end

are

inserted

again

at

the

other

end.

Argument

Type

and

Attributes

ARRAY

is

an

array

of

any

type.

SHIFT

must

be

a

scalar

integer

if

ARRAY

has

a

rank

of

one;

otherwise,

it

is

a

scalar

integer

or

an

integer

expression

of

rank

rank(ARRAY)-1.

DIM

(optional)

is

an

integer

scalar

in

the

range

1

≤

DIM

≤

rank(ARRAY).

If

absent,

it

defaults

to

1.

Class

Transformational

function

Result

Value

The

result

is

an

array

with

the

same

shape

and

the

same

data

type

as

ARRAY.

If

SHIFT

is

a

scalar,

the

same

shift

is

applied

to

each

vector.

Otherwise,

each

vector

ARRAY

(s1,

s2,

...,

s(DIM-1),

:,

s(DIM+1),

...,

sn)

is

shifted

according

to

the

corresponding

value

in

SHIFT

(s1,

s2,

...,

s(DIM-1),

s(DIM+1),

...,

sn)

The

absolute

value

of

SHIFT

determines

the

amount

of

shift.

The

sign

of

SHIFT

determines

the

direction

of

the

shift:

Positive

SHIFT

moves

each

element

of

the

vector

toward

the

beginning

of

the

vector.

Negative

SHIFT

moves

each

element

of

the

vector

toward

the

end

of

the

vector.

Zero

SHIFT

does

no

shifting.

The

value

of

the

vector

remains

unchanged.

Examples

!

A

is

the

array

|

A

D

G

|

!

|

B

E

H

|

!

|

C

F

I

|

!

Shift

the

first

column

down

one,

the

second

column

!

up

one,

and

leave

the

third

column

unchanged.

RES

=

CSHIFT

(A,

SHIFT

=

(/-1,1,0/),

DIM

=

1)

!

The

result

is

|

C

E

G

|

!

|

A

F

H

|

!

|

B

D

I

|

!

Do

the

same

shifts

as

before,

but

on

the

rows

!

instead

of

the

columns.

Fortran

95

448

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

RES

=

CSHIFT

(A,

SHIFT

=

(/-1,1,0/),

DIM

=

2)

!

The

result

is

|

G

A

D

|

!

|

E

H

B

|

!

|

C

F

I

|

CVMGx(TSOURCE,

FSOURCE,

MASK)

IBM

Extension

The

conditional

vector

merge

functions

(CVMGM,

CVMGN,

CVMGP,

CVMGT,

and

CVMGZ)

enable

you

to

port

existing

code

that

contains

these

functions.

Calling

them

is

very

similar

to

calling

MERGE

(

TSOURCE,

FSOURCE,

arith_expr

.op.

0

)

or

MERGE

(

TSOURCE,

FSOURCE,

logical_expr

.op.

.TRUE.

)

Because

the

MERGE

intrinsic

is

part

of

the

Fortran

90

language,

we

recommend

that

you

use

it

instead

of

these

functions

for

any

new

programs.

Argument

Type

and

Attributes

TSOURCE

is

a

scalar

or

array

expression

of

type

LOGICAL,

INTEGER,

or

REAL

and

any

kind

except

1.

FSOURCE

is

a

scalar

or

array

expression

with

the

same

type

and

type

parameters

as

TSOURCE.

MASK

is

a

scalar

or

array

expression

of

type

INTEGER

or

REAL

(for

CVMGM,

CVMGN,

CVMGP,

and

CVMGZ)

or

LOGICAL

(for

CVMGT),

and

any

kind

except

1.

If

it

is

an

array,

it

must

conform

in

shape

to

TSOURCE

and

FSOURCE.

If

only

one

of

TSOURCE

and

FSOURCE

is

typeless,

the

typeless

argument

acquires

the

type

of

the

other

argument.

If

both

TSOURCE

and

FSOURCE

are

typeless,

both

arguments

acquire

the

type

of

MASK.

If

MASK

is

also

typeless,

both

TSOURCE

and

FSOURCE

are

treated

as

default

integers.

If

MASK

is

typeless,

it

is

treated

as

a

default

logical

for

the

CVMGT

function

and

as

a

default

integer

for

the

other

CVMGx

functions.

Class

Elemental

function

Result

Type

and

Attributes

Same

as

TSOURCE

and

FSOURCE.

Result

Value

The

function

result

is

the

value

of

either

the

first

argument

or

second

argument,

depending

on

the

result

of

the

test

performed

on

the

third

argument.

If

the

arguments

are

arrays,

the

test

is

performed

for

each

element

of

the

MASK

array,

and

the

result

may

contain

some

elements

from

TSOURCE

and

some

elements

from

FSOURCE.

Intrinsic

Procedures

449

Table

16.

Result

Values

for

CVMGx

Intrinsic

Procedures

Explanation

Function

Return

Value

Generic

Name

Test

for

positive

or

zero

TSOURCE

if

MASK≥0

FSOURCE

if

MASK<0

CVMGP

Test

for

negative

TSOURCE

if

MASK<0

FSOURCE

if

MASK≥0

CVMGM

Test

for

zero

TSOURCE

if

MASK=0

FSOURCE

if

MASK≠0

CVMGZ

Test

for

nonzero

TSOURCE

if

MASK≠0

FSOURCE

if

MASK=0

CVMGN

Test

for

true

TSOURCE

if

MASK=

.true.

FSOURCE

if

MASK=

.false.

CVMGT

End

of

IBM

Extension

DATE_AND_TIME(DATE,

TIME,

ZONE,

VALUES)

Returns

data

from

the

real-time

clock

and

the

date

in

a

form

compatible

with

the

representations

defined

in

ISO

8601:1988.

Argument

Type

and

Attributes

DATE

(optional)

must

be

scalar

and

of

type

default

character,

and

must

have

a

length

of

at

least

eight

to

contain

the

complete

value.

It

is

an

INTENT(OUT)

argument.

Its

leftmost

eight

characters

are

set

to

a

value

of

the

form

CCYYMMDD,

where

CC

is

the

century,

YY

is

the

year

within

the

century,

MM

is

the

month

within

the

year,

and

DD

is

the

day

within

the

month.

If

no

date

is

available,

these

characters

are

set

to

blank.

TIME

(optional)

must

be

scalar

and

of

type

default

character,

and

must

have

a

length

of

at

least

ten

in

order

to

contain

the

complete

value.

It

is

an

INTENT(OUT)

argument.

Its

leftmost

ten

characters

are

set

to

a

value

of

the

form

hhmmss.sss,

where

hh

is

the

hour

of

the

day,

mm

is

the

minutes

of

the

hour,

and

ss.sss

is

the

seconds

and

milliseconds

of

the

minute.

If

no

clock

is

available,

they

are

set

to

blank.

ZONE

(optional)

must

be

scalar

and

of

type

default

character,

and

must

have

a

length

at

least

five

in

order

to

contain

the

complete

value.

It

is

an

INTENT(OUT)

argument.

Its

leftmost

five

characters

are

set

to

a

value

of

the

form

±hhmm,

where

hh

and

mm

are

the

time

difference

with

respect

to

Coordinated

Universal

Time

(UTC)

in

hours

and

the

parts

of

an

hour

expressed

in

minutes,

respectively.

If

no

clock

is

available,

they

are

set

to

blank.

The

value

of

ZONE

may

be

incorrect

if

you

have

not

set

the

time

zone

on

your

hardware

correctly.

You

can

manually

set

the

TZ

environment

variable

to

ensure

the

time

zone

is

correct.

VALUES

(optional)

must

be

of

type

default

integer

and

of

rank

one.

It

is

an

450

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

INTENT(OUT)

argument.

Its

size

must

be

at

least

eight.

The

values

returned

in

VALUES

are

as

follows:

VALUES(1)

is

the

year

(for

example,

1998),

or

-HUGE

(0)

if

no

date

is

available.

VALUES(2)

is

the

month

of

the

year,

or

-HUGE

(0)

if

no

date

is

available.

VALUES(3)

is

the

day

of

the

month,

or

-HUGE

(0)

if

no

date

is

available.

VALUES(4)

is

the

time

difference

with

respect

to

Coordinated

Universal

Time

(UTC)

in

minutes,

or

-HUGE

(0)

if

this

information

is

not

available.

VALUES(5)

is

the

hour

of

the

day,

in

the

range

0

to

23,

or

-HUGE

(0)

if

there

is

no

clock.

VALUES(6)

is

the

minutes

of

the

hour,

in

the

range

0

to

59,

or

-HUGE

(0)

if

there

is

no

clock.

VALUES(7)

is

the

seconds

of

the

minute,

in

the

range

0

to

60,

or

-HUGE

(0)

if

there

is

no

clock.

VALUES

(8)

is

the

milliseconds

of

the

second,

in

the

range

0

to

999,

or

-HUGE

(0)

if

there

is

no

clock.

Class

Subroutine

Examples

The

following

program:

INTEGER

DATE_TIME

(8)

CHARACTER

(LEN

=

10)

BIG_BEN

(3)

CALL

DATE_AND_TIME

(BIG_BEN

(1),

BIG_BEN

(2),

&

BIG_BEN

(3),

DATE_TIME)

if

executed

in

Geneva,

Switzerland

on

1985

April

12

at

15:27:35.5,

would

have

assigned

the

value

19850412

to

BIG_BEN(1),

the

value

152735.500

to

BIG_BEN(2),

the

value

+0100

to

BIG_BEN(3),

and

the

following

values

to

DATE_TIME:

1985,

4,

12,

60,

15,

27,

35,

500.

Note

that

UTC

is

defined

by

CCIR

Recommendation

460-2

(also

known

as

Greenwich

Mean

Time).

DBLE(A)

Convert

to

double

precision

real

type.

Intrinsic

Procedures

451

Argument

Type

and

Attributes

A

must

be

of

type

integer,

real,

or

complex.

Class

Elemental

function

Result

Type

and

Attributes

Double

precision

real.

Result

Value

v

If

A

is

of

type

double

precision

real,

DBLE(A)

=

A.

v

If

A

is

of

type

integer

or

real,

the

result

has

as

much

precision

of

the

significant

part

of

A

as

a

double

precision

real

datum

can

contain.

v

If

A

is

of

type

complex,

the

result

has

as

much

precision

of

the

significant

part

of

the

real

part

of

A

as

a

double

precision

real

datum

can

contain.

Examples

DBLE

(-3)

has

the

value

-3.0D0.

IBM

Extension

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

DFLOAT

any

integer

double

precision

real

no

DBLE

default

real

double

precision

real

no

DBLEQ

REAL(16)

REAL(8)

no

End

of

IBM

Extension

DCMPLX(X,

Y)

IBM

Extension

Convert

to

double

complex

type.

Argument

Type

and

Attributes

X

must

be

of

type

integer,

real,

or

complex.

Y

(optional)

must

be

of

type

integer

or

real.

It

must

not

be

present

if

X

is

of

type

complex.

Class

Elemental

function

Result

Type

and

Attributes

It

is

of

type

double

complex.

452

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Result

Value

v

If

Y

is

absent

and

X

is

not

complex,

it

is

as

if

Y

were

present

with

the

value

of

zero.

v

If

Y

is

absent

and

X

is

complex,

it

is

as

if

Y

were

present

with

the

value

AIMAG(X).

v

DCMPLX(X,

Y)

has

the

complex

value

whose

real

part

is

REAL(X,

KIND=8)

and

whose

imaginary

part

is

REAL(Y,

KIND=8).

Examples

DCMPLX

(-3)

has

the

value

(-3.0D0,

0.0D0).

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

DCMPLX

double

precision

real

double

complex

no

Related

Information

“CMPLX(X,

Y,

KIND)”

on

page

442,

“QCMPLX(X,

Y)”

on

page

507.

End

of

IBM

Extension

DIGITS(X)

Returns

the

number

of

significant

digits

for

numbers

whose

type

and

kind

type

parameter

are

the

same

as

the

argument.

Argument

Type

and

Attributes

X

must

be

of

type

integer

or

real.

It

may

be

scalar

or

array

valued.

Class

Inquiry

function

Result

Type

and

Attributes

Default

integer

scalar.

Result

Value

IBM

Extension

v

If

X

is

of

type

integer,

the

number

of

the

significant

digits

of

X

is:

type

bits

integer(1)

07

integer(2)

15

integer(4)

31

integer(8)

63

v

If

X

is

of

type

real,

the

number

of

significant

bits

of

X

is:

type

bits

real(4)

24

real(8)

53

real(16)

106

End

of

IBM

Extension

Intrinsic

Procedures

453

Examples

IBM

Extension

DIGITS

(X)

=

63,

where

X

is

of

type

integer(8)

(see

“Data

Representation

Models”

on

page

423).

End

of

IBM

Extension

DIM(X,

Y)

The

difference

X-Y

if

it

is

positive;

otherwise

zero.

Argument

Type

and

Attributes

X

must

be

of

type

integer

or

real.

Y

must

be

of

the

same

type

and

kind

type

parameter

as

X.

Class

Elemental

function

Result

Type

and

Attributes

Same

as

X.

Result

Value

v

If

X

>

Y,

the

value

of

the

result

is

X

-

Y.

v

If

X

≤

Y,

the

value

of

the

result

is

zero.

Examples

DIM

(-3.0,

2.0)

has

the

value

0.0.

DIM

(-3.0,

-4.0)

has

the

value

1.0.

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

IDIM

any

integer

�1�

same

as

argument

yes

DIM

default

real

default

real

yes

DDIM

double

precision

real

double

precision

real

yes

QDIM

�2�

REAL(16)

REAL(16)

yes

Notes:

1.

IBM

Extension:

the

ability

to

specify

a

nondefault

integer

argument.

2.

IBM

Extension.

DOT_PRODUCT(VECTOR_A,

VECTOR_B)

Computes

the

dot

product

on

two

vectors.

Argument

Type

and

Attributes

VECTOR_A

is

a

vector

with

a

numeric

or

logical

data

type.

VECTOR_B

must

be

of

numeric

type

if

VECTOR_A

is

of

numeric

type

and

of

logical

type

if

VECTOR_A

is

of

logical

type.

It

must

be

the

same

size

as

VECTOR_A.

454

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Class

Transformational

function

Result

Value

The

result

is

a

scalar

whose

data

type

depends

on

the

data

type

of

the

two

vectors,

according

to

the

rules

in

Table

3

on

page

92

and

Table

4

on

page

97.

If

either

vector

is

a

zero-sized

array,

the

result

equals

zero

when

it

has

a

numeric

data

type,

and

false

when

it

is

of

type

logical.

If

VECTOR_A

is

of

type

integer

or

real,

the

result

value

equals

SUM(VECTOR_A

*

VECTOR_B).

If

VECTOR_A

is

of

type

complex,

the

result

equals

SUM(CONJG(VECTOR_A)

*

VECTOR_A).

If

VECTOR_A

is

of

type

logical,

the

result

equals

ANY(VECTOR_A

.AND.

VECTOR_B).

Examples

!

A

is

(/

3,

1,

-5

/),

and

B

is

(/

6,

2,

7

/).

RES

=

DOT_PRODUCT

(A,

B)

!

calculated

as

!

(

(3*6)

+

(1*2)

+

(-5*7)

)

!

=

(

18

+

2

+

(-35)

)

!

=

-15

DPROD(X,

Y)

Double

precision

real

product.

Argument

Type

and

Attributes

X

must

be

of

type

default

real.

Y

must

be

of

type

default

real.

Class

Elemental

function

Result

Type

and

Attributes

Double

precision

real.

Result

Value

The

result

has

a

value

equal

to

the

product

of

X

and

Y.

Examples

DPROD

(-3.0,

2.0)

has

the

value

-6.0D0.

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

DPROD

default

real

double

precision

real

yes

QPROD

�1�

double

precision

real

REAL(16)

yes

Intrinsic

Procedures

455

Notes:

1.

IBM

Extension.

EOSHIFT(ARRAY,

SHIFT,

BOUNDARY,

DIM)

Shifts

the

elements

of

all

vectors

along

a

given

dimension

of

an

array.

The

shift

is

end-off;

that

is,

elements

shifted

off

one

end

are

lost,

and

copies

of

boundary

elements

are

shifted

in

at

the

other

end.

Argument

Type

and

Attributes

ARRAY

is

an

array

of

any

type.

SHIFT

is

a

scalar

of

type

integer

if

ARRAY

has

a

rank

of

1;

otherwise,

it

is

a

scalar

integer

or

an

integer

expression

of

rank

rank(ARRAY)-1.

BOUNDARY

(optional)

is

of

the

same

type

and

type

parameters

as

ARRAY.

If

ARRAY

has

a

rank

of

1,

BOUNDARY

must

be

scalar;

otherwise,

it

is

a

scalar

or

an

expression

of

rank

rank(ARRAY)-1.

DIM

(optional)

is

an

integer

scalar

in

the

range

1

≤

DIM

≤

rank(ARRAY).

Class

Transformational

function

Result

Value

The

result

is

an

array

with

the

same

shape

and

data

type

as

ARRAY.

The

absolute

value

of

SHIFT

determines

the

amount

of

shift.

The

sign

of

SHIFT

determines

the

direction

of

the

shift:

Positive

SHIFT

moves

each

element

of

the

vector

toward

the

beginning

of

the

vector.

If

an

element

is

taken

off

the

beginning

of

a

vector,

its

value

is

replaced

by

the

corresponding

value

from

BOUNDARY

at

the

end

of

the

vector.

Negative

SHIFT

moves

each

element

of

the

vector

toward

the

end

of

the

vector.

If

an

element

is

taken

off

the

end

of

a

vector,

its

value

is

replaced

by

the

corresponding

value

from

boundary

at

the

beginning

of

the

vector.

Zero

SHIFT

does

no

shifting.

The

value

of

the

vector

remains

unchanged.

Result

Value

If

BOUNDARY

is

a

scalar

value,

this

value

is

used

in

all

shifts.

If

BOUNDARY

is

an

array

of

values,

the

values

of

the

array

elements

of

BOUNDARY

with

subscripts

(s1,

s2,

...,

s(DIM-1),

s(DIM+1),

...,

sn)

are

used

for

that

dimension.

If

BOUNDARY

is

not

specified,

the

following

default

values

are

used,

depending

on

the

data

type

of

ARRAY:

456

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

character

’�’

(one

blank)

logical

false

integer

0

real

0.0

complex

(0.0,

0.0)

Examples

!

A

is

|

1.1

4.4

7.7

|,

SHIFT

is

S=(/0,

-1,

1/),

!

|

2.2

5.5

8.8

|

!

|

3.3

6.6

9.9

|

!

and

BOUNDARY

is

the

array

B=(/-0.1,

-0.2,

-0.3/).

!

Leave

the

first

column

alone,

shift

the

second

!

column

down

one,

and

shift

the

third

column

up

one.

RES

=

EOSHIFT

(A,

SHIFT

=

S,

BOUNDARY

=

B,

DIM

=

1)

!

The

result

is

|

1.1

-0.2

8.8

|

!

|

2.2

4.4

9.9

|

!

|

3.3

5.5

-0.3

|

!

Do

the

same

shifts

as

before,

but

on

the

!

rows

instead

of

the

columns.

RES

=

EOSHIFT

(A,

SHIFT

=

S,

BOUNDARY

=

B,

DIM

=

2)

!

The

result

is

|

1.1

4.4

7.7

|

!

|

-0.2

2.2

5.5

|

!

|

6.6

9.9

-0.3

|

EPSILON(X)

Returns

a

positive

model

number

that

is

almost

negligible

compared

to

unity

in

the

model

representing

numbers

of

the

same

type

and

kind

type

parameter

as

the

argument.

Argument

Type

and

Attributes

X

must

be

of

type

real.

It

may

be

scalar

or

array

valued.

Class

Inquiry

function

Result

Type

and

Attributes

Scalar

of

the

same

type

and

kind

type

parameter

as

X.

Result

Value

The

result

is

2.0ei01

-

DIGITS(X)

where

ei

is

the

exponent

indicator

(E,

D,

or

Q)

depending

on

the

type

of

X:

IBM

Extension

type

EPSILON(X)

real(4)

02E0

**

(-23)

real(8)

02D0

**

(-52)

real(16)

02Q0

**

(-105)

Intrinsic

Procedures

457

End

of

IBM

Extension

Examples

IBM

Extension

EPSILON

(X)

=

1.1920929E-07

for

X

of

type

real(4).

See

“Real

Data

Model”

on

page

425.

End

of

IBM

Extension

ERF(X)

IBM

Extension

Error

function.

Argument

Type

and

Attributes

X

must

be

of

type

real.

Class

Elemental

function

Result

Type

and

Attributes

Same

as

X.

Result

Value

v

The

result

value

approximates

erf(X).

v

The

result

is

in

the

range

-1

≤

ERF(X)

≤

1

Examples

ERF

(1.0)

has

the

value

0.8427007794

(approximately).

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

ERF

default

real

default

real

yes

DERF

double

precision

real

double

precision

real

yes

QERF

REAL(16)

REAL(16)

yes

End

of

IBM

Extension

2

e dtt−

√
erf(x)

2
=

π 0∫
x

458

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

ERFC(X)

IBM

Extension

Complementary

error

function.

Argument

Type

and

Attributes

X

must

be

of

type

real.

Class

Elemental

function

Result

Type

and

Attributes

Same

as

X.

Result

Value

v

The

result

has

a

value

equal

to

1-ERF(X).

v

The

result

is

in

the

range

0

≤

ERFC(X)

≤

2

Examples

ERFC

(1.0)

has

the

value

0.1572992057

(approximately).

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

ERFC

default

real

default

real

yes

DERFC

double

precision

real

double

precision

real

yes

QERFC

REAL(16)

REAL(16)

yes

End

of

IBM

Extension

EXP(X)

Exponential.

Argument

Type

and

Attributes

X

must

be

of

type

real

or

complex.

Class

Elemental

function

Result

Type

and

Attributes

Same

as

X.

�
erfc(x)=1 erf(x)=

2

x
e t dt2

Intrinsic

Procedures

459

Result

Value

v

The

result

approximates

ex.

v

If

X

is

of

type

complex,

its

real

and

imaginary

parts

are

regarded

as

values

in

radians.

Examples

EXP

(1.0)

has

the

value

2.7182818

(approximately).

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

EXP

�1�

default

real

default

real

yes

DEXP

�2�

double

precision

real

double

precision

real

yes

QEXP

�2�

�3�

REAL(16)

REAL(16)

yes

CEXP

�4a�

default

complex

default

complex

yes

CDEXP

�4b�

�3�

double

complex

double

complex

yes

ZEXP

�4b�

�3�

double

complex

double

complex

yes

CQEXP

�4b�

�3�

COMPLEX(16)

COMPLEX(16)

yes

Notes:

1.

X

must

be

less

than

or

equal

to

88.7228.

2.

X

must

be

less

than

or

equal

to

709.7827.

3.

IBM

Extension.

4.

When

X

is

a

complex

number

in

the

form

a

+

bi,

where

i

=

(-1)

½:

a.

a

must

be

less

than

or

equal

to

88.7228;

b

is

any

real

value.

b.

a

must

be

less

than

or

equal

to

709.7827;

b

is

any

real

value.

EXPONENT(X)

Returns

the

exponent

part

of

the

argument

when

represented

as

a

model

number.

Argument

Type

and

Attributes

X

must

be

of

type

real.

Class

Elemental

function

Result

Type

and

Attributes

Default

integer.

Result

Value

v

If

X

≠

0,

the

result

is

the

exponent

of

X

(which

is

always

within

the

range

of

a

default

integer).

v

If

X

=

0,

the

exponent

of

X

is

zero.

460

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Examples

IBM

Extension

EXPONENT

(10.2)

=

4.

See

“Real

Data

Model”

on

page

425

End

of

IBM

Extension

FLOOR(A,

KIND)

Returns

the

greatest

integer

less

than

or

equal

to

its

argument.

Argument

Type

and

Attributes

A

must

be

of

type

real.

Fortran

95

KIND

(optional)

must

be

a

scalar

integer

initialization

expression.

End

of

Fortran

95

Class

Elemental

function

Result

Type

and

Attributes

v

It

is

of

type

integer.

Fortran

95

v

If

KIND

is

present,

the

kind

type

parameter

is

that

specified

by

KIND;

otherwise,

the

KIND

type

parameter

is

that

of

the

default

integer

type.

End

of

Fortran

95

Result

Value

The

result

has

a

value

equal

to

the

least

integer

greater

than

or

equal

to

A.

Fortran

95

The

result

is

undefined

if

the

result

cannot

be

represented

as

an

integer

of

the

specified

KIND.

End

of

Fortran

95

Examples

FLOOR(-3.7)

has

the

value

-4.

FLOOR(3.7)

has

the

value

3.

Intrinsic

Procedures

461

Fortran

95

FLOOR(1000.1,

KIND=2)

has

the

value

1000,

with

a

kind

type

parameter

of

two.

End

of

Fortran

95

FRACTION(X)

Returns

the

fractional

part

of

the

model

representation

of

the

argument

value.

Argument

Type

and

Attributes

X

must

be

of

type

real.

Class

Elemental

function

Result

Type

and

Attributes

Same

as

X.

Result

Value

IBM

Extension

The

result

is:

X

*

(2.0-EXPONENT(X))

End

of

IBM

Extension

Examples

IBM

Extension

FRACTION(10.2)

=2-4

*

10.2

approximately

equal

to

0.6375

End

of

IBM

Extension

GAMMA(X)

IBM

Extension

Gamma

function.

Argument

Type

and

Attributes

X

must

be

of

type

real.

Class

Elemental

function

u e du1 u− −

0

x∫
∞

(x) =Γ

462

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Result

Type

and

Attributes

Same

as

X.

Result

Value

The

result

has

a

value

that

approximates

Γ(X).

Examples

GAMMA

(1.0)

has

the

value

1.0.

GAMMA

(10.0)

has

the

value

362880.0

(approximately).

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

GAMMA

�1�

default

real

default

real

yes

DGAMMA

�2�

double

precision

real

double

precision

real

yes

QGAMMA

�3�

REAL(16)

REAL(16)

yes

X

must

satisfy

the

inequality:

1.

-2.0**23

<

X

≤

35.0401,

except

for

nonpositive

integral

values

2.

-2.0**52

<

X

≤

171.6243,

except

for

nonpositive

integral

values

3.

-2.0**105

<

X

≤

171.6243,

except

for

nonpositive

integral

values

End

of

IBM

Extension

GETENV(NAME,

VALUE)

IBM

Extension

Determines

the

value

of

the

specified

environment

variable.

Argument

Type

and

Attributes

NAME

is

a

character

string

that

identifies

the

name

of

the

operating-system

environment

variable.

The

string

is

case-significant.

It

is

an

INTENT(IN)

argument

that

must

be

scalar

of

type

default

character.

VALUE

holds

the

value

of

the

environment

variable

when

the

subroutine

returns.

It

is

an

INTENT(OUT)

argument

that

must

be

scalar

of

type

default

character.

Class

Subroutine

Result

Value

The

result

is

returned

in

the

VALUE

argument,

not

as

a

function

result

variable.

If

the

environment

variable

specified

in

the

NAME

argument

does

not

exist,

the

VALUE

argument

contains

blanks.

Intrinsic

Procedures

463

Examples

CHARACTER

(LEN=16)

ENVDATA

CALL

GETENV(’HOME’,

VALUE=ENVDATA)

!

Print

the

value.

PRINT

*,

ENVDATA

!

Show

how

it

is

blank-padded

on

the

right.

WRITE(*,

’(Z32)’)

ENVDATA

END

The

following

is

sample

output

generated

by

the

above

program:

/home/mark

2F686F6D652F6D61726B202020202020

End

of

IBM

Extension

HFIX(A)

IBM

Extension

Convert

from

REAL(4)

to

INTEGER(2).

This

procedure

is

a

specific

function,

not

a

generic

function.

Argument

Type

and

Attributes

A

must

be

of

type

REAL(4).

Class

Elemental

function

Result

Type

and

Attributes

An

INTEGER(2)

scalar

or

array.

Result

Value

v

If

|A|

<

1,

INT

(A)

has

the

value

0.

v

If

|A|

≥

1,

INT

(A)

is

the

integer

whose

magnitude

is

the

largest

integer

that

does

not

exceed

the

magnitude

of

A

and

whose

sign

is

the

same

as

the

sign

of

A.

v

The

result

is

undefined

if

the

result

cannot

be

represented

in

an

INTEGER(2).

Examples

HFIX

(-3.7)

has

the

value

-3.

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

HFIX

REAL(4)

INTEGER(2)

no

End

of

IBM

Extension

HUGE(X)

Returns

the

largest

number

in

the

model

representing

numbers

of

the

same

type

and

kind

type

parameter

as

the

argument.

464

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Argument

Type

and

Attributes

X

must

be

of

type

integer

or

real.

It

may

be

scalar

or

array

valued.

Class

Inquiry

function

Result

Type

and

Attributes

Scalar

of

the

same

type

and

kind

type

parameter

as

X.

Result

Value

v

If

X

is

of

any

integer

type,

the

result

is:

2DIGITS(X)

-

1

v

If

X

is

of

any

real

type,

the

result

is:

(1.0

-

2.0-DIGITS(X))

*

(2.0MAXEXPONENT(X))

Examples

IBM

Extension

HUGE

(X)

=

(1D0

-

2D0**-53)

*

(2D0**1024)

for

X

of

type

real(8).

HUGE

(X)

=

(2**63)

-

1

for

X

of

type

integer(8).

See

“Data

Representation

Models”

on

page

423.

End

of

IBM

Extension

IACHAR(C)

Returns

the

position

of

a

character

in

the

ASCII

collating

sequence.

Argument

Type

and

Attributes

C

must

be

of

type

default

character

and

of

length

one.

Class

Elemental

function

Result

Type

and

Attributes

Default

integer.

Result

Value

v

If

C

is

in

the

collating

sequence

defined

by

the

codes

specified

in

ISO

646:1983

(International

Reference

Version),

the

result

is

the

position

of

C

in

that

sequence

and

satisfies

the

inequality

(0

≤

IACHAR

(C)

≤

127).

An

undefined

value

is

returned

if

C

is

not

in

the

ASCII

collating

sequence.

v

The

results

are

consistent

with

the

LGE,

LGT,

LLE,

and

LLT

lexical

comparison

functions.

For

example,

LLE

(C,

D)

is

true,

so

IACHAR

(C)

.LE.

IACHAR

(D)

is

true

too.

Intrinsic

Procedures

465

Examples

IACHAR

(’X’)

has

the

value

88.

IAND(I,

J)

Performs

a

logical

AND.

Argument

Type

and

Attributes

I

must

be

of

type

integer.

J

must

be

of

type

integer

with

the

same

kind

type

parameter

as

I.

Class

Elemental

function

Result

Type

and

Attributes

Same

as

I.

Result

Value

The

result

has

the

value

obtained

by

combining

I

and

J

bit-by-bit

according

to

the

following

table:

I

J

IAND

(I,J)

1

1

1

1

0

0

0

1

0

0

0

0

The

bits

are

numbered

from

0

to

BIT_SIZE(I)-1,

from

right

to

left.

Examples

IAND

(1,

3)

has

the

value

1.

See

“Integer

Bit

Model”

on

page

423.

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

IAND

�1�

any

integer

same

as

argument

yes

AND

�1�

any

integer

same

as

argument

yes

Notes:

1.

IBM

Extension.

IBCLR(I,

POS)

Clears

one

bit

to

zero.

Argument

Type

and

Attributes

I

must

be

of

type

integer.

POS

must

be

of

type

integer.

It

must

be

nonnegative

and

less

than

BIT_SIZE

(I).

Class

Elemental

function

466

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Result

Type

and

Attributes

Same

as

I.

Result

Value

The

result

has

the

value

of

the

sequence

of

bits

of

I,

except

that

bit

POS

of

I

is

set

to

zero.

The

bits

are

numbered

from

0

to

BIT_SIZE(I)-1,

from

right

to

left.

Examples

IBCLR

(14,

1)

has

the

result

12.

If

V

has

the

value

(/1,

2,

3,

4/),

the

value

of

IBCLR

(POS

=

V,

I

=

31)

is

(/29,

27,

23,

15/).

See

“Integer

Bit

Model”

on

page

423.

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

IBCLR

�1�

any

integer

same

as

argument

yes

Notes:

1.

IBM

Extension.

IBITS(I,

POS,

LEN)

Extracts

a

sequence

of

bits.

Argument

Type

and

Attributes

I

must

be

of

type

integer.

POS

must

be

of

type

integer.

It

must

be

nonnegative

and

POS

+

LEN

must

be

less

than

or

equal

to

BIT_SIZE

(I).

LEN

must

be

of

type

integer

and

nonnegative.

Class

Elemental

function

Result

Type

and

Attributes

Same

as

I.

Result

Value

The

result

has

the

value

of

the

sequence

of

LEN

bits

in

I

beginning

at

bit

POS,

right-adjusted

and

with

all

other

bits

zero.

The

bits

are

numbered

from

0

to

BIT_SIZE(I)-1,

from

right

to

left.

Examples

IBITS

(14,

1,

3)

has

the

value

7.

See

“Integer

Bit

Model”

on

page

423.

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

IBITS

�1�

any

integer

same

as

argument

yes

Intrinsic

Procedures

467

Notes:

1.

IBM

Extension.

IBSET(I,

POS)

Sets

one

bit

to

one.

Argument

Type

and

Attributes

I

must

be

of

type

integer.

POS

must

be

of

type

integer.

It

must

be

nonnegative

and

less

than

BIT_SIZE

(I).

Class

Elemental

function

Result

Type

and

Attributes

Same

as

I.

Result

Value

The

result

has

the

value

of

the

sequence

of

bits

of

I,

except

that

bit

POS

of

I

is

set

to

one.

The

bits

are

numbered

from

0

to

BIT_SIZE(I)-1,

from

right

to

left.

Examples

IBSET

(12,

1)

has

the

value

14.

If

V

has

the

value

(/1,

2,

3,

4/),

the

value

of

IBSET

(POS

=

V,

I

=

0)

is

(/2,

4,

8,

16/).

See

“Integer

Bit

Model”

on

page

423.

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

IBSET

�1�

any

integer

same

as

I

yes

Notes:

1.

IBM

Extension.

ICHAR(C)

Returns

the

position

of

a

character

in

the

collating

sequence

associated

with

the

kind

type

parameter

of

the

character.

Argument

Type

and

Attributes

C

must

be

of

type

character

and

of

length

one.

Its

value

must

be

that

of

a

representable

character.

Class

Elemental

function

468

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Result

Type

and

Attributes

Default

integer.

Result

Value

v

The

result

is

the

position

of

C

in

the

collating

sequence

associated

with

the

kind

type

parameter

of

C

and

is

in

the

range

0

≤

ICHAR

(C)

≤

127.

v

For

any

representable

characters

C

and

D,

C

.LE.

D

is

true

if

and

only

if

ICHAR

(C)

.LE.

ICHAR

(D)

is

true

and

C

.EQ.

D

is

true

if

and

only

if

ICHAR

(C)

.EQ.

ICHAR

(D)

is

true.

Examples

IBM

Extension

ICHAR

(’X’)

has

the

value

88

in

the

ASCII

collating

sequence.

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

ICHAR

default

character

default

integer

yes

�1�

Notes:

1.

The

extension

is

the

ability

to

pass

the

name

as

an

argument.

2.

XL

Fortran

supports

only

the

ASCII

collating

sequence.

End

of

IBM

Extension

IEOR(I,

J)

Performs

an

exclusive

OR.

Argument

Type

and

Attributes

I

must

be

of

type

integer.

J

must

be

of

type

integer

with

the

same

kind

type

parameter

as

I.

Class

Elemental

function

Result

Type

and

Attributes

Same

as

I.

Result

Value

The

result

has

the

value

obtained

by

combining

I

and

J

bit-by-bit

according

to

the

following

truth

table:

I

J

IEOR

(I,J)

1

1

0

1

0

1

0

1

1

0

0

0

The

bits

are

numbered

0

to

BIT_SIZE(I)-1,

from

right

to

left.

Intrinsic

Procedures

469

Examples

IEOR

(1,

3)

has

the

value

2.

See

“Integer

Bit

Model”

on

page

423.

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

IEOR

�1�

any

integer

same

as

argument

yes

XOR

�1�

any

integer

same

as

argument

yes

Notes:

1.

IBM

Extension.

ILEN(I)

IBM

Extension

Returns

one

less

than

the

length,

in

bits,

of

the

twos

complement

representation

of

an

integer.

Argument

Type

and

Attributes

I

is

of

type

integer

Class

Elemental

function

Result

Type

and

Attributes

Same

as

I.

Result

Value

v

If

I

is

negative,

ILEN(I)=CEILING(LOG2(-I))

v

If

I

is

nonnegative,

ILEN(I)=CEILING(LOG2(I+1))

Examples

I=ILEN(4)

!

3

J=ILEN(-4)

!

2

End

of

IBM

Extension

IMAG(Z)

IBM

Extension

Identical

to

AIMAG.

Related

Information

“AIMAG(Z),

IMAG(Z)”

on

page

430.

End

of

IBM

Extension

INDEX(STRING,

SUBSTRING,

BACK)

Returns

the

starting

position

of

a

substring

within

a

string.

470

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Argument

Type

and

Attributes

STRING

must

be

of

type

character.

SUBSTRING

must

be

of

type

character

with

the

same

kind

type

parameter

as

STRING.

BACK

(optional)

must

be

of

type

logical.

Class

Elemental

function

Result

Type

and

Attributes

Default

integer.

Result

Value

v

Case

(i):

If

BACK

is

absent

or

present

with

the

value

.FALSE.,

the

result

is

the

minimum

positive

value

of

I

such

that

STRING

(I

:

I

+

LEN

(SUBSTRING)

-

1)

=

SUBSTRING

or

zero

if

there

is

no

such

value.

Zero

is

returned

if

LEN

(STRING)

<

LEN

(SUBSTRING).

One

is

returned

if

LEN

(SUBSTRING)

=

0.

v

Case

(ii):

If

BACK

is

present

with

the

value

.TRUE.,

the

result

is

the

maximum

value

of

I

less

than

or

equal

to

LEN

(STRING)

-

LEN

(SUBSTRING)

+

1,

such

that

STRING

(I

:

I

+

LEN

(SUBSTRING)

-

1)

=

SUBSTRING

or

zero

if

there

is

no

such

value.

Zero

is

returned

if

LEN

(STRING)

<

LEN

(SUBSTRING)

and

LEN

(STRING)

+

1

is

returned

if

LEN

(SUBSTRING)

=

0.

Examples

INDEX

(’FORTRAN’,

’R’)

has

the

value

3.

INDEX

(’FORTRAN’,

’R’,

BACK

=

.TRUE.)

has

the

value

5.

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

INDEX

default

character

default

integer

yes

�1�

Notes:

1.

When

this

specific

name

is

passed

as

an

argument,

the

procedure

can

only

be

referenced

without

the

BACK

optional

argument.

INT(A,

KIND)

Convert

to

integer

type.

Argument

Type

and

Attributes

A

must

be

of

type

integer,

real,

or

complex.

KIND

(optional)

must

be

a

scalar

integer

initialization

expression.

Class

Elemental

function

Intrinsic

Procedures

471

Result

Type

and

Attributes

v

Integer.

v

If

KIND

is

present,

the

kind

type

parameter

is

that

specified

by

KIND;

otherwise,

the

kind

type

parameter

is

that

of

the

default

integer

type.

Result

Value

v

Case

(i):

If

A

is

of

type

integer,

INT

(A)

=

A.

v

Case

(ii):

If

A

is

of

type

real,

there

are

two

cases:

if

|A|

<

1,

INT

(A)

has

the

value

0;

if

|A|

≥

1,

INT

(A)

is

the

integer

whose

magnitude

is

the

largest

integer

that

does

not

exceed

the

magnitude

of

A

and

whose

sign

is

the

same

as

the

sign

of

A.

v

Case

(iii):

If

A

is

of

type

complex,

INT

(A)

is

the

value

obtained

by

applying

the

case

(ii)

rule

to

the

real

part

of

A.

v

The

result

is

undefined

if

it

cannot

be

represented

in

the

specified

integer

type.

Examples

INT

(-3.7)

has

the

value

-3.

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

INT

default

real

default

integer

no

IDINT

double

precision

real

default

integer

no

IFIX

default

real

default

integer

no

IQINT

�1�

REAL(16)

default

integer

no

Notes:

1.

IBM

Extension.

Related

Information

For

information

on

alternative

behavior

for

INT

when

porting

programs

to

XL

Fortran,

see

the

-qport

compiler

option

in

the

User’s

Guide.

INT2(A)

IBM

Extension

Converts

a

real

or

integer

value

into

a

two

byte

integer.

Argument

Type

and

Attributes

A

must

be

a

scalar

of

integer

or

real

type.

INT2

cannot

be

passed

as

an

actual

argument

of

another

function

call.

Class

Elemental

function

Result

Type

and

Attributes

INTEGER(2)

scalar

472

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Result

Value

If

A

is

of

type

integer,

INT2(A)

=

A.

If

A

is

of

type

real,

there

are

two

possibilities:

v

If

|A|

<

1,

INT2(A)

has

the

value

0

v

If

|A|

>=

1,

INT2(A)

is

the

integer

whose

magnitude

is

the

largest

integer

that

does

not

exceed

the

magnitude

of

A,

and

whose

sign

is

the

same

as

the

sign

of

A.

In

both

cases,

truncation

may

occur.

Examples

The

following

is

an

example

of

the

INT2

function.

REAL*4

::

R4

REAL*8

::

R8

INTEGER*4

::

I4

INTEGER*8

::

I8

R4

=

8.8;

R8

=

18.9

I4

=

4;

I8

=

8

PRINT

*,

INT2(R4),

INT2(R8),

INT2(I4),

INT2(I8)

PRINT

*,

INT2(2.3),

INT2(6)

PRINT

*,

INT2(65535.78),

INT2(65536.89)

END

The

following

is

sample

output

generated

by

the

program

above:

8

18

4

8

2

6

-1

0

!

The

results

indicate

that

truncation

has

occurred,

since

!

only

the

last

two

bytes

were

saved.

End

of

IBM

Extension

IOR(I,

J)

Performs

an

inclusive

OR.

Argument

Type

and

Attributes

I

must

be

of

type

integer.

J

must

be

of

type

integer

with

the

same

kind

type

parameter

as

I.

Class

Elemental

function

Result

Type

and

Attributes

Same

as

I.

Result

Value

The

result

has

the

value

obtained

by

combining

I

and

J

bit-by-bit

according

to

the

following

truth

table:

Intrinsic

Procedures

473

I

J

IOR

(I,J)

1

1

1

1

0

1

0

1

1

0

0

0

The

bits

are

numbered

0

to

BIT_SIZE(I)-1,

from

right

to

left.

Examples

IOR

(1,

3)

has

the

value

3.

See

“Integer

Bit

Model”

on

page

423.

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

IOR

�1�

any

integer

same

as

argument

yes

OR

�1�

any

integer

same

as

argument

yes

Notes:

1.

IBM

Extension.

ISHFT(I,

SHIFT)

Performs

a

logical

shift.

Argument

Type

and

Attributes

I

must

be

of

type

integer.

SHIFT

must

be

of

type

integer.

The

absolute

value

of

SHIFT

must

be

less

than

or

equal

to

BIT_SIZE

(I).

Class

Elemental

function

Result

Type

and

Attributes

Same

as

I.

Result

Value

v

The

result

has

the

value

obtained

by

shifting

the

bits

of

I

by

SHIFT

positions.

v

If

SHIFT

is

positive,

the

shift

is

to

the

left;

if

SHIFT

is

negative,

the

shift

is

to

the

right;

and,

if

SHIFT

is

zero,

no

shift

is

performed.

v

Bits

shifted

out

from

the

left

or

from

the

right,

as

appropriate,

are

lost.

v

Vacated

bits

are

filled

with

zeros.

v

The

bits

are

numbered

0

to

BIT_SIZE(I)-1,

from

right

to

left.

Examples

ISHFT

(3,

1)

has

the

result

6.

See

“Integer

Bit

Model”

on

page

423.

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

ISHFT

�1�

any

integer

same

as

argument

yes

Notes:

1.

IBM

Extension.

474

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

ISHFTC(I,

SHIFT,

SIZE)

Performs

a

circular

shift

of

the

rightmost

bits;

that

is,

bits

shifted

off

one

end

are

inserted

again

at

the

other

end.

Argument

Type

and

Attributes

I

must

be

of

type

integer.

SHIFT

must

be

of

type

integer.

The

absolute

value

of

SHIFT

must

be

less

than

or

equal

to

SIZE.

SIZE

(optional)

must

be

of

type

integer.

The

value

of

SIZE

must

be

positive

and

must

not

exceed

BIT_SIZE

(I).

If

SIZE

is

absent,

it

is

as

if

it

were

present

with

the

value

of

BIT_SIZE

(I).

Class

Elemental

function

Result

Type

and

Attributes

Same

as

I.

Result

Value

The

result

has

the

value

obtained

by

shifting

the

SIZE

rightmost

bits

of

I

circularly

by

SHIFT

positions.

If

SHIFT

is

positive,

the

shift

is

to

the

left;

if

SHIFT

is

negative,

the

shift

is

to

the

right;

and,

if

SHIFT

is

zero,

no

shift

is

performed.

No

bits

are

lost.

The

unshifted

bits

are

unaltered.

The

bits

are

numbered

0

to

BIT_SIZE(I)-1,

from

right

to

left.

Examples

ISHFTC

(3,

2,

3)

has

the

value

5.

See

“Integer

Bit

Model”

on

page

423.

IBM

Extension

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

ISHFTC

any

integer

same

as

argument

yes

�1�

Notes:

1.

When

this

specific

name

is

passed

as

an

argument,

the

procedure

can

only

be

referenced

with

all

three

arguments.

End

of

IBM

Extension

KIND(X)

Returns

the

value

of

the

kind

type

parameter

of

X.

Argument

Type

and

Attributes

X

may

be

of

any

intrinsic

type.

Intrinsic

Procedures

475

Class

Inquiry

function

Result

Type

and

Attributes

Default

integer

scalar.

Result

Value

The

result

has

a

value

equal

to

the

kind

type

parameter

value

of

X.

Kind

type

parameters

supported

by

XL

Fortran

are

defined

in

“Intrinsic

Types”

on

page

22.

Examples

KIND

(0.0)

has

the

kind

type

parameter

value

of

the

default

real

type.

LBOUND(ARRAY,

DIM)

Returns

the

lower

bound

of

each

dimension

in

an

array,

or

the

lower

bound

of

a

specified

dimension.

Argument

Type

and

Attributes

ARRAY

is

the

array

whose

lower

bounds

you

want

to

determine.

Its

bounds

must

be

defined;

that

is,

it

must

not

be

a

disassociated

pointer

or

an

allocatable

array

that

is

not

allocated.

DIM

(optional)

is

an

integer

scalar

in

the

range

1

≤

DIM

≤

rank(ARRAY).

The

corresponding

actual

argument

must

not

be

an

optional

dummy

argument.

Class

Inquiry

function

Result

Type

and

Attributes

Default

integer.

If

DIM

is

present,

the

result

is

a

scalar.

If

DIM

is

not

present,

the

result

is

a

one-dimensional

array

with

one

element

for

each

dimension

in

ARRAY.

Result

Value

Each

element

in

the

result

corresponds

to

a

dimension

of

array.

v

If

ARRAY

is

a

whole

array

or

array

structure

component,

LBOUND(ARRAY,

DIM)

is

equal

to

the

lower

bound

for

subscript

DIM

of

ARRAY.

The

only

exception

is

for

a

dimension

that

is

zero-sized

and

ARRAY

is

not

an

assumed-size

array

of

rank

DIM,

In

such

a

case,

the

corresponding

element

in

the

result

is

one

regardless

of

the

value

declared

for

the

lower

bound.

v

If

ARRAY

is

an

array

section

or

expression

that

is

not

a

whole

array

or

array

structure

component,

each

element

has

the

value

one.

476

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Examples

REAL

A(1:10,

-4:5,

4:-5)

RES=LBOUND(

A

)

!

The

result

is

(/

1,

-4,

1

/).

RES=LBOUND(

A(:,:,:)

)

RES=LBOUND(

A(4:10,-4:1,:)

)

!

The

result

in

both

cases

is

(/

1,

1,

1

/)

!

because

the

arguments

are

array

sections.

LEADZ(I)

IBM

Extension

Returns

the

number

of

leading

zero-bits

in

the

binary

representation

of

an

integer.

Argument

Type

and

Attributes

I

must

be

of

type

integer.

Class

Elemental

function

Result

Type

and

Attributes

Same

as

I.

Result

Value

The

result

is

the

count

of

zero-bits

to

the

left

of

the

leftmost

one-bit

for

an

integer.

Examples

I

=

LEADZ(0_4)

!

I=32

J

=

LEADZ(4_4)

!

J=29

K

=

LEADZ(-1_4)

!

K=0

End

of

IBM

Extension

LEN(STRING)

Returns

the

length

of

a

character

entity.

The

argument

to

this

function

need

not

be

defined.

Argument

Type

and

Attributes

STRING

must

be

of

type

character.

It

may

be

scalar

or

array

valued.

Class

Inquiry

function

Result

Type

and

Attributes

Default

integer

scalar.

Intrinsic

Procedures

477

Result

Value

The

result

has

a

value

equal

to

the

number

of

characters

in

STRING

if

it

is

scalar

or

in

an

element

of

STRING

if

it

is

array

valued.

Examples

If

C

is

declared

by

the

statement

CHARACTER

(11)

C(100)

LEN

(C)

has

the

value

11.

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

LEN

default

character

default

integer

yes

�1�

Notes:

1.

IBM

Extension:

the

ability

to

pass

the

name

as

an

argument.

LEN_TRIM(STRING)

Returns

the

length

of

the

character

argument

without

counting

trailing

blank

characters.

Argument

Type

and

Attributes

STRING

must

be

of

type

character.

Class

Elemental

function

Result

Type

and

Attributes

Default

integer.

Result

Value

The

result

has

a

value

equal

to

the

number

of

characters

remaining

after

any

trailing

blanks

in

STRING

are

removed.

If

the

argument

contains

no

nonblank

characters,

the

result

is

zero.

Examples

LEN_TRIM

(’�A�B�’)

has

the

value

4.

LEN_TRIM

(’��’)

has

the

value

0.

LGAMMA(X)

IBM

Extension

Log

of

gamma

function.

Argument

Type

and

Attributes

X

must

be

of

type

real.

loge loge u e du1 u− −

0

x∫
∞

(x) =Γ

478

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Class

Elemental

function

Result

Type

and

Attributes

Same

as

X.

Result

Value

The

result

has

a

value

equal

to

logeΓ(X).

Examples

LGAMMA

(1.0)

has

the

value

0.0.

LGAMMA

(10.0)

has

the

value

12.80182743

(approximately).

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

LGAMMA

default

real

default

real

yes

LGAMMA

double

precision

real

double

precision

real

yes

ALGAMA

�1�

default

real

default

real

yes

DLGAMA

�2�

double

precision

real

double

precision

real

yes

QLGAMA

�3�

REAL(16)

REAL(16)

yes

X

must

satisfy

the

inequality:

1.

0

<

X

≤

4.0850E36.

2.

2.3561D-304

≤

X

≤

21014.

3.

2.3561Q-304

≤

X

≤

21014.

End

of

IBM

Extension

LGE(STRING_A,

STRING_B)

Test

whether

a

string

is

lexically

greater

than

or

equal

to

another

string,

based

on

the

ASCII

collating

sequence.

Argument

Type

and

Attributes

STRING_A

must

be

of

type

default

character.

STRING_B

must

be

of

type

default

character.

Class

Elemental

function

Result

Type

and

Attributes

Default

logical.

Result

Value

v

If

the

strings

are

of

unequal

length,

the

comparison

is

made

as

if

the

shorter

string

were

extended

on

the

right

with

blanks

to

the

length

of

the

longer

string.

v

If

either

string

contains

a

character

not

in

the

ASCII

character

set,

the

result

is

undefined.

Intrinsic

Procedures

479

v

The

result

is

true

if

the

strings

are

equal

or

if

STRING_A

follows

STRING_B

in

the

ASCII

collating

sequence;

otherwise,

the

result

is

false.

Note

that

the

result

is

true

if

both

STRING_A

and

STRING_B

are

of

zero

length.

Examples

LGE

(’ONE’,

’TWO’)

has

the

value

.FALSE..

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

LGE

default

character

default

logical

yes

�1�

Notes:

1.

IBM

Extension:

the

ability

to

pass

the

name

as

an

argument.

LGT(STRING_A,

STRING_B)

Test

whether

a

string

is

lexically

greater

than

another

string,

based

on

the

ASCII

collating

sequence.

Argument

Type

and

Attributes

STRING_A

must

be

of

type

default

character.

STRING_B

must

be

of

type

default

character.

Class

Elemental

function

Result

Type

and

Attributes

Default

logical.

Result

Value

v

If

the

strings

are

of

unequal

length,

the

comparison

is

made

as

if

the

shorter

string

were

extended

on

the

right

with

blanks

to

the

length

of

the

longer

string.

v

If

either

string

contains

a

character

not

in

the

ASCII

character

set,

the

result

is

undefined.

v

The

result

is

true

if

STRING_A

follows

STRING_B

in

the

ASCII

collating

sequence;

otherwise,

the

result

is

false.

Note

that

the

result

is

false

if

both

STRING_A

and

STRING_B

are

of

zero

length.

Examples

LGT

(’ONE’,

’TWO’)

has

the

value

.FALSE..

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

LGT

default

character

default

logical

yes

�1�

Notes:

1.

IBM

Extension:

the

ability

to

pass

the

name

as

an

argument.

LLE(STRING_A,

STRING_B)

Test

whether

a

string

is

lexically

less

than

or

equal

to

another

string,

based

on

the

ASCII

collating

sequence.

480

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Argument

Type

and

Attributes

STRING_A

must

be

of

type

default

character.

STRING_B

must

be

of

type

default

character.

Class

Elemental

function

Result

Type

and

Attributes

Default

logical.

Result

Value

v

If

the

strings

are

of

unequal

length,

the

comparison

is

made

as

if

the

shorter

string

were

extended

on

the

right

with

blanks

to

the

length

of

the

longer

string.

v

If

either

string

contains

a

character

not

in

the

ASCII

character

set,

the

result

is

undefined.

v

The

result

is

true

if

the

strings

are

equal

or

if

STRING_A

precedes

STRING_B

in

the

ASCII

collating

sequence;

otherwise,

the

result

is

false.

Note

that

the

result

is

true

if

both

STRING_A

and

STRING_B

are

of

zero

length.

Examples

LLE

(’ONE’,

’TWO’)

has

the

value

.TRUE..

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

LLE

default

character

default

logical

yes

�1�

Notes:

1.

IBM

Extension:

the

ability

to

pass

the

name

as

an

argument.

LLT(STRING_A,

STRING_B)

Test

whether

a

string

is

lexically

less

than

another

string,

based

on

the

ASCII

collating

sequence.

Argument

Type

and

Attributes

STRING_A

must

be

of

type

default

character.

STRING_B

must

be

of

type

default

character.

Class

Elemental

function

Result

Type

and

Attributes

Default

logical.

Result

Value

v

If

the

strings

are

of

unequal

length,

the

comparison

is

made

as

if

the

shorter

string

were

extended

on

the

right

with

blanks

to

the

length

of

the

longer

string.

v

If

either

string

contains

a

character

not

in

the

ASCII

character

set,

the

result

is

undefined.

Intrinsic

Procedures

481

v

The

result

is

true

if

STRING_A

precedes

STRING_B

in

the

ASCII

collating

sequence;

otherwise,

the

result

is

false.

Note

that

the

result

is

false

if

both

STRING_A

and

STRING_B

are

of

zero

length.

Examples

LLT

(’ONE’,

’TWO’)

has

the

value

.TRUE..

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

LLT

default

character

default

logical

yes

�1�

Notes:

1.

IBM

Extension:

the

ability

to

pass

the

name

as

an

argument.

LOC(X)

IBM

Extension

Returns

the

address

of

X

that

can

then

be

used

to

define

an

integer

POINTER.

Argument

Type

and

Attributes

X

is

the

data

object

whose

address

you

want

to

find.

It

must

not

be

an

undefined

or

disassociated

pointer

or

a

parameter.

If

it

is

a

zero-sized

array,

it

must

be

storage

associated

with

a

non-zero-sized

storage

sequence.

If

it

is

an

array

section,

the

storage

of

the

array

section

must

be

contiguous.

Class

Inquiry

function

Result

Type

and

Attributes

The

result

is

of

type

INTEGER(4).

Result

Value

The

result

is

the

address

of

the

data

object,

or,

if

X

is

a

pointer,

the

address

of

the

associated

target.

The

result

is

undefined

if

the

argument

is

not

valid.

Examples

INTEGER

A,B

POINTER

(P,I)

P=LOC(A)

P=LOC(B)

END

End

of

IBM

Extension

LOG(X)

Natural

logarithm.

Argument

Type

and

Attributes

X

must

be

of

type

real

or

complex.

482

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

v

If

X

is

real,

its

value

must

be

greater

than

zero.

v

If

X

is

complex,

its

value

must

not

be

zero.

Class

Elemental

function

Result

Type

and

Attributes

Same

as

X.

Result

Value

v

It

has

a

value

approximating

logeX.

v

For

complex

arguments,

LOG

((a,b))

approximates

LOG

(ABS((a,b)))

+

ATAN2((b,a)).

If

the

argument

type

is

complex,

the

result

is

the

principal

value

of

the

imaginary

part

ω

in

the

range

-π

<

ω

≤

π.

If

the

real

part

of

the

argument

is

less

than

zero

and

its

imaginary

part

is

zero,

the

imaginary

part

of

the

result

approximates

π.

Examples

LOG

(10.0)

has

the

value

2.3025851

(approximately).

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

ALOG

default

real

default

real

yes

DLOG

double

precision

real

double

precision

real

yes

QLOG

REAL(16)

REAL(16)

yes

�1�

CLOG

default

complex

default

complex

yes

CDLOG

double

complex

double

complex

yes

�1�

ZLOG

double

complex

double

complex

yes

�1�

CQLOG

COMPLEX(16)

COMPLEX(16)

yes

�1�

Notes:

1.

IBM

Extension:

the

ability

to

pass

the

name

as

an

argument.

LOG10(X)

Common

logarithm.

Argument

Type

and

Attributes

X

must

be

of

type

real.

The

value

of

X

must

be

greater

than

zero.

Class

Elemental

function

Result

Type

and

Attributes

Same

as

X.

Result

Value

The

result

has

a

value

equal

to

log10X.

Intrinsic

Procedures

483

Examples

LOG10

(10.0)

has

the

value

1.0.

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

ALOG10

default

real

default

real

yes

DLOG10

double

precision

real

double

precision

real

yes

QLOG10

REAL(16)

REAL(16)

yes�1�

Notes:

1.

IBM

Extension:

the

ability

to

pass

the

name

as

an

argument.

LOGICAL(L,

KIND)

Converts

between

objects

of

type

logical

with

different

kind

type

parameter

values.

Argument

Type

and

Attributes

L

must

be

of

type

logical.

KIND

(optional)

must

be

a

scalar

integer

initialization

expression.

Class

Elemental

function

Result

Type

and

Attributes

v

Logical.

v

If

KIND

is

present,

the

kind

type

parameter

is

that

specified

by

KIND;

otherwise,

the

kind

type

parameter

is

that

of

the

default

logical

type.

Result

Value

The

value

is

that

of

L.

Examples

LOGICAL

(L

.OR.

.NOT.

L)

has

the

value

.TRUE.

and

is

of

type

default

logical,

regardless

of

the

kind

type

parameter

of

the

logical

variable

L.

LSHIFT(I,

SHIFT)

IBM

Extension

Performs

a

logical

shift

to

the

left.

Argument

Type

and

Attributes

I

must

be

of

type

integer.

SHIFT

must

be

of

type

integer.

It

must

be

non-negative

and

less

than

or

equal

to

BIT_SIZE(I).

Class

Elemental

function

484

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Result

Type

and

Attributes

Same

as

I.

Result

Value

v

The

result

has

the

value

obtained

by

shifting

the

bits

of

I

by

SHIFT

positions

to

the

left.

v

Vacated

bits

are

filled

with

zeros.

v

The

bits

are

numbered

0

to

BIT_SIZE(I)-1,

from

right

to

left.

Examples

LSHIFT

(3,

1)

has

the

result

6.

LSHIFT

(3,

2)

has

the

result

12.

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

LSHIFT

any

integer

same

as

argument

yes

End

of

IBM

Extension

MATMUL(MATRIX_A,

MATRIX_B,

MINDIM)

Performs

a

matrix

multiplication.

Argument

Type

and

Attributes

MATRIX_A

is

an

array

with

a

rank

of

one

or

two

and

a

numeric

or

logical

data

type.

MATRIX_B

is

an

array

with

a

rank

of

one

or

two

and

a

numeric

or

logical

data

type.

It

can

be

a

different

numeric

type

than

MATRIX_A,

but

you

cannot

use

one

numeric

matrix

and

one

logical

matrix.

IBM

Extension

MINDIM

(optional)

is

an

integer

that

determines

whether

to

do

the

matrix

multiplication

using

the

Winograd

variation

of

the

Strassen

algorithm,

which

may

be

faster

for

large

matrices.

The

algorithm

recursively

splits

the

operand

matrices

into

four

roughly

equal

parts,

until

any

submatrix

extent

is

less

than

MINDIM.

Note:

Strassen’s

method

is

not

stable

for

certain

row

or

column

scalings

of

the

input

matrices.

Therefore,

for

MATRIX_A

and

MATRIX_B

with

divergent

exponent

values,

Strassen’s

method

may

give

inaccurate

results.

The

significance

of

the

value

of

MINDIM

is:

<=0

does

not

use

the

Strassen

algorithm

at

all.

This

is

the

default.

1

is

reserved

for

future

use.

>1

recursively

applies

the

Strassen

algorithm

as

long

as

the

smallest

extent

of

all

dimensions

in

the

argument

arrays

is

Intrinsic

Procedures

485

greater

than

or

equal

to

this

value.

To

achieve

optimal

performance

you

should

experiment

with

the

value

of

MINDIM

as

the

optimal

value

depends

on

your

machine

configuration,

available

memory,

and

the

size,

type,

and

kind

type

of

the

arrays.

By

default,

MATMUL

employs

the

conventional

O(N**3)

method

of

matrix

multiplication.

End

of

IBM

Extension

At

least

one

of

the

arguments

must

be

of

rank

two.

The

size

of

the

first

or

only

dimension

of

MATRIX_B

must

be

equal

to

the

last

or

only

dimension

of

MATRIX_A.

Class

Transformational

function

Result

Value

The

result

is

an

array.

If

one

of

the

arguments

is

of

rank

one,

the

result

has

a

rank

of

one.

If

both

arguments

are

of

rank

two,

the

result

has

a

rank

of

two.

The

data

type

of

the

result

depends

on

the

data

type

of

the

arguments,

according

to

the

rules

in

Table

3

on

page

92

and

Table

4

on

page

97.

If

MATRIX_A

and

MATRIX_B

have

a

numeric

data

type,

the

array

elements

of

the

result

are:

v

Value

of

Element

(i,j)

=

SUM(

(row

i

of

MATRIX_A)

*

(column

j

of

MATRIX_B)

)

If

MATRIX_A

and

MATRIX_B

are

of

type

logical,

the

array

elements

of

the

result

are:

v

Value

of

Element

(i,j)

=

ANY(

(row

i

of

MATRIX_A)

.AND.

(column

j

of

MATRIX_B)

)

Examples

!

A

is

the

array

|

1

2

3

|,

B

is

the

array

|

7

10

|

!

|

4

5

6

|

|

8

11

|

!

|

9

12

|

RES

=

MATMUL(A,

B)

!

The

result

is

|

50

68

|

!

|

122

167

|

IBM

Extension

!

HUGE_ARRAY

and

GIGANTIC_ARRAY

in

this

example

are

!

large

arrays

of

real

or

complex

type,

so

the

operation

!

might

be

faster

with

the

Strassen

algorithm.

RES

=

MATMUL(HUGE_ARRAY,

GIGANTIC_ARRAY,

MINDIM=196)

End

of

IBM

Extension

MAX(A1,

A2,

A3,

...)

Maximum

value.

486

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Argument

Type

and

Attributes

v

A3,

...

are

optional

arguments.

Any

array

that

is

itself

an

optional

dummy

argument

must

not

be

passed

as

an

optional

argument

to

this

function

unless

it

is

present

in

the

calling

procedure.

v

All

the

arguments

must

have

the

same

type,

either

integer

or

real,

and

they

all

must

have

the

same

kind

type

parameter.

Class

Elemental

function

Result

Type

and

Attributes

Same

as

the

arguments.

(Some

specific

functions

return

results

of

a

particular

type.)

Result

Value

The

value

of

the

result

is

that

of

the

largest

argument.

Examples

MAX

(-9.0,

7.0,

2.0)

has

the

value

7.0.

If

you

evaluate

MAX

(10,

3,

A),

where

A

is

an

optional

array

argument

in

the

calling

procedure,

PRESENT(A)

must

be

true

in

the

calling

procedure.

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

AMAX0

any

integer

�1�

default

real

no

AMAX1

default

real

default

real

no

DMAX1

double

precision

real

double

precision

real

no

QMAX1

REAL(16)

REAL(16)

no

MAX0

any

integer

�1�

same

as

argument

no

MAX1

any

real

�2�

default

integer

no

Notes:

1.

IBM

Extension:

the

ability

to

specify

a

nondefault

integer

argument.

2.

IBM

Extension:

the

ability

to

specify

a

nondefault

real

argument.

MAXEXPONENT(X)

Returns

the

maximum

exponent

in

the

model

representing

numbers

of

the

same

type

and

kind

type

parameter

as

the

argument.

Argument

Type

and

Attributes

X

must

be

of

type

real.

It

may

be

scalar

or

array

valued.

Class

Inquiry

function

Result

Type

and

Attributes

Default

integer

scalar.

Intrinsic

Procedures

487

Result

Value

IBM

Extension

The

result

is

the

following:

type

MAXEXPONENT

real(4)

128

real(8)

1024

real(16)

1024

End

of

IBM

Extension

Examples

IBM

Extension

MAXEXPONENT(X)

=

128

for

X

of

type

real(4).

See

“Real

Data

Model”

on

page

425.

End

of

IBM

Extension

MAXLOC(ARRAY,

DIM,

MASK)

or

MAXLOC(ARRAY,

MASK)

Locates

the

first

element

of

an

array

along

a

dimension

that

has

the

maximum

value

of

all

elements

corresponding

to

the

true

values

of

the

mask.

MAXLOC

will

return

the

index

referable

to

the

position

of

the

element

using

a

positive

integer.

Argument

Type

and

Attributes

ARRAY

is

an

array

of

type

integer

or

real.

Fortran

95

DIM

(optional)

is

a

scalar

integer

in

the

range

1≤DIM≤rank(ARRAY).

End

of

Fortran

95

MASK

(optional)

is

of

type

logical

and

conforms

to

ARRAY

in

shape.

If

it

is

absent,

the

default

mask

evaluation

is

.TRUE.;

that

is,

the

entire

array

is

evaluated.

Class

Transformational

function

Result

Type

and

Attributes

If

DIM

is

absent,

the

result

is

an

integer

array

of

rank

one

with

a

size

equal

to

the

rank

of

ARRAY.

If

DIM

is

present,

the

result

is

an

integer

array

of

rank

rank(ARRAY)-1,

and

the

shape

is

(s1,

...,

sDIM-1,

sDIM+1,

...,

sn),

where

n

is

the

rank

of

ARRAY.

488

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

If

there

is

no

maximum

value,

perhaps

because

the

array

is

zero-sized

or

the

mask

array

has

all

.FALSE.

values

or

there

is

no

DIM

argument,

the

return

value

is

a

zero-sized

one-dimensional

entity.

If

DIM

is

present,

the

result

shape

depends

on

the

rank

of

ARRAY.

Result

Value

The

result

indicates

the

subscript

of

the

location

of

the

maximum

masked

element

of

ARRAY.

If

more

than

one

element

is

equal

to

this

maximum

value,

the

function

finds

the

location

of

the

first

(in

array

element

order).

If

DIM

is

specified,

the

result

indicates

the

location

of

the

maximum

masked

element

along

each

vector

of

the

dimension.

Fortran

95

Because

both

DIM

and

MASK

are

optional,

various

combinations

of

arguments

are

possible.

When

the

-qintlog

option

is

specified

with

two

arguments,

the

second

argument

refers

to

one

of

the

following:

v

MASK

if

it

is

an

array

of

type

integer,

logical,

byte

or

typeless

v

DIM

if

it

is

a

scalar

of

type

integer,

byte

or

typeless

v

MASK

if

it

is

a

scalar

of

type

logical

End

of

Fortran

95

Examples

!

A

is

the

array

|

4

9

8

-8

|

!

|

2

1

-1

5

|

!

|

9

4

-1

9

|

!

|

-7

5

7

-3

|

!

Where

is

the

largest

element

of

A?

RES

=

MAXLOC(A)

!

The

result

is

|

3

1

|

because

9

is

located

at

A(3,1).

!

Although

there

are

other

9s,

A(3,1)

is

the

first

in

!

column-major

order.

!

Where

is

the

largest

element

in

each

column

of

A

!

that

is

less

than

7?

RES

=

MAXLOC(A,

DIM

=

1,

MASK

=

A

.LT.

7)

!

The

result

is

|

1

4

2

2

|

because

these

are

the

corresponding

!

row

locations

of

the

largest

value

in

each

column

!

that

are

less

than

7

(the

values

being

4,5,-1,5).

Regardless

of

the

defined

upper

and

lower

bounds

of

the

array,

MAXLOC

will

determine

the

lower

bound

index

as

’1’.

Both

MAXLOC

and

MINLOC

index

using

positive

integers.

To

find

the

actual

index:

INTEGER

B(-100:100)

!

Maxloc

views

the

bounds

as

(1:201)

!

If

the

largest

element

is

located

at

index

’-49’

I

=

MAXLOC(B)

!

Will

return

the

index

’52’

!

To

return

the

exact

index

for

the

largest

element,

insert:

INDEX

=

LBOUND(B)

-

1

+

I

!

Which

is:

INDEX

=

(-100)

-

1

+

52

=

(-49)

PRINT*,

B(INDEX)

Intrinsic

Procedures

489

MAXVAL(ARRAY,

DIM,

MASK)

or

MAXVAL(ARRAY,

MASK)

Returns

the

maximum

value

of

the

elements

in

the

array

along

a

dimension

corresponding

to

the

true

elements

of

MASK.

Argument

Type

and

Attributes

ARRAY

is

an

array

of

type

integer

or

real.

DIM

(optional)

is

an

integer

scalar

in

the

range

1

≤

DIM

≤

rank(ARRAY).

MASK

(optional)

is

an

array

or

scalar

of

type

logical

that

conforms

to

ARRAY

in

shape.

If

it

is

absent,

the

entire

array

is

evaluated.

Class

Transformational

function

Result

Value

The

result

is

an

array

of

rank

rank(ARRAY)-1,

with

the

same

data

type

as

ARRAY.

If

DIM

is

missing

or

if

ARRAY

is

of

rank

one,

the

result

is

a

scalar.

If

DIM

is

specified,

each

element

of

the

result

value

contains

the

maximum

value

of

all

the

elements

that

satisfy

the

condition

specified

by

MASK

along

each

vector

of

the

dimension

DIM.

The

array

element

subscripts

in

the

result

are

(s1,

s2,

...,

s(DIM-1),

s(DIM+1),

...,

sn),

where

n

is

the

rank

of

ARRAY

and

DIM

is

the

dimension

specified

by

DIM.

If

DIM

is

not

specified,

the

function

returns

the

maximum

value

of

all

applicable

elements.

If

ARRAY

is

zero-sized

or

the

mask

array

has

all

.FALSE.

values,

the

result

value

is

the

negative

number

of

the

largest

magnitude,

of

the

same

type

and

kind

type

as

ARRAY.

Fortran

95

Because

both

DIM

and

MASK

are

optional,

various

combinations

of

arguments

are

possible.

When

the

-qintlog

option

is

specified

with

two

arguments,

the

second

argument

refers

to

one

of

the

following:

v

MASK

if

it

is

an

array

of

type

integer,

logical,

byte

or

typeless

v

DIM

if

it

is

a

scalar

of

type

integer,

byte

or

typeless

v

MASK

if

it

is

a

scalar

of

type

logical

End

of

Fortran

95

Examples

!

A

is

the

array

|

-41

33

25

|

!

|

12

-61

11

|

!

What

is

the

largest

value

in

the

entire

array?

RES

=

MAXVAL(A)

!

The

result

is

33

!

What

is

the

largest

value

in

each

column?

490

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

RES

=

MAXVAL(A,

DIM=1)

!

The

result

is

|

12

33

25

|

!

What

is

the

largest

value

in

each

row?

RES

=

MAXVAL(A,

DIM=2)

!

The

result

is

|

33

12

|

!

What

is

the

largest

value

in

each

row,

considering

only

!

elements

that

are

less

than

30?

RES

=

MAXVAL(A,

DIM=2,

MASK

=

A

.LT.

30)

!

The

result

is

|

25

12

|

MERGE(TSOURCE,

FSOURCE,

MASK)

Selects

between

two

values,

or

corresponding

elements

in

two

arrays.

A

logical

mask

determines

whether

to

take

each

result

element

from

the

first

or

second

argument.

Argument

Type

and

Attributes

TSOURCE

is

the

source

array

to

use

when

the

corresponding

element

in

the

mask

is

true.

It

is

an

expression

of

any

data

type.

FSOURCE

is

the

source

array

to

use

when

the

corresponding

element

in

the

mask

is

false.

It

must

have

the

same

data

type

and

type

parameters

as

tsource.

It

must

conform

in

shape

to

tsource.

MASK

is

a

logical

expression

that

conforms

to

TSOURCE

and

FSOURCE

in

shape.

Class

Elemental

function

Result

Value

The

result

has

the

same

shape

and

data

type

as

TSOURCE

and

FSOURCE.

For

each

element

in

the

result,

the

value

of

the

corresponding

element

in

MASK

determines

whether

the

value

is

taken

from

TSOURCE

(if

true)

or

FSOURCE

(if

false).

Examples

!

TSOURCE

is

|

A

D

G

|,

FSOURCE

is

|

a

d

g

|,

!

|

B

E

H

|

|

b

e

h

|

!

|

C

F

I

|

|

c

f

i

|

!

!

and

MASK

is

the

array

|

T

T

T

|

!

|

F

F

F

|

!

|

F

F

F

|

!

Take

the

top

row

of

TSOURCE,

and

the

remaining

elements

!

from

FSOURCE.

RES

=

MERGE(TSOURCE,

FSOURCE,

MASK)

!

The

result

is

|

A

D

G

|

!

|

b

e

h

|

!

|

c

f

i

|

!

Evaluate

IF

(X

.GT.

Y)

THEN

!

RES=6

!

ELSE

Intrinsic

Procedures

491

!

RES=12

!

END

IF

!

in

a

more

concise

form.

RES

=

MERGE(6,

12,

X

.GT.

Y)

MIN(A1,

A2,

A3,

...)

Minimum

value.

Argument

Type

and

Attributes

v

A3,

...

are

optional

arguments.

Any

array

that

is

itself

an

optional

dummy

argument

must

not

be

passed

as

an

optional

argument

to

this

function

unless

it

is

present

in

the

calling

procedure.

v

All

the

arguments

must

have

the

same

type,

either

integer

or

real,

and

they

all

must

have

the

same

kind

type

parameter.

Class

Elemental

function

Result

Type

and

Attributes

Same

as

the

arguments.

(Some

specific

functions

return

results

of

a

particular

type.)

Result

Value

The

value

of

the

result

is

that

of

the

smallest

argument.

Examples

MIN

(-9.0,

7.0,

2.0)

has

the

value

-9.0.

If

you

evaluate

MIN

(10,

3,

A),

where

A

is

an

optional

array

argument

in

the

calling

procedure,

PRESENT(A)

must

be

true

in

the

calling

procedure.

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

AMIN0

any

integer

default

real

no

AMIN1

default

real

default

real

no

DMIN1

double

precision

real

double

precision

real

no

QMIN1

REAL(16)

REAL(16)

no

MIN0

any

integer

same

as

argument

no

MIN1

any

real

default

integer

no

MINEXPONENT(X)

Returns

the

minimum

(most

negative)

exponent

in

the

model

representing

the

numbers

of

the

same

type

and

kind

type

parameter

as

the

argument.

Argument

Type

and

Attributes

X

must

be

of

type

real.

It

may

be

scalar

or

array

valued.

Class

Inquiry

function

492

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Result

Type

and

Attributes

Default

integer

scalar.

Result

Value

IBM

Extension

The

result

is

the

following:

type

MINEXPONENT

real(4)

-

125

real(8)

-1021

real(16)

-968

End

of

IBM

Extension

Examples

IBM

Extension

MINEXPONENT(X)

=

-125

for

X

of

type

real(4).

See

“Real

Data

Model”

on

page

425.

End

of

IBM

Extension

MINLOC(ARRAY,

DIM,

MASK)

or

MINLOC(ARRAY,

MASK)

Locates

the

first

element

of

an

array

along

a

dimension

that

has

the

minimum

value

of

all

elements

corresponding

to

the

true

values

of

the

mask.

MINLOC

will

return

the

index

referable

to

the

position

of

the

element

using

a

positive

integer.

Argument

Type

and

Attributes

ARRAY

is

an

array

of

type

integer

or

real.

Fortran

95

DIM

(optional)

is

a

scalar

integer

in

the

range

1≤DIM≤n,

where

n

is

the

rank

of

ARRAY.

End

of

Fortran

95

MASK

(optional)

is

of

type

logical

and

conforms

to

ARRAY

in

shape.

If

it

is

absent,

the

default

mask

evaluation

is

.TRUE.;

that

is,

the

entire

array

is

evaluated.

Class

Transformational

function

Intrinsic

Procedures

493

Result

Type

and

Attributes

If

DIM

is

absent,

the

result

is

an

integer

array

of

rank

one

with

a

size

equal

to

the

rank

of

ARRAY.

If

DIM

is

present,

the

result

is

an

integer

array

of

rank

rank(ARRAY)-1,

and

the

shape

is

(s1,

...,

sDIM-1,

sDIM+1,

...,

sn),

where

n

is

the

rank

of

ARRAY.

If

there

is

no

minimum

value,

perhaps

because

the

array

is

zero-sized

or

the

mask

array

has

all

.FALSE.

values

or

there

is

no

DIM

argument,

the

return

value

is

a

zero-sized

one-dimensional

entity.

If

DIM

is

present,

the

result

shape

depends

on

the

rank

of

ARRAY.

Result

Value

The

result

indicates

the

subscript

of

the

location

of

the

minimum

masked

element

of

ARRAY.

If

more

than

one

element

is

equal

to

this

minimum

value,

the

function

finds

the

location

of

the

first

(in

array

element

order).

If

DIM

is

specified,

the

result

indicates

the

location

of

the

minimum

masked

element

along

each

vector

of

the

dimension.

Fortran

95

Because

both

DIM

and

MASK

are

optional,

various

combinations

of

arguments

are

possible.

When

the

-qintlog

option

is

specified

with

two

arguments,

the

second

argument

refers

to

one

of

the

following:

v

MASK

if

it

is

an

array

of

type

integer,

logical,

byte

or

typeless

v

DIM

if

it

is

a

scalar

of

type

integer,

byte

or

typeless

v

MASK

if

it

is

a

scalar

or

type

logical

End

of

Fortran

95

Examples

!

A

is

the

array

|

4

9

8

-8

|

!

|

2

1

-1

5

|

!

|

9

4

-1

9

|

!

|

-7

5

7

-3

|

!

Where

is

the

smallest

element

of

A?

RES

=

MINLOC(A)

!

The

result

is

|

1

4

|

because

-8

is

located

at

A(1,4).

!

Where

is

the

smallest

element

in

each

row

of

A

that

!

is

not

equal

to

-7?

RES

=

MINLOC(A,

DIM

=

2,

MASK

=

A

.NE.

-7)

!

The

result

is

|

4

3

3

4

|

because

these

are

the

!

corresponding

column

locations

of

the

smallest

value

!

in

each

row

not

equal

!

to

-7

(the

values

being

!

-8,-1,-1,-3).

Regardless

of

the

defined

upper

and

lower

bounds

of

the

array,

MINLOC

will

determine

the

lower

bound

index

as

’1’.

Both

MAXLOC

and

MINLOC

index

using

positive

integers.

To

find

an

actual

index:

INTEGER

B(-100:100)

!

Minloc

views

the

bounds

as

(1:201)

!

If

the

smallest

element

is

located

at

index

’-49’

I

=

MINLOC(B)

!

Will

return

the

index

’52’

494

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

!

To

return

the

exact

index

for

the

smallest

element,

insert:

INDEX

=

LBOUND(B)

-

1

+

I

!

Which

is:

INDEX

=

(-100)

-

1

+

52

=

(-49)

PRINT*,

B(INDEX)

MINVAL(ARRAY,

DIM,

MASK)

or

MINVAL(ARRAY,

MASK)

Returns

the

minimum

value

of

the

elements

in

the

array

along

a

dimension

corresponding

to

the

true

elements

of

MASK.

Argument

Type

and

Attributes

ARRAY

is

an

array

of

type

integer

or

real.

DIM

(optional)

is

an

integer

scalar

in

the

range

1

≤

DIM

≤

rank(ARRAY).

MASK

(optional)

is

an

array

or

scalar

of

type

logical

that

conforms

to

ARRAY

in

shape.

If

it

is

absent,

the

entire

array

is

evaluated.

Class

Transformational

function

Result

Value

The

result

is

an

array

of

rank

rank(ARRAY)-1,

with

the

same

data

type

as

ARRAY.

If

DIM

is

missing

or

if

ARRAY

is

of

rank

one,

the

result

is

a

scalar.

If

DIM

is

specified,

each

element

of

the

result

value

contains

the

minimum

value

of

all

the

elements

that

satisfy

the

condition

specified

by

MASK

along

each

vector

of

the

dimension

DIM.

The

array

element

subscripts

in

the

result

are

(s1,

s2,

...,

s(DIM-1),

s(DIM+1),

...,

sn),

where

n

is

the

rank

of

ARRAY

and

DIM

is

the

dimension

specified

by

DIM.

If

DIM

is

not

specified,

the

function

returns

the

minimum

value

of

all

applicable

elements.

If

ARRAY

is

zero-sized

or

the

mask

array

has

all

.FALSE.

values,

the

result

value

is

the

positive

number

of

the

largest

magnitude,

of

the

same

type

and

kind

type

as

ARRAY.

Fortran

95

Because

both

DIM

and

MASK

are

optional,

various

combinations

of

arguments

are

possible.

When

the

-qintlog

option

is

specified

with

two

arguments,

the

second

argument

refers

to

one

of

the

following:

v

MASK

if

it

is

an

array

of

type

integer,

logical,

byte

or

typeless

v

DIM

if

it

is

a

scalar

of

type

integer,

byte

or

typeless

v

MASK

if

it

is

a

scalar

of

type

logical

End

of

Fortran

95

Intrinsic

Procedures

495

Examples

!

A

is

the

array

|

-41

33

25

|

!

|

12

-61

11

|

!

What

is

the

smallest

element

in

A?

RES

=

MINVAL(A)

!

The

result

is

-61

!

What

is

the

smallest

element

in

each

column

of

A?

RES

=

MINVAL(A,

DIM=1)

!

The

result

is

|

-41

-61

11

|

!

What

is

the

smallest

element

in

each

row

of

A?

RES

=

MINVAL(A,

DIM=2)

!

The

result

is

|

-41

-61

|

!

What

is

the

smallest

element

in

each

row

of

A,

!

considering

only

those

elements

that

are

!

greater

than

zero?

RES

=

MINVAL(A,

DIM=2,

MASK

=

A

.GT.0)

!

The

result

is

|

25

11

|

MOD(A,

P)

Remainder

function.

Argument

Type

and

Attributes

A

must

be

of

type

integer

or

real.

P

must

be

of

the

same

type

and

kind

type

parameter

as

A.

IBM

Extension

The

kind

type

parameters

can

be

different

if

the

compiler

option

–qport=mod

is

specified.

End

of

IBM

Extension

Class

Elemental

function

Result

Type

and

Attributes

Same

as

A.

Result

Value

v

If

P

≠

0,

the

value

of

the

result

is

A

-

INT(A/P)

*

P.

v

If

P

=

0,

the

result

is

undefined.

Examples

MOD

(3.0,

2.0)

has

the

value

1.0.

MOD

(8,

5)

has

the

value

3.

MOD

(-8,

5)

has

the

value

-3.

MOD

(8,

-5)

has

the

value

3.

MOD

(-8,

-5)

has

the

value

-3.

496

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

MOD

any

integer

same

as

argument

yes

AMOD

default

real

default

real

yes

DMOD

double

precision

real

double

precision

real

yes

QMOD

REAL(16)

REAL(16)

yes

Notes:

1.

IBM

Extension:

the

ability

to

pass

the

name

as

an

argument.

Related

Information

For

information

on

alternative

behavior

for

MOD

when

porting

programs

to

XL

Fortran,

see

the

-qport

compiler

option

in

the

User’s

Guide.

MODULO(A,

P)

Modulo

function.

Argument

Type

and

Attributes

A

must

be

of

type

integer

or

real.

P

must

be

of

the

same

type

and

kind

type

parameter

as

A.

Class

Elemental

function

Result

Type

and

Attributes

Same

as

A.

Result

Value

v

Case

(i):

A

is

of

type

integer.

If

P

≠

0,

MODULO

(A,

P)

has

the

value

R

such

that

A

=

Q

*

P

+

R,

where

Q

is

an

integer.

If

P

>

0,

the

inequalities

0

≤

R

<

P

hold.

If

P

<

0,

P

<

R

≤

0

hold.

If

P

=

0,

the

result

is

undefined.

v

Case

(ii):

A

is

of

type

real.

If

P

≠

0,

the

value

of

the

result

is

A

-

FLOOR

(A

/

P)

*

P.

If

P

=

0,

the

result

is

undefined.

Examples

MODULO

(8,

5)

has

the

value

3.

MODULO

(-8,

5)

has

the

value

2.

MODULO

(8,

-5)

has

the

value

-2.

MODULO

(-8,

-5)

has

the

value

-3.

MVBITS(FROM,

FROMPOS,

LEN,

TO,

TOPOS)

Copies

a

sequence

of

bits

from

one

data

object

to

another.

Intrinsic

Procedures

497

Argument

Type

and

Attributes

FROM

must

be

of

type

integer.

It

is

an

INTENT(IN)

argument.

FROMPOS

must

be

of

type

integer

and

nonnegative.

It

is

an

INTENT(IN)

argument.

FROMPOS

+

LEN

must

be

less

than

or

equal

to

BIT_SIZE

(FROM).

LEN

must

be

of

type

integer

and

nonnegative.

It

is

an

INTENT(IN)

argument.

TO

must

be

a

variable

of

type

integer

with

the

same

kind

type

parameter

value

as

FROM

and

may

be

the

same

variable

as

FROM.

It

is

an

INTENT(INOUT)

argument.

TO

is

set

by

copying

the

sequence

of

bits

of

length

LEN,

starting

at

position

FROMPOS

of

FROM

to

position

TOPOS

of

TO.

No

other

bits

of

TO

are

altered.

On

return,

the

LEN

bits

of

TO

starting

at

TOPOS

are

equal

to

the

value

that

the

LEN

bits

of

FROM

starting

at

FROMPOS

had

on

entry.

The

bits

are

numbered

0

to

BIT_SIZE(I)-1,

from

right

to

left.

TOPOS

must

be

of

type

integer

and

nonnegative.

It

is

an

INTENT(IN)

argument.

TOPOS

+

LEN

must

be

less

than

or

equal

to

BIT_SIZE

(TO).

Class

Elemental

subroutine

Examples

If

TO

has

the

initial

value

6,

the

value

of

TO

is

5

after

the

statement

CALL

MVBITS

(7,

2,

2,

TO,

0)

See

“Integer

Bit

Model”

on

page

423.

NEAREST(X,S)

Returns

the

nearest

different

processor-representable

number

in

the

direction

indicated

by

the

sign

of

S

(toward

positive

or

negative

infinity).

Argument

Type

and

Attributes

X

must

be

of

type

real.

S

must

be

of

type

real

and

not

equal

to

zero.

Class

Elemental

function

Result

Type

and

Attributes

Same

as

X.

Result

Value

The

result

is

the

machine

number

different

from

and

nearest

to

X

in

the

direction

of

the

infinity

with

the

same

sign

as

S.

498

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Examples

IBM

Extension

NEAREST

(3.0,

2.0)

=

3.0

+

2.0(-22).

See

“Real

Data

Model”

on

page

425.

End

of

IBM

Extension

NINT(A,

KIND)

Nearest

integer.

Argument

Type

and

Attributes

A

must

be

of

type

real.

KIND

(optional)

must

be

a

scalar

integer

initialization

expression.

Class

Elemental

function

Result

Type

and

Attributes

v

Integer.

v

If

KIND

is

present,

the

kind

type

parameter

is

that

specified

by

KIND;

otherwise,

the

kind

type

parameter

is

that

of

the

default

integer

type.

Result

Value

v

If

A

>

0,

NINT

(A)

has

the

value

INT

(A

+

0.5).

v

If

A

≤

0,

NINT

(A)

has

the

value

INT

(A

-

0.5).

v

The

result

is

undefined

if

its

value

cannot

be

represented

in

the

specified

integer

type.

Examples

NINT

(2.789)

has

the

value

3.

NINT

(2.123)

has

the

value

2.

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

NINT

default

real

default

integer

yes

IDNINT

double

precision

real

default

integer

yes

IQNINT

REAL(16)

default

integer

yes�1�

Notes:

1.

IBM

Extension:

the

ability

to

pass

the

name

as

an

argument.

NOT(I)

Performs

a

logical

complement.

Argument

Type

and

Attributes

I

must

be

of

type

integer.

Intrinsic

Procedures

499

Class

Elemental

function

Result

Type

and

Attributes

Same

as

I.

Result

Value

The

result

has

the

value

obtained

by

complementing

I

bit-by-bit

according

to

the

following

table:

I

NOT

(I)

1

0

0

1

The

bits

are

numbered

0

to

BIT_SIZE(I)-1,

from

right

to

left.

Examples

If

I

is

represented

by

the

string

of

bits

01010101,

NOT

(I)

has

the

string

of

bits

10101010.

See

“Integer

Bit

Model”

on

page

423.

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

NOT

any

integer

same

as

argument

yes�1�

Notes:

1.

IBM

Extension.

NULL(MOLD)

Fortran

95

This

function

returns

a

pointer

or

designates

an

unallocated

allocatable

component

of

a

structure

constructor.

The

association

status

of

the

pointer

is

disassociated.

You

must

use

the

function

without

the

MOLD

argument

in

any

of

the

following:

v

initialization

of

an

object

in

a

declaration

v

default

initialization

of

a

component

v

in

a

DATA

statement

v

in

a

STATIC

statement

You

can

use

the

function

with

or

without

the

MOLD

argument

in

any

of

the

following:

v

in

the

PARAMETER

attribute

v

on

the

right

side

of

a

pointer

assignment

v

in

a

structure

constructor

v

as

an

actual

argument

Argument

Type

and

Attributes

MOLD

(optional)

must

be

a

pointer

and

can

be

of

any

type.

The

association

status

of

500

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

the

pointer

can

be

undefined,

disassociated,

or

associated.

If

the

MOLD

argument

has

an

association

status

of

associated,

the

target

may

be

undefined.

Class

Transformational

function.

Result

Type

and

Attributes

If

MOLD

is

present,

the

pointer’s

type,

type

parameter,

and

rank

are

the

same

as

MOLD.

If

MOLD

is

not

present,

the

entity’s

type,

type

parameter

and

rank

are

determined

as

follows:

v

same

as

the

pointer

that

appears

on

the

left

hand

side,

for

a

pointer

assignment

v

same

as

the

object,

when

initializing

an

object

in

a

declaration

v

same

as

the

component,

in

a

default

initialization

for

a

component

v

same

as

the

corresponding

component,

in

a

structure

constructor

v

same

as

the

corresponding

dummy

argument,

as

an

actual

argument

v

same

as

the

corresponding

pointer

object,

in

a

DATA

statement

v

same

as

the

corresponding

pointer

object,

in

a

STATIC

statement

Result

Value

The

result

is

a

pointer

with

disassociated

association

status

or

an

unallocated

allocatable

entity.

Examples

!

Using

NULL()

as

an

actual

argument.

INTERFACE

SUBROUTINE

FOO(I,

PR)

INTEGER

I

REAL,

POINTER::

PR

END

SUBROUTINE

FOO

END

INTERFACE

CALL

FOO(5,

NULL())

End

of

Fortran

95

NUMBER_OF_PROCESSORS(DIM)

IBM

Extension

Returns

a

scalar

of

type

default

integer

whose

value

is

always

1

for

a

non-HPF

program.

This

value

refers

to

the

number

of

distributed

memory

nodes

available

to

the

program

and

is

always

1

to

ensure

backward

compatibility

between

programs

written

for

HPF

and

non-HPF

environments.

Argument

Type

and

Attributes

DIM

(optional)

must

be

a

scalar

integer

and

have

a

value

of

1

(the

rank

of

the

processor

array).

Intrinsic

Procedures

501

Class

System

inquiry

function

Result

Type

and

Attributes

Default

scalar

integer

which

always

has

a

value

of

1

for

a

non-HPF

program.

Examples

I

=

NUMBER_OF_PROCESSORS()

!

1

J

=

NUMBER_OF_PROCESSORS(DIM=1)

!

1

End

of

IBM

Extension

PACK(ARRAY,

MASK,

VECTOR)

Takes

some

or

all

elements

from

an

array

and

packs

them

into

a

one-dimensional

array,

under

the

control

of

a

mask.

Argument

Type

and

Attributes

ARRAY

is

the

source

array,

whose

elements

become

part

of

the

result.

It

can

have

any

data

type.

MASK

must

be

of

type

logical

and

must

be

conformable

with

ARRAY.

It

determines

which

elements

are

taken

from

the

source

array.

If

it

is

a

scalar,

its

value

applies

to

all

elements

in

ARRAY.

VECTOR

(optional)

is

a

padding

array

whose

elements

are

used

to

fill

out

the

result

if

there

are

not

enough

elements

selected

by

the

mask.

It

is

a

one-dimensional

array

that

has

the

same

data

type

and

type

parameter

as

ARRAY

and

at

least

as

many

elements

as

there

are

true

values

in

MASK.

If

MASK

is

a

scalar

with

a

value

of

.TRUE.,

VECTOR

must

have

at

least

as

many

elements

as

there

are

array

elements

in

ARRAY.

Class

Transformational

function

Result

Value

The

result

is

always

a

one-dimensional

array

with

the

same

data

type

as

ARRAY.

The

size

of

the

result

depends

on

the

optional

arguments:

v

If

VECTOR

is

specified,

the

size

of

the

resultant

array

equals

the

size

of

VECTOR.

v

Otherwise,

it

equals

the

number

of

true

array

elements

in

MASK,

or

the

number

of

elements

in

ARRAY

if

MASK

is

a

scalar

with

a

value

of

.TRUE..

The

array

elements

in

ARRAY

are

taken

in

array

element

order

to

form

the

result.

If

the

corresponding

array

element

in

MASK

is

.TRUE.,

the

element

from

ARRAY

is

placed

at

the

end

of

the

result.

502

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

If

any

elements

remain

empty

in

the

result

(because

VECTOR

is

present,

and

has

more

elements

than

there

are

.TRUE.

values

in

mask),

the

remaining

elements

in

the

result

are

set

to

the

corresponding

values

from

VECTOR.

Examples

!

A

is

the

array

|

0

7

0

|

!

|

1

0

3

|

!

|

4

0

0

|

!

Take

only

the

non-zero

elements

of

this

sparse

array.

!

If

there

are

less

than

six,

fill

in

-1

for

the

rest.

RES

=

PACK(A,

MASK=

A

.NE.

0,

VECTOR=(/-1,-1,-1,-1,-1,-1/)

!

The

result

is

(/

1,

4,

7,

3,

-1,

-1

/).

!

Elements

1,

4,

7,

and

3

are

taken

in

order

from

A

!

because

the

value

of

MASK

is

true

only

for

these

!

elements.

The

-1s

are

added

to

the

result

from

VECTOR

!

because

the

length

(6)

of

VECTOR

exceeds

the

number

!

of

.TRUE.

values

(4)

in

MASK.

PRECISION(X)

Returns

the

decimal

precision

in

the

model

representing

real

numbers

with

the

same

kind

type

parameter

as

the

argument.

Argument

Type

and

Attributes

X

must

be

of

type

real

or

complex.

It

may

be

scalar

or

array

valued.

Class

Inquiry

function

Result

Type

and

Attributes

Default

integer

scalar.

Result

Value

The

result

is:

INT(

(DIGITS(X)

-

1)

*

LOG10(2)

)

IBM

Extension

Therefore,

Type

Precision

real(4)

,

complex(4)

6

real(8)

,

complex(8)

15

real(16)

,

complex(16)

31

End

of

IBM

Extension

Examples

IBM

Extension

PRECISION

(X)

=

INT(

(24

-

1)

*

LOG10(2.)

)

=

INT(6.92

...)

=

6

for

X

of

type

Intrinsic

Procedures

503

real(4).

See

“Real

Data

Model”

on

page

425.

End

of

IBM

Extension

PRESENT(A)

Determine

whether

an

optional

argument

is

present.

If

it

is

not

present,

you

may

only

pass

it

as

an

optional

argument

to

another

procedure

or

pass

it

as

an

argument

to

PRESENT.

Argument

Type

and

Attributes

A

is

the

name

of

an

optional

dummy

argument

that

is

accessible

in

the

procedure

in

which

the

PRESENT

function

reference

appears.

Class

Inquiry

function

Result

Type

and

Attributes

Default

logical

scalar.

Result

Value

The

result

is

.TRUE.

if

the

actual

argument

is

present

(that

is,

if

it

was

passed

to

the

current

procedure

in

the

specified

dummy

argument),

and

.FALSE.

otherwise.

Examples

SUBROUTINE

SUB

(X,

Y)

REAL,

OPTIONAL

::

Y

IF

(PRESENT

(Y))

THEN

!

In

this

section,

we

can

use

y

like

any

other

variable.

X

=

X

+

Y

PRINT

*,

SQRT(Y)

ELSE

!

In

this

section,

we

cannot

define

or

reference

y.

X

=

X

+

5

!

We

can

pass

it

to

another

procedure,

but

only

if

!

sub2

declares

the

corresponding

argument

as

optional.

CALL

SUB2

(Z,

Y)

ENDIF

END

SUBROUTINE

SUB

Related

Information

“OPTIONAL”

on

page

337

PROCESSORS_SHAPE()

IBM

Extension

Returns

a

zero-sized

array.

Class

System

inquiry

function

504

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Result

Type

and

Attributes

Default

integer

array

of

rank

one,

whose

size

is

equal

to

the

rank

of

the

processor

array.

In

a

uniprocessor

environment,

the

result

is

a

zero-sized

vector.

Result

Value

The

value

of

the

result

is

the

shape

of

the

processor

array.

Examples

I=PROCESSORS_SHAPE()

!

Zero-sized

vector

of

type

default

integer

End

of

IBM

Extension

PRODUCT(ARRAY,

DIM,

MASK)

or

PRODUCT(ARRAY,

MASK)

Multiplies

together

all

elements

in

an

entire

array,

or

selected

elements

from

all

vectors

along

a

dimension.

Argument

Type

and

Attributes

ARRAY

is

an

array

with

a

numeric

data

type.

DIM

(optional)

is

an

integer

scalar

in

the

range

1

≤

DIM

≤

rank(ARRAY).

MASK

(optional)

is

a

logical

expression

that

conforms

with

ARRAY

in

shape.

If

MASK

is

a

scalar,

the

scalar

value

applies

to

all

elements

in

ARRAY.

Class

Transformational

function

Result

Value

If

DIM

is

present,

the

result

is

an

array

of

rank

rank(ARRAY)-1

and

the

same

data

type

as

ARRAY.

If

DIM

is

missing,

or

if

MASK

has

a

rank

of

one,

the

result

is

a

scalar.

The

result

is

calculated

by

one

of

the

following

methods:

Method

1:

If

only

ARRAY

is

specified,

the

result

is

the

product

of

all

its

array

elements.

If

ARRAY

is

a

zero-sized

array,

the

result

is

equal

to

one.

Method

2:

If

ARRAY

and

MASK

are

both

specified,

the

result

is

the

product

of

those

array

elements

of

ARRAY

that

have

a

corresponding

true

array

element

in

MASK.

If

MASK

has

no

elements

with

a

value

of

.TRUE.,

the

result

is

equal

to

one.

Method

3:

If

DIM

is

also

specified

and

ARRAY

has

a

rank

of

one,

the

result

is

a

scalar

equal

to

the

product

of

all

elements

of

ARRAY

that

have

a

corresponding

.TRUE.

array

element

in

MASK.

Intrinsic

Procedures

505

If

DIM

is

also

specified

and

ARRAY

has

rank

greater

than

one,

the

result

is

a

new

array

in

which

dimension

DIM

has

been

eliminated.

Each

new

array

element

is

the

product

of

elements

from

a

corresponding

vector

within

ARRAY.

The

index

values

of

that

vector,

in

all

dimensions

except

DIM,

match

those

of

the

output

element.

The

output

element

is

the

product

of

those

vector

elements

that

have

a

corresponding

.TRUE.

array

element

in

MASK.

Fortran

95

Because

both

DIM

and

MASK

are

optional,

various

combinations

of

arguments

are

possible.

When

the

-qintlog

option

is

specified

with

two

arguments,

the

second

argument

refers

to

one

of

the

following:

v

MASK

if

it

is

an

array

of

type

integer,

logical,

byte

or

typeless

v

DIM

if

it

is

a

scalar

of

type

integer,

byte

or

typeless

v

MASK

if

it

is

a

scalar

of

type

logical

End

of

Fortran

95

Examples

v

Method

1:

!

Multiply

all

elements

in

an

array.

RES

=

PRODUCT(

(/2,

3,

4/)

)

!

The

result

is

24

because

(2

*

3

*

4)

=

24.

!

Do

the

same

for

a

two-dimensional

array

A,

where

!

A

is

the

array

|

2

3

4

|

!

|

4

5

6

|

RES

=

PRODUCT(A)

!

The

result

is

2880.

All

elements

are

multiplied.

v

Method

2:

!

A

is

the

array

(/

-3,

-7,

-5,

2,

3

/)

!

Multiply

all

elements

of

the

array

that

are

>

-5.

RES

=

PRODUCT(A,

MASK

=

A

.GT.

-5)

!

The

result

is

-18

because

(-3

*

2

*

3)

=

-18.

v

Method

3:

!

A

is

the

array

|

-2

5

7

|

!

|

3

-4

3

|

!

Find

the

product

of

each

column

in

A.

RES

=

PRODUCT(A,

DIM

=

1)

!

The

result

is

|

-6

-20

21

|

because

(-2

*

3)

=

-6

!

(

5

*

-4

)

=

-20

!

(

7

*

3

)

=

21

!

Find

the

product

of

each

row

in

A.

RES

=

PRODUCT(A,

DIM

=

2)

!

The

result

is

|

-70

-36

|

!

because

(-2

*

5

*

7)

=

-70

!

(3

*

-4

*

3)

=

-36

!

Find

the

product

of

each

row

in

A,

considering

!

only

those

elements

greater

than

zero.

RES

=

PRODUCT(A,

DIM

=

2,

MASK

=

A

.GT.

0)

!

The

result

is

|

35

9

|

because

(

5

*

7)

=

35

!

(3

*

3)

=

9

506

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

QCMPLX(X,

Y)

IBM

Extension

Convert

to

extended

complex

type.

Argument

Type

and

Attributes

X

must

be

of

type

integer,

real,

or

complex.

Y

(optional)

must

be

of

type

integer

or

real.

It

must

not

be

present

if

X

is

of

type

complex.

Class

Elemental

function

Result

Type

and

Attributes

It

is

of

type

extended

complex.

Result

Value

v

If

Y

is

absent

and

X

is

not

complex,

it

is

as

if

Y

were

present

with

the

value

of

zero.

v

If

Y

is

absent

and

X

is

complex,

it

is

as

if

Y

were

present

with

the

value

AIMAG(X)

and

X

were

present

with

the

value

REAL(X).

v

QCMPLX(X,

Y)

has

the

complex

value

whose

real

part

is

REAL(X,

KIND=16)

and

whose

imaginary

part

is

REAL(Y,

KIND=16).

Examples

QCMPLX

(-3)

has

the

value

(-3.0Q0,

0.0Q0).

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

QCMPLX

REAL(16)

COMPLEX(16)

no

Related

Information

“CMPLX(X,

Y,

KIND)”

on

page

442,

“DCMPLX(X,

Y)”

on

page

452.

End

of

IBM

Extension

QEXT(A)

IBM

Extension

Convert

to

extended

precision

real

type.

Argument

Type

and

Attributes

A

must

be

of

type

integer,

or

real.

Class

Elemental

function

Intrinsic

Procedures

507

Result

Type

and

Attributes

Extended

precision

real.

Result

Value

v

If

A

is

of

type

extended

precision

real,

QEXT(A)

=

A.

v

If

A

is

of

type

integer

or

real,

the

result

is

the

exact

extended

precision

representation

of

A.

Examples

QEXT

(-3)

has

the

value

-3.0Q0.

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

QFLOAT

any

integer

REAL(16)

no

QEXT

default

real

REAL(16)

no

QEXTD

double

precision

real

REAL(16)

no

End

of

IBM

Extension

RADIX(X)

Returns

the

base

of

the

model

representing

numbers

of

the

same

type

and

kind

type

parameter

as

the

argument.

Argument

Type

and

Attributes

X

must

be

of

type

integer

or

real.

It

may

be

scalar

or

array

valued.

Class

Inquiry

function

Result

Type

and

Attributes

Default

integer

scalar.

Result

Value

The

result

is

the

base

of

the

model

representing

numbers

of

the

same

kind

and

type

as

X.

The

result

is

always

2.

See

the

models

under

“Data

Representation

Models”

on

page

423.

RAND()

IBM

Extension

Not

recommended.

Generates

uniform

random

numbers,

positive

real

numbers

greater

than

or

equal

to

0.0

and

less

than

1.0.

Instead,

use

the

standards

conforming

RANDOM_NUMBER(HARVEST)

intrinsic

subroutine.

Class

None

(does

not

correspond

to

any

of

the

defined

categories).

Result

Type

and

Attributes

real(4)

scalar.

508

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Related

Information

“SRAND(SEED)”

on

page

528

can

be

used

to

specify

a

seed

value

for

the

random

number

sequence.

If

the

function

result

is

assigned

to

an

array,

all

array

elements

receive

the

same

value.

Examples

The

following

is

an

example

of

a

program

using

the

RAND

function.

DO

I

=

1,

5

R

=

RAND()

PRINT

*,

R

ENDDO

END

The

following

is

sample

output

generated

by

the

above

program:

0.2251586914

0.8285522461

0.6456298828

0.2496948242

0.2215576172

This

function

only

has

a

specific

name.

End

of

IBM

Extension

RANDOM_NUMBER(HARVEST)

Returns

one

pseudo-random

number

or

an

array

of

pseudo-random

numbers

from

the

uniform

distribution

over

the

range

0

≤

x

<

1.

Argument

Type

and

Attributes

HARVEST

must

be

of

type

real.

It

is

an

INTENT(OUT)

argument.

It

may

be

a

scalar

or

array

variable.

It

is

set

to

pseudo-random

numbers

from

the

uniform

distribution

in

the

interval

0

≤

x

<

1.

Class

Subroutine

Examples

REAL

X,

Y

(10,

10)

!

Initialize

X

with

a

pseudo-random

number

CALL

RANDOM_NUMBER

(HARVEST

=

X)

CALL

RANDOM_NUMBER

(Y)

!

X

and

Y

contain

uniformly

distributed

random

numbers

RANDOM_SEED(SIZE,

PUT,

GET,

GENERATOR)

Restarts

or

queries

the

pseudo-random

number

generator

used

by

RANDOM_NUMBER.

Argument

Type

and

Attributes

There

must

either

be

exactly

one

or

no

arguments

present.

SIZE

(optional)

must

be

scalar

and

of

type

default

integer.

It

is

an

INTENT(OUT)

Intrinsic

Procedures

509

argument.

It

is

set

to

the

number

of

default

type

integers

(N)

that

are

needed

to

hold

the

value

of

the

seed,

which

is

an

8-byte

variable.

PUT

(optional)

must

be

a

default

integer

array

of

rank

one

and

size

≥

N.

It

is

an

INTENT(IN)

argument.

The

seed

for

the

current

generator

is

transferred

from

it.

GET

(optional)

must

be

a

default

integer

array

of

rank

one

and

size

≥

N.

It

is

an

INTENT(OUT)

argument.

The

seed

for

the

current

generator

is

transferred

to

it.

IBM

Extension

GENERATOR

(optional)

must

be

a

scalar

and

of

type

default

integer.

It

is

an

INTENT(IN)

argument.

Its

value

determines

the

random

number

generator

to

be

used

subsequently.

The

value

must

be

either

1

or

2.

End

of

IBM

Extension

IBM

Extension

Random_seed

allows

the

user

to

toggle

between

two

random

number

generators.

Generator

1

is

the

default.

Each

generator

maintains

a

private

seed

and

normally

resumes

its

cycle

after

the

last

number

it

generated.

A

valid

seed

must

be

a

whole

number

between

1.0

and

2147483647.0

(2.0**31-1)

for

Generator

1

and

between

1.0

and

281474976710656.0

(2.0**48)

for

Generator

2.

Generator

1

uses

the

multiplicative

congruential

method,

with

S(I+1)

=

(

16807.0

*

S(I)

)

mod

(2.0**31-1)

and

X(I+1)

=

S(I+1)

/

(2.0**31-1)

Generator

1

cycles

after

2**31-2

random

numbers.

Generator

2

also

uses

the

multiplicative

congruential

method,

with

S(I+1)

=

(

44,485,709,377,909.0

*

S(I)

)

mod

(2.0**48)

and

X(I+1)

=

S(I+1)

/

(2.0**48)

Generator

2

cycles

after

(2**46)

random

numbers.

Although

generator

1

is

the

default

(for

reasons

of

backwards

compatibility)

the

use

of

generator

2

is

recommended

for

new

programs

since

it

typically

runs

faster

than

generator

1

and

has

a

longer

period.

If

no

argument

is

present,

the

seed

of

the

current

generator

is

set

to

the

default

value

1d0.

End

of

IBM

Extension

510

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Class

Subroutine

Examples

CALL

RANDOM_SEED

!

Current

generator

sets

its

seed

to

1d0

CALL

RANDOM_SEED

(SIZE

=

K)

!

Sets

K

=

64

/

BIT_SIZE(

0

)

CALL

RANDOM_SEED

(PUT

=

SEED

(1

:

K))

!

Transfer

seed

to

current

generator

CALL

RANDOM_SEED

(GET

=

OLD

(1

:

K))

!

Transfer

seed

from

current

generator

RANGE(X)

Returns

the

decimal

exponent

range

in

the

model

representing

integer

or

real

numbers

with

the

same

kind

type

parameter

as

the

argument.

Argument

Type

and

Attributes

X

must

be

of

type

integer,

real,

or

complex.

It

may

be

scalar

or

array

valued.

Class

Inquiry

function

Result

Type

and

Attributes

Default

integer

scalar.

Result

Value

1.

For

an

integer

argument,

the

result

is:

INT(

LOG10(

HUGE(X)

)

)

2.

For

a

real

or

complex

argument,

the

result

is:

INT(

MIN(

LOG10(

HUGE(X)

),

-LOG10(

TINY(X)

)

)

)

IBM

Extension

Thus:

Type

RANGE

integer(1)

2

integer(2)

4

integer(4)

9

integer(8)

18

real(4)

,

complex(4)

37

real(8)

,

complex(8)

307

real(16)

,

complex(16)

291

End

of

IBM

Extension

Examples

IBM

Extension

X

is

of

type

real(4):

Intrinsic

Procedures

511

HUGE(X)

=

0.34E+39

TINY(X)

=

0.11E-37

RANGE(X)

=

37

End

of

IBM

Extension

See

“Data

Representation

Models”

on

page

423.

REAL(A,

KIND)

Convert

to

real

type.

Argument

Type

and

Attributes

A

must

be

of

type

integer,

real,

or

complex.

KIND

(optional)

must

be

a

scalar

integer

initialization

expression.

Class

Elemental

function

Result

Type

and

Attributes

v

Real.

v

Case

(i):

If

A

is

of

type

integer

or

real

and

KIND

is

present,

the

kind

type

parameter

is

that

specified

by

KIND.

If

A

is

of

type

integer

or

real

and

KIND

is

not

present,

the

kind

type

parameter

is

the

kind

type

parameter

of

the

default

real

type.

v

Case

(ii):

If

A

is

of

type

complex

and

KIND

is

present,

the

kind

type

parameter

is

that

specified

by

KIND.

If

A

is

of

type

complex

and

KIND

is

not

present,

the

kind

type

parameter

is

the

kind

type

parameter

of

A.

Result

Value

v

Case

(i):

If

A

is

of

type

integer

or

real,

the

result

is

equal

to

a

kind-dependent

approximation

to

A.

v

Case

(ii):

If

A

is

of

type

complex,

the

result

is

equal

to

a

kind-dependent

approximation

to

the

real

part

of

A.

Examples

REAL

(-3)

has

the

value

-3.0.

REAL

((3.2,

2.1))

has

the

value

3.2.

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

REAL

default

integer

default

real

no

FLOAT

any

integer

�1�

default

real

no

SNGL

double

precision

real

default

real

no

SNGLQ

REAL(16)

default

real

no

�2�

DREAL

double

complex

double

precision

real

no

�2�

QREAL

COMPLEX(16)

REAL(16)

no

�2�

512

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Notes:

1.

IBM

Extension:

the

ability

to

specify

a

nondefault

integer

argument.

2.

IBM

Extension:

the

inability

to

pass

the

name

as

an

argument.

REPEAT(STRING,

NCOPIES)

Concatenate

several

copies

of

a

string.

Argument

Type

and

Attributes

STRING

must

be

scalar

and

of

type

character.

NCOPIES

must

be

scalar

and

of

type

integer.

Its

value

must

not

be

negative.

Class

Transformational

function

Result

Type

and

Attributes

Character

scalar

with

a

length

equal

to

NCOPIES

*

LENGTH(STRING),

with

the

same

kind

type

parameter

as

STRING.

Result

Value

The

value

of

the

result

is

the

concatenation

of

NCOPIES

copies

of

STRING.

Examples

REPEAT

(’H’,

2)

has

the

value

’HH’.

REPEAT

(’XYZ’,

0)

has

the

value

of

a

zero-length

string.

RESHAPE(SOURCE,

SHAPE,

PAD,

ORDER)

Constructs

an

array

of

a

specified

shape

from

the

elements

of

a

given

array.

Argument

Type

and

Attributes

SOURCE

is

an

array

of

any

type,

which

supplies

the

elements

for

the

result

array.

SHAPE

defines

the

shape

of

the

result

array.

It

is

an

integer

array

of

up

to

20

elements,

with

rank

one

and

of

a

constant

size.

All

elements

are

either

positive

integers

or

zero.

PAD

(optional)

is

used

to

fill

in

extra

values

if

SOURCE

is

reshaped

into

a

larger

array.

It

is

an

array

of

the

same

data

type

as

SOURCE.

If

it

is

absent

or

is

a

zero-sized

array,

you

can

only

make

SOURCE

into

another

array

of

the

same

size

or

smaller.

ORDER

(optional)

is

an

integer

array

of

rank

one

with

a

constant

size.

Its

elements

must

be

a

permutation

of

(1,

2,

...,

SIZE(SHAPE)).

You

can

use

it

to

insert

elements

in

the

result

in

an

order

of

dimensions

other

than

the

normal

(1,

2,

...,

rank(RESULT)).

Intrinsic

Procedures

513

Class

Transformational

function

Result

Value

The

result

is

an

array

with

shape

SHAPE.

It

has

the

same

data

type

as

SOURCE.

The

array

elements

of

SOURCE

are

placed

into

the

result

in

the

order

of

dimensions

as

specified

by

ORDER,

or

in

the

usual

order

for

array

elements

if

ORDER

is

not

specified.

The

array

elements

of

SOURCE

are

followed

by

the

array

elements

of

PAD

in

array

element

order,

and

followed

by

additional

copies

of

PAD

until

all

of

the

elements

of

the

result

are

set.

Examples

!

Turn

a

rank-1

array

into

a

3x4

array

of

the

!

same

size.

RES=

RESHAPE(

(/A,B,C,D,E,F,G,H,I,J,K,L/),

(/3,4/)

!

The

result

is

|

A

D

G

J

|

!

|

B

E

H

K

|

!

|

C

F

I

L

|

!

Turn

a

rank-1

array

into

a

larger

3x5

array.

!

Keep

repeating

-1

and

-2

values

for

any

!

elements

not

filled

by

the

source

array.

!

Fill

the

rows

first,

then

the

columns.

RES=

RESHAPE(

(/1,2,3,4,5,6/),

(/3,5/),

&

(/-1,-2/),

(/2,1/)

)

!

The

result

is

|

1

2

3

4

5

|

!

|

6

-1

-2

-1

-2

|

!

|

-1

-2

-1

-2

-1

|

Related

Information

“SHAPE(SOURCE)”

on

page

519.

RRSPACING(X)

Returns

the

reciprocal

of

the

relative

spacing

of

the

model

numbers

near

the

argument

value.

Argument

Type

and

Attributes

X

must

be

of

type

real.

Class

Elemental

function

Result

Type

and

Attributes

Same

as

X.

Result

Value

The

result

is:

ABS(FRACTION(X))

*

FLOAT(RADIX(X))DIGITS(X)

514

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Examples

IBM

Extension

RRSPACING

(-3.0)

=

0.75

*

224.

See

“Real

Data

Model”

on

page

425.

End

of

IBM

Extension

RSHIFT(I,

SHIFT)

IBM

Extension

Performs

a

logical

shift

to

the

right.

Argument

Type

and

Attributes

I

must

be

of

type

integer.

SHIFT

must

be

of

type

integer.

It

must

be

non-negative

and

less

than

or

equal

to

BIT_SIZE(I).

Class

Elemental

function

Result

Type

and

Attributes

Same

as

I.

Result

Value

v

The

result

has

the

value

obtained

by

shifting

the

bits

of

I

by

SHIFT

positions

to

the

right.

v

Vacated

bits

are

filled

with

the

sign

bit.

v

The

bits

are

numbered

0

to

BIT_SIZE(I)-1,

from

right

to

left.

Examples

RSHIFT

(3,

1)

has

the

result

1.

RSHIFT

(3,

2)

has

the

result

0.

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

RSHIFT

any

integer

same

as

argument

yes

End

of

IBM

Extension

SCALE(X,I)

Returns

the

scaled

value:

X

*

2.0I

Argument

Type

and

Attributes

X

must

be

of

type

real.

I

must

be

of

type

integer.

Intrinsic

Procedures

515

Class

Elemental

function

Result

Type

and

Attributes

Same

as

X.

Result

Value

IBM

Extension

The

result

is

determined

from

the

following:

X

*

2.0I

SCALE

(X,

I)

=

X

*

(2.0I)

End

of

IBM

Extension

Examples

IBM

Extension

SCALE

(4.0,

3)

=

4.0

*

(23)

=

32.0.

See

“Real

Data

Model”

on

page

425.

End

of

IBM

Extension

SCAN(STRING,

SET,

BACK)

Scan

a

string

for

any

one

of

the

characters

in

a

set

of

characters.

Argument

Type

and

Attributes

STRING

must

be

of

type

character.

SET

must

be

of

type

character

with

the

same

kind

type

parameter

as

STRING.

BACK

(optional)

must

be

of

type

logical.

Class

Elemental

function

Result

Type

and

Attributes

Default

integer.

Result

Value

v

Case

(i):

If

BACK

is

absent

or

is

present

with

the

value

.FALSE.

and

if

STRING

contains

at

least

one

character

that

is

in

SET,

the

value

of

the

result

is

the

position

of

the

leftmost

character

of

STRING

that

is

in

SET.

v

Case

(ii):

If

BACK

is

present

with

the

value

.TRUE.

and

if

STRING

contains

at

least

one

character

that

is

in

SET,

the

value

of

the

result

is

the

position

of

the

rightmost

character

of

STRING

that

is

in

SET.

516

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

v

Case

(iii):

The

value

of

the

result

is

zero

if

no

character

of

STRING

is

in

SET

or

if

the

length

of

STRING

or

SET

is

zero.

Examples

v

Case

(i):

SCAN

(’FORTRAN’,

’TR’)

has

the

value

3.

v

Case

(ii):

SCAN

(’FORTRAN’,

’TR’,

BACK

=

.TRUE.)

has

the

value

5.

v

Case

(iii):

SCAN

(’FORTRAN’,

’BCD’)

has

the

value

0.

SELECTED_INT_KIND(R)

Returns

a

value

of

the

kind

type

parameter

of

an

integer

data

type

that

represents

all

integer

values

n

with

-10R

<

n

<

10R.

Argument

Type

and

Attributes

R

must

be

a

scalar

of

type

integer.

Class

Transformational

function

Result

Type

and

Attributes

Default

integer

scalar.

Result

Value

v

The

result

has

a

value

equal

to

the

value

of

the

kind

type

parameter

of

an

integer

data

type

that

represents

all

values

n

in

the

range

values

n

with

-10R

<

n

<

10R,

or

if

no

such

kind

type

parameter

is

available,

the

result

is

-1.

v

If

more

than

one

kind

type

parameter

meets

the

criteria,

the

value

returned

is

the

one

with

the

smallest

decimal

exponent

range.

Examples

IBM

Extension

SELECTED_INT_KIND

(9)

has

the

value

4,

signifying

that

an

INTEGER

with

kind

type

4

can

represent

all

values

from

10-9

to

109.

End

of

IBM

Extension

Related

Information

Kind

type

parameters

supported

by

XL

Fortran

are

defined

in

“Type

Parameters

and

Specifiers”

on

page

21.

SELECTED_REAL_KIND(P,

R)

Returns

a

value

of

the

kind

type

parameter

of

a

real

data

type

with

decimal

precision

of

at

least

P

digits

and

a

decimal

exponent

range

of

at

least

R.

Argument

Type

and

Attributes

P

(optional)

must

be

scalar

and

of

type

integer.

Intrinsic

Procedures

517

R

(optional)

must

be

scalar

and

of

type

integer.

Class

Transformational

function

Result

Type

and

Attributes

Default

integer

scalar.

Result

Value

v

The

result

has

a

value

equal

to

a

value

of

the

kind

type

parameter

of

a

real

data

type

with

decimal

precision,

as

returned

by

the

function

PRECISION,

of

at

least

P

digits

and

a

decimal

exponent

range,

as

returned

by

the

function

RANGE,

of

at

least

R,

or

if

no

such

kind

type

parameter

is

available,

–

If

the

precision

is

not

available,

the

result

is

-1.

–

If

the

exponent

range

is

not

available,

the

result

is

-2.

–

If

neither

is

available,

the

result

is

-3.
v

If

more

than

one

kind

type

parameter

value

meets

the

criteria,

the

value

returned

is

the

one

with

the

smallest

decimal

precision,

unless

there

are

several

such

values,

in

which

case

the

smallest

of

these

kind

values

is

returned.

Examples

IBM

Extension

SELECTED_REAL_KIND

(6,

70)

has

the

value

8.

End

of

IBM

Extension

Related

Information

Kind

type

parameters

supported

by

XL

Fortran

are

defined

in

“Type

Parameters

and

Specifiers”

on

page

21.

SET_EXPONENT(X,I)

Returns

the

number

whose

fractional

part

is

the

fractional

part

of

the

model

representation

of

X,

and

whose

exponent

part

is

I.

Argument

Type

and

Attributes

X

must

be

of

type

real.

I

must

be

of

type

integer.

Class

Elemental

function

Result

Type

and

Attributes

Same

as

X.

518

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Result

Value

IBM

Extension

v

If

X

=

0

the

result

is

zero.

v

Otherwise,

the

result

is:

FRACTION(X)

*

2.0I

End

of

IBM

Extension

Examples

IBM

Extension

SET_EXPONENT

(10.5,

1)

=

0.65625

*

2.01

=

1.3125

See

“Real

Data

Model”

on

page

425.

End

of

IBM

Extension

SHAPE(SOURCE)

Returns

the

shape

of

an

array

or

scalar.

Argument

Type

and

Attributes

SOURCE

is

an

array

or

scalar

of

any

data

type.

It

must

not

be

a

disassociated

pointer,

allocatable

object

that

is

not

allocated,

or

assumed-size

array.

Class

Inquiry

function

Result

Value

The

result

is

a

one-dimensional

default

integer

array

whose

elements

define

the

shape

of

SOURCES.

The

extent

of

each

dimension

in

SOURCES

is

returned

in

the

corresponding

element

in

the

result

array.

Related

Information

“RESHAPE(SOURCE,

SHAPE,

PAD,

ORDER)”

on

page

513.

Examples

!

A

is

the

array

|

7

6

3

1

|

!

|

2

4

0

9

|

!

|

5

7

6

8

|

!

RES

=

SHAPE(

A

)

!

The

result

is

|

3

4

|

because

A

is

a

rank-2

array

!

with

3

elements

in

each

column

and

4

elements

in

!

each

row.

Intrinsic

Procedures

519

SIGN(A,

B)

Returns

the

absolute

value

of

A

times

the

sign

of

B.

If

A

is

non-zero,

you

can

use

the

result

to

determine

whether

B

is

negative

or

non-negative,

as

the

sign

of

the

result

is

the

same

as

the

sign

of

B.

Note

that

if

you

have

declared

B

as

REAL(4)

or

REAL(8),

and

B

has

a

negative

zero

value,

the

sign

of

the

result

depends

on

whether

you

have

specified

the

-qxlf90=signedzero

compiler

option.

Argument

Type

and

Attributes

A

must

be

of

type

integer

or

real.

B

must

be

of

the

same

type

and

kind

type

parameter

as

A.

Class

Elemental

function

Result

Type

and

Attributes

Same

as

A.

Result

Value

The

result

is

sgn*|A|,

where:

v

sgn

=

-1,

if

either

of

the

following

is

true:

–

B

<

0

IBM

Extension

–

B

is

a

REAL(4)

or

REAL(8)

number

with

a

value

of

negative

0,

and

you

have

specified

the

-qxlf90=signedzero

option

End

of

IBM

Extension

v

sgn

=

1,

otherwise.

Fortran

95

Fortran

95

allows

a

processor

to

distinguish

between

a

positive

and

a

negative

real

zero,

whereas

Fortran

90

did

not.

Using

the

-qxlf90=signedzero

option

allows

you

to

specify

the

Fortran

95

behavior

(except

in

the

case

of

REAL(16)

numbers),

which

is

consistent

with

the

IEEE

standard

for

binary

floating-point

arithmetic.

-qxlf90=signedzero

is

the

default

for

the

xlf95

invocation

commands.

End

of

Fortran

95

Examples

SIGN

(-3.0,

2.0)

has

the

value

3.0.

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

SIGN

default

real

default

real

yes

ISIGN

any

integer

�1�

same

as

argument

yes

DSIGN

double

precision

real

double

precision

real

yes

QSIGN

REAL(16)

REAL(16)

yes

�2�

520

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Notes:

1.

IBM

Extension:

the

ability

to

specify

a

nondefault

integer

argument.

2.

IBM

Extension:

the

ability

to

pass

the

name

as

an

argument.

Related

Information

See

the

-qxlf90

Option

in

the

User’s

Guide.

SIGNAL(I,

PROC)

IBM

Extension

The

SIGNAL

procedure

allows

a

program

to

specify

a

procedure

to

be

invoked

upon

receipt

of

a

specific

operating-system

signal.

Argument

Type

and

Attributes

I

is

an

integer

that

specifies

the

value

of

the

signal

to

be

acted

upon.

It

is

an

INTENT(IN)

argument.

Available

signal

values

are

defined

in

the

C

include

file

signal.h;

a

subset

of

signal

values

is

defined

in

the

Fortran

include

file

fexcp.h.

PROC

specifies

the

user-defined

procedure

to

be

invoked

when

the

process

receives

the

specified

signal

(I).

It

is

an

INTENT(IN)

argument.

Class

Subroutine

Examples

INCLUDE

’fexcp.h’

INTEGER

SIGUSR1

EXTERNAL

USRINT

!

Set

exception

handler

to

produce

the

traceback

code.

!

The

SIGTRAP

is

defined

in

the

include

file

fexcp.h.

!

xl__trce

is

a

procedure

in

the

XL

Fortran

!

run-time

library.

It

generates

the

traceback

code.

CALL

SIGNAL(SIGTRAP,

XL__TRCE)

...

!

Use

user-defined

procedure

USRINT

to

handle

the

signal

!

SIGUSR1.

CALL

SIGNAL(SIGUSR1,

USRINT)

...

Related

Information

The

-qsigtrap

Option

in

the

User’s

Guide

allows

you

to

set

a

handler

for

SIGTRAP

signals

through

a

compiler

option.

End

of

IBM

Extension

SIN(X)

Sine

function.

Intrinsic

Procedures

521

Argument

Type

and

Attributes

X

must

be

of

type

real

or

complex.

If

X

is

real,

it

is

regarded

as

a

value

in

radians.

If

X

is

complex,

its

real

and

imaginary

parts

are

regarded

as

values

in

radians.

Class

Elemental

function

Result

Type

and

Attributes

Same

as

X.

Result

Value

It

approximates

sin(X).

Examples

SIN

(1.0)

has

the

value

0.84147098

(approximately).

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

SIN

default

real

default

real

yes

DSIN

double

precision

real

double

precision

real

yes

QSIN

REAL(16)

REAL(16)

yes

�1�

CSIN

�2a�

default

complex

default

complex

yes

CDSIN

�2b�

double

complex

double

complex

yes

�1�

ZSIN

�2b�

double

complex

double

complex

yes

�1�

CQSIN

�2b�

COMPLEX(16)

COMPLEX(16)

yes

�1�

Notes:

1.

IBM

Extension:

the

ability

to

pass

the

name

as

an

argument.

2.

Given

that

X

is

a

complex

number

in

the

form

a

+

bi,

where

i

=

(-1)½:

a.

abs(b)

must

be

less

than

or

equal

to

88.7228;

a

is

any

real

value.

b.

abs(b)

must

be

less

than

or

equal

to

709.7827;

a

is

any

real

value.

SIND(X)

IBM

Extension

Sine

function.

Argument

in

degrees.

Argument

Type

and

Attributes

X

must

be

of

type

real.

Class

Elemental

function

Result

Type

and

Attributes

Same

as

X.

522

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Result

Value

v

It

approximates

sin(X),

where

X

has

a

value

in

degrees.

Examples

SIND

(90.0)

has

the

value

1.0.

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

SIND

default

real

default

real

yes

DSIND

double

precision

real

double

precision

real

yes

QSIND

REAL(16)

REAL(16)

yes

End

of

IBM

Extension

SINH(X)

Hyperbolic

sine

function.

Argument

Type

and

Attributes

X

must

be

of

type

real.

Class

Elemental

function

Result

Type

and

Attributes

Same

as

X.

Result

Value

The

result

has

a

value

equal

to

sinh(x).

Examples

SINH

(1.0)

has

the

value

1.1752012

(approximately).

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

SINH

�1�

default

real

default

real

yes

DSINH

�2�

double

precision

real

double

precision

real

yes

QSINH

�2�

�3�

REAL(16)

REAL(16)

yes

Notes:

1.

abs(X)

must

be

less

than

or

equal

to

89.4159.

2.

abs(X)

must

be

less

than

or

equal

to

709.7827.

3.

IBM

Extension.

SIZE(ARRAY,

DIM)

Returns

the

extent

of

an

array

along

a

specified

dimension

or

the

total

number

of

elements

in

the

array.

Intrinsic

Procedures

523

Argument

Type

and

Attributes

ARRAY

is

an

array

of

any

data

type.

It

must

not

be

a

scalar,

disassociated

pointer,

or

allocatable

array

that

is

not

allocated.

It

can

be

an

assumed-size

array

if

DIM

is

present

and

has

a

value

that

is

less

than

the

rank

of

ARRAY.

DIM

(optional)

is

an

integer

scalar

in

the

range

1

≤

DIM

≤

rank(ARRAY).

Class

Inquiry

function

Result

Type

and

Attributes

Default

integer

scalar.

Result

Value

The

result

equals

the

extent

of

ARRAY

along

dimension

DIM;

or,

if

DIM

is

not

specified,

it

is

the

total

number

of

array

elements

in

ARRAY.

Examples

!

A

is

the

array

|

1

-4

7

-10

|

!

|

2

5

-8

11

|

!

|

3

6

9

-12

|

RES

=

SIZE(

A

)

!

The

result

is

12

because

there

are

12

elements

in

A.

RES

=

SIZE(

A,

DIM

=

1)

!

The

result

is

3

because

there

are

3

rows

in

A.

RES

=

SIZE(

A,

DIM

=

2)

!

The

result

is

4

because

there

are

4

columns

in

A.

SIZEOF(A)

IBM

Extension

Returns

the

size

of

an

argument

in

bytes.

Argument

Type

and

Attributes

A

is

a

data

object

that

cannot

be

any

of

the

following:

v

A

Fortran

90

pointer

v

An

automatic

object

v

An

allocatable

object

v

A

derived

object

or

record

structure

that

has

an

allocatable

or

a

Fortran

90

pointer

component

v

An

array

section

v

An

array

constructor

v

An

assumed-shape

array

v

A

whole

assumed-size

array

v

A

zero-sized

array

524

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

v

A

derived

object

or

record

structure

containing

components

not

accessible

within

the

scoping

unit

SIZEOF

must

not

be

passed

as

an

argument

to

a

subprogram.

Class

Inquiry

function

Result

Type

and

Attributes

Default

integer

scalar.

Result

Value

The

size

of

the

argument

in

bytes.

Examples

The

following

example

assumes

that

–qintsize=4.

INTEGER

ARRAY(10)

INTEGER*8,

PARAMETER

::

p

=

8

STRUCTURE

/STR/

INTEGER

I

COMPLEX

C

END

STRUCTURE

RECORD

/STR/

R

CHARACTER*10

C

TYPE

DTYPE

INTEGER

ARRAY(10)

END

TYPE

TYPE

(DTYPE)

DOBJ

PRINT

*,

SIZEOF(ARRAY),

SIZEOF

(ARRAY(3)),

SIZEOF(P)

!

Array,

array

!

element

ref,

!

named

constant

PRINT

*,

SIZEOF

(R),

SIZEOF(R.C)

!

record

structure

!

entity,

record

!

structure

!

component

PRINT

*,

SIZEOF

(C(2:5)),

SIZEOF(C)

!

character

!

substring,

!

character

!

variable

PRINT

*,

SIZEOF

(DOBJ),

SIZEOF(DOBJ%ARRAY)

!

derived

type

!

object,

structure

!

component

The

following

is

sample

output

generated

by

the

program

above:

40

4

8

16

8

4

10

40

40

Related

Information

See

the

User’s

Guide

for

details

about

the

-qintsize

compiler

option.

End

of

IBM

Extension

Intrinsic

Procedures

525

SPACING(X)

Returns

the

absolute

spacing

of

the

model

numbers

near

the

argument

value.

Argument

Type

and

Attributes

X

must

be

of

type

real.

Class

Elemental

function

Result

Type

and

Attributes

Same

as

X.

Result

Value

If

X

is

not

0,

the

result

is:

2.0EXPONENT(X)

-

DIGITS(X)

If

X

is

0,

the

result

is

the

same

as

that

of

TINY(X).

Examples

IBM

Extension

SPACING

(3.0)

=

2.02

-

24

=

2.0(-22)

See

“Real

Data

Model”

on

page

425.

End

of

IBM

Extension

SPREAD(SOURCE,

DIM,

NCOPIES)

Replicates

an

array

in

an

additional

dimension

by

making

copies

of

existing

elements

along

that

dimension.

Argument

Type

and

Attributes

SOURCE

can

be

an

array

or

scalar.

It

can

have

any

data

type.

The

rank

of

SOURCE

has

a

maximum

value

of

19.

DIM

is

an

integer

scalar

in

the

range

1

≤

DIM

≤

rank(SOURCE)+1.

Unlike

most

other

array

intrinsic

functions,

SPREAD

requires

the

DIM

argument.

NCOPIES

is

an

integer

scalar.

It

becomes

the

extent

of

the

extra

dimension

added

to

the

result.

Class

Transformational

function

Result

Type

and

Attributes

The

result

is

an

array

of

rank

rank(SOURCE)+1

and

with

the

same

type

and

type

parameters

as

source.

526

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Result

Value

If

SOURCE

is

a

scalar,

the

result

is

a

one-dimensional

array

with

NCOPIES

elements,

each

with

value

SOURCE.

If

SOURCE

is

an

array,

the

result

is

an

array

of

rank

rank(SOURCE)

+

1.

Along

dimension

DIM,

each

array

element

of

the

result

is

equal

to

the

corresponding

array

element

in

SOURCE.

If

NCOPIES

is

less

than

or

equal

to

zero,

the

result

is

a

zero-sized

array.

Examples

!

A

is

the

array

(/

-4.7,

6.1,

0.3

/)

RES

=

SPREAD(

A,

DIM

=

1,

NCOPIES

=

3

)

!

The

result

is

|

-4.7

6.1

0.3

|

!

|

-4.7

6.1

0.3

|

!

|

-4.7

6.1

0.3

|

!

DIM=1

extends

each

column.

Each

element

in

RES(:,1)

!

becomes

a

copy

of

A(1),

each

element

in

RES(:,2)

becomes

!

a

copy

of

A(2),

and

so

on.

RES

=

SPREAD(

A,

DIM

=

2,

NCOPIES

=

3

)

!

The

result

is

|

-4.7

-4.7

-4.7

|

!

|

6.1

6.1

6.1

|

!

|

0.3

0.3

0.3

|

!

DIM=2

extends

each

row.

Each

element

in

RES(1,:)

!

becomes

a

copy

of

A(1),

each

element

in

RES(2,:)

!

becomes

a

copy

of

A(2),

and

so

on.

RES

=

SPREAD(

A,

DIM

=

2,

NCOPIES

=

0

)

!

The

result

is

(/

/)

(a

zero-sized

array).

SQRT(X)

Square

root.

Argument

Type

and

Attributes

X

must

be

of

type

real

or

complex.

Unless

X

is

complex,

its

value

must

be

greater

than

or

equal

to

zero.

Class

Elemental

function

Result

Type

and

Attributes

Same

as

X.

Result

Value

v

It

has

a

value

equal

to

the

square

root

of

X.

v

If

the

result

type

is

complex,

its

value

is

the

principal

value

with

the

real

part

greater

than

or

equal

to

zero.

If

the

real

part

is

zero,

the

imaginary

part

is

greater

than

or

equal

to

zero.

Examples

SQRT

(4.0)

has

the

value

2.0.

Intrinsic

Procedures

527

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

SQRT

default

real

default

real

yes

DSQRT

double

precision

real

double

precision

real

yes

QSQRT

REAL(16)

REAL(16)

yes

�1�

CSQRT

�2�

default

complex

default

complex

yes

CDSQRT

�2�

double

complex

double

complex

yes

�1�

ZSQRT

�2�

COMPLEX(8)

COMPLEX(8)

yes

�1�

CQSQRT

�2�

COMPLEX(16)

COMPLEX(16)

yes

�1�

Notes:

1.

IBM

Extension:

the

ability

to

pass

the

name

as

an

argument.

2.

Given

that

X

is

a

complex

number

in

the

form

a

+

bi,

where

i

=

(-1)½,

abs(X)

+

abs(a)

must

be

less

than

or

equal

to

1.797693

*

10308.

SRAND(SEED)

IBM

Extension

Provides

the

seed

value

used

by

the

random

number

generator

function

RAND.

This

intrinsic

subroutine

is

not

recommended.

Use

the

standards

conforming

RANDOM_NUMBER(HARVEST)

intrinsic

subroutine.

Argument

Type

and

Attributes

SEED

must

be

scalar.

It

must

be

of

type

REAL(4)

when

used

to

provide

a

seed

value

for

the

RAND

function,

or

of

type

INTEGER(4)

when

used

to

provide

a

seed

value

for

the

IRAND

service

and

utility

function.

It

is

an

INTENT(IN)

argument.

Class

Subroutine

Examples

The

following

is

an

example

of

a

program

using

the

SRAND

subroutine.

CALL

SRAND(0.5)

DO

I

=

1,

5

R

=

RAND()

PRINT

*,R

ENDDO

END

The

following

is

sample

output

generated

by

the

above

program:

0.3984375000

0.4048461914

0.1644897461

0.1281738281E-01

0.2313232422E-01

End

of

IBM

Extension

528

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

SUM(ARRAY,

DIM,

MASK)

or

SUM(ARRAY,

MASK)

Calculates

the

sum

of

selected

elements

in

an

array.

Argument

Type

and

Attributes

ARRAY

is

an

array

of

numeric

type,

whose

elements

you

want

to

sum.

DIM

(optional)

is

an

integer

scalar

in

the

range

1

≤

DIM

≤

rank(ARRAY).

MASK

(optional)

is

a

logical

expression.

If

it

is

an

array,

it

must

conform

with

ARRAY

in

shape.

If

MASK

is

a

scalar,

the

scalar

value

applies

to

all

elements

in

ARRAY.

Class

Transformational

function

Result

Value

If

DIM

is

present,

the

result

is

an

array

of

rank

rank(ARRAY)-1,

with

the

same

data

type

as

ARRAY.

If

DIM

is

missing,

or

if

MASK

has

a

rank

of

one,

the

result

is

a

scalar.

The

result

is

calculated

by

one

of

the

following

methods:

Method

1:

If

only

ARRAY

is

specified,

the

result

equals

the

sum

of

all

the

array

elements

of

ARRAY.

If

ARRAY

is

a

zero-sized

array,

the

result

equals

zero.

Method

2:

If

ARRAY

and

MASK

are

both

specified,

the

result

equals

the

sum

of

the

array

elements

of

ARRAY

that

have

a

corresponding

array

element

in

MASK

with

a

value

of

.TRUE..

If

MASK

has

no

elements

with

a

value

of

.TRUE.,

the

result

is

equal

to

zero.

Method

3:

If

DIM

is

also

specified,

the

result

value

equals

the

sum

of

the

array

elements

of

ARRAY

along

dimension

DIM

that

have

a

corresponding

true

array

element

in

MASK.

Fortran

95

Because

both

DIM

and

MASK

are

optional,

various

combinations

of

arguments

are

possible.

When

the

-qintlog

option

is

specified

with

two

arguments,

the

second

argument

refers

to

one

of

the

following:

v

MASK

if

it

is

an

array

of

type

integer,

logical,

byte

or

typeless

v

DIM

if

it

is

a

scalar

of

type

integer,

byte

or

typeless

v

MASK

if

it

is

a

scalar

of

type

logical

End

of

Fortran

95

Examples

Method

1:

Intrinsic

Procedures

529

!

Sum

all

the

elements

in

an

array.

RES

=

SUM(

(/2,

3,

4

/)

)

!

The

result

is

9

because

(2+3+4)

=

9

Method

2:

!

A

is

the

array

(/

-3,

-7,

-5,

2,

3

/)

!

Sum

all

elements

that

are

greater

than

-5.

RES

=

SUM(

A,

MASK

=

A

.GT.

-5

)

!

The

result

is

2

because

(-3

+

2

+

3)

=

2

Method

3:

!

B

is

the

array

|

4

2

3

|

!

|

7

8

5

|

!

Sum

the

elements

in

each

column.

RES

=

SUM(B,

DIM

=

1)

!

The

result

is

|

11

10

8

|

because

(4

+

7)

=

11

!

(2

+

8)

=

10

!

(3

+

5)

=

8

!

Sum

the

elements

in

each

row.

RES

=

SUM(B,

DIM

=

2)

!

The

result

is

|

9

20

|

because

(4

+

2

+

3)

=

9

!

(7

+

8

+

5)

=

20

!

Sum

the

elements

in

each

row,

considering

only

!

those

elements

greater

than

two.

RES

=

SUM(B,

DIM

=

2,

MASK

=

B

.GT.

2)

!

The

result

is

|

7

20

|

because

(4

+

3)

=

7

!

(7

+

8

+

5)

=

20

SYSTEM(CMD,

RESULT)

IBM

Extension

Passes

a

command

to

the

operating

system

for

execution.

The

current

process

pauses

until

the

command

is

completed

and

control

is

returned

from

the

operating

system.

An

added,

optional

argument

to

the

subroutine

will

allow

recovery

of

any

return

code

information

from

the

operating

system.

Argument

Type

and

Attributes

CMD

must

be

scalar

and

of

type

character,

specifying

the

command

to

execute

and

any

command-line

arguments.

It

is

an

INTENT(IN)

argument.

RESULT

must

be

a

scalar

variable

of

type

INTEGER(4).

If

the

argument

is

not

an

INTEGER(4)

variable,

the

compiler

will

generate

an

(S)

level

error

message.

It

is

an

optional

INTENT(OUT)

argument.

The

format

of

the

information

returned

in

RESULT

is

the

same

as

the

format

returned

from

the

WAIT

system

call.

Class

Subroutine

Examples

INTEGER

ULIMIT

CHARACTER(32)

CMD

...

!

Check

the

system

ulimit.

530

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

CMD

=

’ulimit

>

./fort.99’

CALL

SYSTEM(CMD)

READ(99,

*)

ULIMIT

IF

(ULIMIT

.LT.

2097151)

THEN

...

INTEGER

RC

RC=99

CALL

SYSTEM("/bin/test

1

-EQ

2",RC)

IF

(IAND(RC,’ff’z)

.EQ.

0)

then

RC

=

IAND(

ISHFT(RC,-8),

’ff’z

)

ELSE

RC

=

-1

ENDIF

End

of

IBM

Extension

SYSTEM_CLOCK(COUNT,

COUNT_RATE,

COUNT_MAX)

Returns

integer

data

from

a

real-time

clock.

Argument

Type

and

Attributes

COUNT

(optional)

is

an

INTENT(OUT)

argument

that

must

be

scalar

and

of

type

default

integer.

The

initial

value

of

COUNT

depends

on

the

current

value

of

the

processor

clock

in

a

range

from

0

to

COUNT_MAX.

COUNT

increments

by

one

for

each

clock

count

until

it

reaches

the

value

of

COUNT_MAX.

At

the

next

clock

count

after

COUNT_MAX,

the

value

of

COUNT

resets

to

zero.

COUNT_RATE

(optional)

is

an

INTENT(OUT)

argument

that

must

be

scalar

and

of

type

default

integer.

When

using

the

default

centisecond

resolution,

COUNT_RATE

refers

to

the

number

of

processor

clock

counts

per

second

or

to

zero

if

there

is

no

clock.

COUNT_MAX

(optional)

is

an

INTENT(OUT)

argument

that

must

be

scalar

and

of

type

default

integer.

When

using

the

default

centisecond

resolution,

COUNT_MAX

is

the

maximum

number

of

clock

counts

for

a

given

processor

clock.

Class

Subroutine

Examples

IBM

Extension

In

the

following

example,

the

clock

is

a

24-hour

clock.

After

the

call

to

SYSTEM_CLOCK,

the

COUNT

contains

the

day

time

expressed

in

clock

ticks

per

second.

The

number

of

ticks

per

second

is

available

in

the

COUNT_RATE.

The

COUNT_RATE

value

is

implementation

dependent.

INTEGER,

DIMENSION(8)

::

IV

TIME_SYNC:

DO

CALL

DATE_AND_TIME(VALUES=IV)

IHR

=

IV(5)

Intrinsic

Procedures

531

IMIN

=

IV(6)

ISEC

=

IV(7)

CALL

SYSTEM_CLOCK(COUNT=IC,

COUNT_RATE=IR,

COUNT_MAX=IM)

CALL

DATE_AND_TIME(VALUES=IV)

IF

((IHR

==

IV(5))

.AND.

(IMIN

==

IV(6))

.AND.

&

(ISEC

==

IV(7)))

EXIT

TIME_SYNC

END

DO

TIME_SYNC

IDAY_SEC

=

3600*IHR

+

IMIN*60

+

ISEC

IDAY_TICKS

=

IDAY_SEC

*

IR

IF

(IDAY_TICKS

/=

IC)

THEN

STOP

’clock

error’

ENDIF

END

End

of

IBM

Extension

TAN(X)

Tangent

function.

Argument

Type

and

Attributes

X

must

be

of

type

real.

Class

Elemental

function

Result

Type

and

Attributes

Same

as

X.

Result

Value

The

result

approximates

tan(X),

where

X

has

a

value

in

radians.

Examples

TAN

(1.0)

has

the

value

1.5574077

(approximately).

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

TAN

default

real

default

real

yes

DTAN

double

precision

real

double

precision

real

yes

QTAN

REAL(16)

REAL(16)

yes

�1�

Notes:

1.

IBM

Extension:

the

ability

to

pass

the

name

as

an

argument.

TAND(X)

IBM

Extension

Tangent

function.

Argument

in

degrees.

532

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Argument

Type

and

Attributes

X

must

be

of

type

real.

Class

Elemental

function

Result

Type

and

Attributes

Same

as

X.

Result

Value

The

result

approximates

tan(X),

where

X

has

a

value

in

degrees.

Examples

TAND

(45.0)

has

the

value

1.0.

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

TAND

default

real

default

real

yes

DTAND

double

precision

real

double

precision

real

yes

QTAND

REAL(16)

REAL(16)

yes

End

of

IBM

Extension

TANH(X)

Hyperbolic

tangent

function.

Argument

Type

and

Attributes

X

must

be

of

type

real.

Class

Elemental

function

Result

Type

and

Attributes

Same

as

X.

Result

Value

The

result

has

a

value

equal

to

tanh(X).

Examples

TANH

(1.0)

has

the

value

0.76159416

(approximately).

Specific

Name

Argument

Type

Result

Type

Pass

As

Arg?

TANH

default

real

default

real

yes

DTANH

double

precision

real

double

precision

real

yes

QTANH

REAL(16)

REAL(16)

yes

�1�

Notes:

1.

IBM

Extension:

the

ability

to

pass

the

name

as

an

argument.

Intrinsic

Procedures

533

TINY(X)

Returns

the

smallest

positive

number

in

the

model

representing

numbers

of

the

same

type

and

kind

type

parameter

as

the

argument.

Argument

Type

and

Attributes

X

must

be

of

type

real.

It

may

be

scalar

or

array

valued.

Class

Inquiry

function

Result

Type

and

Attributes

Scalar

with

the

same

type

as

X.

Result

Value

IBM

Extension

The

result

is:

2.0(MINEXPONENT(X)-1)

for

real

X

End

of

IBM

Extension

Examples

IBM

Extension

TINY

(X)

=

float(2)(-126)

=

1.17549351e-38.

See

“Real

Data

Model”

on

page

425.

End

of

IBM

Extension

TRANSFER(SOURCE,

MOLD,

SIZE)

Returns

a

result

with

a

physical

representation

identical

to

that

of

SOURCE

but

interpreted

with

the

type

and

type

parameters

of

MOLD.

It

performs

a

low-level

conversion

between

types

without

any

sign

extension,

rounding,

blank

padding,

or

other

alteration

that

may

occur

using

other

methods

of

conversion.

Argument

Type

and

Attributes

SOURCE

is

the

data

entity

whose

bitwise

value

you

want

to

transfer

to

a

different

type.

It

may

be

of

any

type,

and

may

be

scalar

or

array

valued.

MOLD

is

a

data

entity

that

has

the

type

characteristics

you

want

for

the

result.

If

MOLD

is

a

variable,

the

value

does

not

need

to

be

defined.

It

may

be

of

any

type,

and

may

be

scalar

or

array

valued.

Its

value

is

not

used,

only

its

type

characteristics.

534

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

SIZE

(optional)

is

the

number

of

elements

for

the

output

result.

It

must

be

a

scalar

integer.

The

corresponding

actual

argument

must

not

be

an

optional

dummy

argument.

Class

Transformational

function

Result

Type

and

Attributes

The

same

type

and

type

parameters

as

MOLD.

If

MOLD

is

a

scalar

and

SIZE

is

absent,

the

result

is

a

scalar.

If

MOLD

is

array

valued

and

SIZE

is

absent,

the

result

is

array

valued

and

of

rank

one,

with

the

smallest

size

that

is

physically

large

enough

to

hold

SOURCE.

If

SIZE

is

present,

the

result

is

array

valued

of

rank

one

and

size

SIZE.

Result

Value

The

physical

representation

of

the

result

is

the

same

as

SOURCE,

truncated

if

the

result

is

smaller

or

with

an

undefined

trailing

portion

if

the

result

is

larger.

Because

the

physical

representation

is

unchanged,

it

is

possible

to

undo

the

results

of

TRANSFER

as

long

as

the

result

is

not

truncated:

REAL(4)

X

/3.141/

DOUBLE

PRECISION

I,

J(6)

/1,2,3,4,5,6/

!

Because

x

is

transferred

to

a

larger

representation

!

and

then

back,

its

value

is

unchanged.

X

=

TRANSFER(

TRANSFER(

X,

I

),

X

)

!

j

is

transferred

into

a

real(4)

array

large

enough

to

!

hold

all

its

elements,

then

back

into

an

array

of

!

its

original

size,

so

its

value

is

unchanged

too.

J

=

TRANSFER(

TRANSFER(

J,

X

),

J,

SIZE=SIZE(J)

)

Examples

TRANSFER

(1082130432,

0.0)

is

4.0.

TRANSFER

((/1.1,2.2,3.3/),

(/(0.0,0.0)/))

is

a

complex

rank-one

array

of

length

two

whose

first

element

has

the

value

(1.1,

2.2)

and

whose

second

element

has

a

real

part

with

the

value

3.3.

The

imaginary

part

of

the

second

element

is

undefined.

TRANSFER

((/1.1,2.2,3.3/),

(/(0.0,0.0)/),

1)

has

the

value

(/(1.1,2.2)/).

TRANSPOSE(MATRIX)

Transposes

a

two-dimensional

array,

turning

each

column

into

a

row

and

each

row

into

a

column.

Argument

Type

and

Attributes

MATRIX

is

an

array

of

any

data

type,

with

a

rank

of

two.

Intrinsic

Procedures

535

Class

Transformational

function

Result

Value

The

result

is

a

two-dimensional

array

of

the

same

data

type

as

MATRIX.

The

shape

of

the

result

is

(n,m)

where

the

shape

of

MATRIX

is

(m,n).

For

example,

if

the

shape

of

MATRIX

is

(2,3),

the

shape

of

the

result

is

(3,2).

Each

element

(i,j)

in

the

result

has

the

value

MATRIX

(j,i)

for

i

in

the

range

1-n

and

j

in

the

range

1-m.

Examples

!

A

is

the

array

|

0

-5

8

-7

|

!

|

2

4

-1

1

|

!

|

7

5

6

-6

|

!

Transpose

the

columns

and

rows

of

A.

RES

=

TRANSPOSE(

A

)

!

The

result

is

|

0

2

7

|

!

|

-5

4

5

|

!

|

8

-1

6

|

!

|

-7

1

-6

|

TRIM(STRING)

Returns

the

argument

with

trailing

blank

characters

removed.

Argument

Type

and

Attributes

STRING

must

be

of

type

character

and

must

be

a

scalar.

Class

Transformational

function

Result

Type

and

Attributes

Character

with

the

same

kind

type

parameter

value

as

STRING

and

with

a

length

that

is

the

length

of

STRING

less

the

number

of

trailing

blanks

in

STRING.

Result

Value

v

The

value

of

the

result

is

the

same

as

STRING,

except

trailing

blanks

are

removed.

v

If

STRING

contains

no

nonblank

characters,

the

result

has

zero

length.

Examples

TRIM

(’�A�B��’)

has

the

value

’�A�B’.

UBOUND(ARRAY,

DIM)

Returns

the

upper

bounds

of

each

dimension

in

an

array,

or

the

upper

bound

of

a

specified

dimension.

Argument

Type

and

Attributes

ARRAY

is

the

array

whose

upper

bounds

you

want

to

determine.

Its

536

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

bounds

must

be

defined:

that

is,

it

must

not

be

a

disassociated

pointer

or

an

allocatable

array

that

is

not

allocated,

and

if

its

size

is

assumed,

you

can

only

examine

one

dimension.

DIM

(optional)

is

an

integer

scalar

in

the

range

1

≤

DIM

≤

rank(ARRAY).

The

corresponding

actual

argument

must

not

be

an

optional

dummy

argument.

Class

Inquiry

function

Result

Type

and

Attributes

Default

integer.

If

DIM

is

present,

the

result

is

a

scalar.

If

it

is

not

present,

the

result

is

a

one-dimensional

array

with

one

element

for

each

dimension

in

ARRAY.

Result

Value

Each

element

in

the

result

corresponds

to

a

dimension

of

ARRAY.

If

ARRAY

is

a

whole

array

or

array

structure

component,

these

values

are

equal

to

the

upper

bounds.

If

ARRAY

is

an

array

section

or

expression

that

is

not

a

whole

array

or

array

structure

component,

the

values

represent

the

number

of

elements

in

each

dimension,

which

may

be

different

than

the

declared

upper

bounds

of

the

original

array.

If

a

dimension

is

zero-sized,

the

corresponding

element

in

the

result

is

zero,

regardless

of

the

value

of

the

upper

bound.

Examples

!

This

array

illustrates

the

way

UBOUND

works

with

!

different

ranges

for

dimensions.

REAL

A(1:10,

-4:5,

4:-5)

RES=UBOUND(

A

)

!

The

result

is

(/

10,

5,

0

/).

RES=UBOUND(

A(:,:,:)

)

!

The

result

is

(/

10,

10,

0

/)

because

the

argument

!

is

an

array

section.

RES=UBOUND(

A(4:10,-4:1,:)

)

!

The

result

is

(/

7,

6,

0

/),

because

for

an

array

section,

!

it

is

the

number

of

elements

that

is

significant.

UNPACK(VECTOR,

MASK,

FIELD)

Takes

some

or

all

elements

from

a

one-dimensional

array

and

rearranges

them

into

another,

possibly

larger,

array.

Argument

Type

and

Attributes

VECTOR

is

a

one-dimensional

array

of

any

data

type.

There

must

be

at

least

as

many

elements

in

VECTOR

as

there

are

.TRUE.

values

in

MASK.

MASK

is

a

logical

array

that

determines

where

the

elements

of

VECTOR

are

placed

when

they

are

unpacked.

FIELD

must

have

the

same

shape

as

the

mask

argument,

and

the

same

Intrinsic

Procedures

537

data

type

as

VECTOR.

Its

elements

are

inserted

into

the

result

array

wherever

the

corresponding

MASK

element

has

the

value

.FALSE..

Class

Transformational

function

Result

Value

The

result

is

an

array

with

the

same

shape

as

MASK

and

the

same

data

type

as

VECTOR.

The

elements

of

the

result

are

filled

in

array-element

order:

if

the

corresponding

element

in

MASK

is

.TRUE.,

the

result

element

is

filled

by

the

next

element

of

VECTOR;

otherwise,

it

is

filled

by

the

corresponding

element

of

FIELD.

Examples

!

VECTOR

is

the

array

(/

5,

6,

7,

8

/),

!

MASK

is

|

F

T

T

|,

FIELD

is

|

-1

-4

-7

|

!

|

T

F

F

|

|

-2

-5

-8

|

!

|

F

F

T

|

|

-3

-6

-9

|

!

Turn

the

one-dimensional

vector

into

a

two-dimensional

!

array.

The

elements

of

VECTOR

are

placed

into

the

.TRUE.

!

positions

in

MASK,

and

the

remaining

elements

are

!

made

up

of

negative

values

from

FIELD.

RES

=

UNPACK(

VECTOR,

MASK,

FIELD

)

!

The

result

is

|

-1

6

7

|

!

|

5

-5

-8

|

!

|

-3

-6

8

|

!

Do

the

same

transformation,

but

using

all

zeros

for

the

!

replacement

values

of

FIELD.

RES

=

UNPACK(

VECTOR,

MASK,

FIELD

=

0

)

!

The

result

is

|

0

6

7

|

!

|

5

0

0

|

!

|

0

0

8

|

VERIFY(STRING,

SET,

BACK)

Verify

that

a

set

of

characters

contains

all

the

characters

in

a

string

by

identifying

the

position

of

the

first

character

in

a

string

of

characters

that

does

not

appear

in

a

given

set

of

characters.

Argument

Type

and

Attributes

STRING

must

be

of

type

character.

SET

must

be

of

type

character

with

the

same

kind

type

parameter

as

STRING.

BACK

(optional)

must

be

of

type

logical.

Class

Elemental

function

Result

Type

and

Attributes

Default

integer.

538

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Result

Value

v

Case

(i):

If

BACK

is

absent

or

present

with

the

value

.FALSE.

and

if

STRING

contains

at

least

one

character

that

is

not

in

SET,

the

value

of

the

result

is

the

position

of

the

leftmost

character

of

STRING

that

is

not

in

SET.

v

Case

(ii):

If

BACK

is

present

with

the

value

.TRUE.

and

if

STRING

contains

at

least

one

character

that

is

not

in

SET,

the

value

of

the

result

is

the

position

of

the

rightmost

character

of

STRING

that

is

not

in

SET.

v

Case

(iii):

The

value

of

the

result

is

zero

if

each

character

in

STRING

is

in

SET

or

if

STRING

has

zero

length.

Examples

v

Case

(i):

VERIFY

(’ABBA’,

’A’)

has

the

value

2.

v

Case

(ii):

VERIFY

(’ABBA’,

’A’,

BACK

=

.TRUE.)

has

the

value

3.

v

Case

(iii):

VERIFY

(’ABBA’,

’AB’)

has

the

value

0.

Intrinsic

Procedures

539

540

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

XL

Fortran

Language

Utilities

v

Floating-point

Control

and

Inquiry

Procedures

v

Hardware

Directives

and

Intrinsic

Procedures

v

Service

and

Utility

Procedures

The

following

parts

explain

other

aspects

of

the

XL

Fortran

language:

v

The

XL

Fortran

Language

©

Copyright

IBM

Corp.

1990,

2003

541

542

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Floating-Point

Control

and

Inquiry

Procedures

XL

Fortran

provides

several

ways

that

allow

you

to

query

and

control

the

floating-point

status

and

control

register

of

the

processor

directly.

These

include:

v

fpgets

and

fpsets

subroutines

v

Efficient

floating-point

control

and

inquiry

procedures

v

IEEE

floating-point

procedures,

as

specified

in

the

Fortran

2003

Draft

Standard

The

fpgets

and

fpsets

subroutines

retrieve

and

set

the

status

of

the

floating-point

operations,

respectively.

Instead

of

calling

operating

system

routines

directly,

these

subroutines

use

an

array

of

logicals

named

fpstat

to

pass

information

back

and

forth.

XL

Fortran

also

provides

procedures

in

the

xlf_fp_util

module

that

allow

you

to

control

the

floating-point

status

and

control

register

of

the

processor

directly.

These

procedures

are

more

efficient

than

the

fpgets

and

fpsets

subroutines;

they

are

mapped

into

inlined

machine

instructions

that

directly

manipulate

the

floating-point

status

and

control

register.

XL

Fortran

includes

the

IEEE_ARITHMETIC,

IEEE_EXCEPTIONS,

and

IEEE_FEATURES

modules

to

take

advantage

of

the

Fortran

2003

Draft

Standard

rules

for

the

IEEE

floating-point

status

semantics.

fpgets

fpsets

The

fpgets

and

fpsets

subroutines

retrieve

and

set

the

status

of

the

floating-point

operations,

respectively.

The

include

file

fpdc.h

contains

the

data

declarations

(specification

statements)

for

the

two

subroutines.

The

include

file

fpdt.h

contains

the

data

initializations

(data

statements)

and

must

be

included

in

a

block

data

program

unit.

fpgets

retrieves

the

floating-point

process

status

and

stores

the

result

in

a

logical

array

called

fpstat.

fpsets

sets

the

floating-point

status

equal

to

the

logical

array

fpstat.

This

array

contains

logical

values

that

can

be

used

to

specify

floating-point

rounding

modes.

See

the

fpgets

and

fpsets

Subroutines

in

the

User’s

Guide

for

examples

and

information

on

the

elements

of

the

fpstat

array.

Note:

The

XLF_FP_UTIL

module

provides

procedures

for

manipulating

the

status

of

floating-point

operations

that

are

more

efficient

than

the

fpgets

and

fpsets

subroutines.

For

more

information,

see

“Efficient

Floating-Point

Control

and

Inquiry

Procedures”

on

page

544.

Examples

CALL

fpgets(

fpstat

)

...

CALL

fpsets(

fpstat

)

BLOCK

DATA

INCLUDE

’fpdc.h’

INCLUDE

’fpdt.h’

END

©

Copyright

IBM

Corp.

1990,

2003

543

Efficient

Floating-Point

Control

and

Inquiry

Procedures

XL

Fortran

provides

several

procedures

that

allow

you

to

query

and

control

the

floating-point

status

and

control

register

of

the

processor

directly.

These

procedures

are

more

efficient

than

the

fpgets

and

fpsets

subroutines

because

they

are

mapped

into

inlined

machine

instructions

that

manipulate

the

floating-point

status

and

control

register

(fpscr)

directly.

XL

Fortran

supplies

the

module

xlf_fp_util,

which

contains

the

interfaces

and

data

type

definitions

for

these

procedures

and

the

definitions

for

the

named

constants

that

are

needed

by

the

procedures.

This

module

enables

type

checking

of

these

procedures

at

compile

time

rather

than

at

link

time.

You

can

use

the

argument

names

listed

in

the

examples

as

the

names

for

keyword

arguments

when

calling

a

procedure.

The

following

files

are

supplied

for

the

xlf_fp_util

module:

File

names

File

type

Locations

xlf_fp_util.mod

module

symbol

file

v

install

path/xlf/8.1/include

To

use

these

procedures,

you

must

add

a

USE

XLF_FP_UTIL

statement

to

your

source

file.

For

more

information

on

USE,

see

“USE”

on

page

384.

If

there

are

name

conflicts

(for

example

if

the

accessing

subprogram

has

an

entity

with

the

same

name

as

a

module

entity),

use

the

ONLY

clause

or

the

renaming

features

of

the

USE

statement.

For

example,

USE

XLF_FP_UTIL,

NULL1

=>

get_fpscr,

NULL2

=>

set_fpscr

When

compiling

with

the

-U

option,

you

must

code

the

names

of

these

procedures

in

all

lowercase.

We

will

show

the

names

in

lowercase

here

as

a

reminder.

The

fpscr

procedures

are:

v

“clr_fpscr_flags”

on

page

545

v

“get_fpscr”

on

page

546

v

“get_fpscr_flags”

on

page

546

v

“get_round_mode”

on

page

547

v

“set_fpscr”

on

page

547

v

“set_fpscr_flags”

on

page

547

v

“set_round_mode”

on

page

548

The

following

table

lists

the

constants

that

are

used

with

the

fpscr

procedures:

Family

Constant

Description

General

FPSCR_KIND

The

kind

type

parameter

for

a

fpscr

flags

variable

IEEE

Rounding

Modes

FP_RND_RN

Round

toward

nearest

(default)

FP_RND_RZ

Round

toward

zero

FP_RND_RP

Round

toward

plus

infinity

FP_RND_RM

Round

toward

minus

infinity

FP_RND_MODE

Used

to

obtain

the

rounding

mode

from

a

fpscr

flags

variable

or

value

544

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Family

Constant

Description

IEEE

Exception

Enable

Flags�1�

TRP_INEXACT

Enable

inexact

trap

TRP_DIV_BY_ZERO

Enable

divide-by-zero

trap

TRP_UNDERFLOW

Enable

underflow

trap

TRP_OVERFLOW

Enable

overflow

trap

TRP_INVALID

Enable

invalid

trap

FP_ENBL_SUMM

Trap

enable

summary

or

enable

all

IEEE

Exception

Status

Flags

FP_INVALID

Invalid

operation

exception

FP_OVERFLOW

Overflow

exception

FP_UNDERFLOW

Underflow

exception

FP_DIV_BY_ZERO

Divide-by-zero

exception

FP_INEXACT

Inexact

exception

FP_ALL_IEEE_XCP

All

IEEE

exceptions

summary

flags

FP_COMMON_IEEE_XCP

All

IEEE

exceptions

summary

flags

excluding

the

FP_INEXACT

exception

Machine

Specific

Exception

Details

Flags

FP_INV_SNAN

Signaling

NaN

FP_INV_ISI

Infinity

–

Infinity

FP_INV_IDI

Infinity

/

Infinity

FP_INV_ZDZ

0

/

0

FP_INV_IMZ

Infinity

*

0

FP_INV_CMP

Unordered

compare

FP_INV_SQRT

Square

root

of

negative

number

FP_INV_CVI

Conversion

to

integer

error

FP_INV_VXSOFT

Software

request

Machine

Specific

Exception

Summary

Flags

FP_ANY_XCP

Any

exception

summary

flag

FP_ALL_XCP

All

exceptions

summary

flags

FP_COMMON_XCP

All

exceptions

summary

flags

excluding

the

FP_INEXACT

exception

Notes:

1.

In

order

to

enable

exception

trapping,

you

must

set

the

desired

IEEE

Exception

Enable

Flags

and,

v

compile

your

program

with

the

appropriate

–qflttrap

suboption.

For

more

information

on

the

-qflttrap

compiler

option

and

its

suboptions,

see

the

User’s

Guide.

xlf_fp_util

Floating-Point

Procedures

This

section

lists

the

efficient

floating-point

control

and

inquiry

procedures

in

the

XLF_FP_UTIL

module.

clr_fpscr_flags

The

clr_fpscr_flags

subroutine

clears

the

floating-point

status

and

control

register

flags

you

specify

in

the

MASK

argument.

Flags

that

you

do

not

specify

in

MASK

Floating-Point

Control

and

Inquiry

Procedures

545

remain

unaffected.

MASK

must

be

of

type

INTEGER(FPSCR_KIND).

You

can

manipulate

the

MASK

using

the

intrinsic

procedures

described

in

“Integer

Bit

Model”

on

page

423.

For

more

information

on

the

FPSCR

constants,

see

“fpscr

constants”

on

page

544.

Examples:

USE

XLF_FP_UTIL

INTEGER(FPSCR_KIND)

MASK

!

Clear

the

overflow

and

underflow

exception

flags

MASK=(IOR(FP_OVERFLOW,FP_UNDERFLOW))

CALL

clr_fpscr_flags(MASK)

For

another

example

of

the

clr_fpscr_flags

subroutine,

see

“get_fpscr_flags.”

get_fpscr

The

get_fpscr

function

returns

the

current

value

of

the

floating-point

status

and

control

register

(fpscr)

of

the

processor.

Result

Type

and

Attributes:

INTEGER(FPSCR_KIND)

Result

Value:

The

current

value

of

the

floating-point

status

and

control

register

(fpscr)

of

the

processor.

Examples:

USE

XLF_FP_UTIL

INTEGER(FPSCR_KIND)

FPSCR

FPSCR=get_fpscr()

get_fpscr_flags

The

get_fpscr_flags

function

returns

the

current

state

of

the

floating-point

status

and

control

register

flags

you

specify

in

the

MASK

argument.

MASK

must

be

of

type

INTEGER(FPSCR_KIND).

You

can

manipulate

the

MASK

using

the

intrinsics

described

in

“Integer

Bit

Model”

on

page

423.

For

more

information

on

the

FPSCR

constants,

see

“fpscr

constants”

on

page

544.

Result

Type

and

Attributes:

An

INTEGER(FPSCR_KIND)

Result

Value:

The

status

of

the

FPSCR

flags

specified

by

the

MASK

argument.

If

a

flag

specified

in

the

MASK

argument

is

on,

the

value

for

the

flag

will

be

returned

in

the

return

value.

The

following

example

requests

the

status

of

the

fp_div_by_zero

and

fp_invalid

flags.

v

If

both

flags

are

on,

the

return

value

is

ior(fp_div_by_zero,

fp_invalid).

v

If

only

the

fp_invalid

flag

is

on,

the

return

value

is

fp_invalid.

v

If

only

the

fp_div_by_zero

flag

is

on,

the

return

value

is

fp_div_by_zero.

v

If

neither

flag

is

on,

the

return

value

is

0.

Examples:

USE

XLF_FP_UTIL

!

...

IF

(get_fpscr_flags(IOR(FP_DIV_BY_ZERO,FP_INVALID))

.NE.

0)

THEN

546

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

!

Either

Divide-by-zero

or

an

invalid

operation

occurred.

!

...

!

After

processing

the

exception,

the

exception

flags

are

!

cleared.

CALL

clr_fpscr_flags(IOR(FP_DIV_BY_ZERO,FP_INVALID))

END

IF

get_round_mode

The

get_round_mode

function

returns

the

current

floating-point

rounding

mode.

The

return

value

will

be

one

of

the

constants

FP_RND_RN,

FP_RND_RZ,

FP_RND_RP

or

FP_RND_RM.

For

more

information

on

the

rounding

mode

constants,

see

“fpscr

constants”

on

page

544.

Result

Type

and

Attributes:

An

INTEGER(FPSCR_KIND)

Result

Value:

One

of

the

constants

FP_RND_RN,

FP_RND_RZ,

FP_RND_RP

or

FP_RND_RM.

Examples:

USE

XLF_FP_UTIL

INTEGER(FPSCR_KIND)

MODE

MODE=get_round_mode()

IF

(MODE

.EQ.

FP_RND_RZ)

THEN

!

...

END

IF

set_fpscr

The

set_fpscr

function

sets

the

floating-point

status

and

control

register

(fpscr)

of

the

processor

to

the

value

provided

in

the

FPSCR

argument,

and

returns

the

value

of

the

register

before

the

change.

Argument

Type

and

Attributes:

Integer

of

kind

FPSCR_KIND

Result

Type

and

Attributes:

Integer

of

kind

FPSCR_KIND

Result

Value:

The

value

of

the

register

before

it

was

set

with

set_fpscr.

Examples:

USE

XLF_FP_UTIL

INTEGER(FPSCR_KIND)

FPSCR,

OLD_FPSCR

FPSCR=get_fpscr()

!

...

Some

changes

are

made

to

FPSCR

...

OLD_FPSCR=set_fpscr(FPSCR)

!

OLD_FPSCR

is

assigned

the

value

of

!

the

register

before

it

was

!

set

with

set_fpscr

set_fpscr_flags

The

set_fpscr_flags

subroutine

allows

you

to

set

the

floating-point

status

and

control

register

flags

you

specify

in

the

MASK

argument.

Flags

that

you

do

not

specify

in

MASK

remain

unaffected.

MASK

must

be

of

type

INTEGER(FPSCR_KIND).

You

can

manipulate

the

MASK

using

the

intrinsics

described

in

“Integer

Bit

Model”

on

page

423.

Floating-Point

Control

and

Inquiry

Procedures

547

For

more

information

on

the

FPSCR

constants,

see

“fpscr

constants”

on

page

544.

Examples:

set_round_mode

The

set_round_mode

function

sets

the

current

floating-point

rounding

mode,

and

returns

the

rounding

mode

before

the

change.

You

can

set

the

mode

to

FP_RND_RN,

FP_RND_RZ,

FP_RND_RP

or

FP_RND_RM.

For

more

information

on

the

rounding

mode

constants,

see

“fpscr

constants”

on

page

544.

Argument

Type

and

Attributes:

Integer

of

kind

FPSCR_KIND

Result

Type

and

Attributes:

Integer

of

kind

FPSCR_KIND

Result

Value:

The

rounding

mode

before

the

change.

Examples:

USE

XLF_FP_UTIL

INTEGER(FPSCR_KIND)

MODE

MODE=set_round_mode(FP_RND_RZ)

!

The

rounding

mode

is

set

to

!

round

towards

zero.

MODE

is

!

...

!

assigned

the

previous

rounding

!

mode.

MODE=set_round_mode(MODE)

!

The

rounding

mode

is

restored.

IEEE

Modules

and

Support

IBM

Extension

XL

Fortran

offers

support

for

IEEE

floating–point

functionality

as

specified

in

the

Fortran

2000

draft

standard.

The

draft

standard

defines

the

IEEE_EXCEPTIONS

module

for

exceptions,

the

IEEE_ARITHMETIC

module

to

support

IEEE

arithmetic,

and

IEEE_FEATURES

to

specify

the

IEEE

features

supported

by

the

compiler.

When

using

IEEE_EXCEPTIONS,

or

IEEE_ARITHMETIC

intrinsic

modules,

the

XL

Fortran

compiler

enforces

several

Fortran

2000

draft

standard

rules

regarding

the

scope

of

changes

to

the

floating-point

status

concerning

rounding

mode,

halting

mode,

and

exception

flags.

This

can

impede

the

performance

of

programs

that

use

these

modules,

but

do

not

utilize

the

new

floating-point

status

semantics.

For

such

programs,

the

–qstrictieeemod

compiler

option

is

provided

to

relax

the

rules

on

saving

and

restoring

floating

point

status.

Notes:

1.

XL

Fortran

Extended

Precision

floating–point

numbers

are

not

in

the

format

suggested

by

the

IEEE

standard.

As

a

result,

some

parts

of

the

modules

do

not

support

REAL(16).

2.

Programs

using

the

halting

facilities

of

the

IEEE

modules

must

be

compiled

using

the

-qflttrap

option.

When

halting

is

enabled

and

an

exception

occurs,

the

IEEE

modules

generate

SIGFPE

signals.

Specifying

the

-qflttrap=imprecise

compiler

option

reduces

the

performance

impact

of

halting

while

remaining

compliant

with

the

Fortran

2003

Draft

Standard

requirements.

3.

IEEE

modules

generate

SIGFPE

signals

on

Mac

OS

X.

548

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Compiling

and

Exception

Handling

XL

Fortran

provides

a

number

of

options

for

strict

compliance

with

the

IEEE

standard.

v

Use

-qfloat=nomaf

to

ensure

compatibility

with

the

IEEE

standard

for

floating

point

arithmetic

(IEEE

754-1985).

v

When

compiling

programs

that

change

the

rounding

mode,

use

-qfloat=rrm.

v

Use

-qfloat=nans

to

detect

signaling

NaN

values.

Signaling

NaN

values

can

only

occur

if

specified

in

a

program.

v

Use

the

-qstrict

compiler

option

for

strict

conformance

to

the

IEEE

standard

for

floating-point

arithmetic

on

programs

compiled

with

an

optimization

level

of

-O3

or

higher,

-qhot,

-qipa,

–qpdf.

Related

Information

For

more

information

on

IEEE

floating–point

and

specific

explanations

of

the

compiler

options

listed

above,

see

XL

Fortran

Floating-Point

Processing

in

the

User’s

Guide.

General

Rules

for

Implementing

IEEE

Modules

The

IEEE_ARITHMETIC,

IEEE_EXCEPTIONS,

and

IEEE_FEATURES

modules

are

intrinsic,

though

the

types

and

procedures

defined

in

these

modules

are

not

intrinsic.

All

functions

contained

in

IEEE

modules

are

pure.

All

procedure

names

are

generic

and

not

specific.

The

default

value

for

all

exception

flags

is

quiet.

By

default,

exceptions

do

not

cause

halting.

Rounding

mode

defaults

towards

nearest.

IEEE

Derived

Data

Types

and

Constants

The

IEEE

modules

define

the

following

derived

types.

IEEE_FLAG_TYPE

A

derived

data

type

defined

by

the

IEEE_EXCEPTIONS

module

that

identifies

a

particular

exception

flag.

The

values

for

IEEE_FLAG_TYPE

must

be

one

of

the

following

named

constants

as

defined

in

the

IEEE_EXCEPTIONS

module:

IEEE_OVERFLOW

Occurs

when

the

result

for

an

intrinsic

real

operation

or

an

assignment

has

an

exponent

too

large

to

be

represented.

This

exception

also

occurs

when

the

real

or

imaginary

part

of

the

result

for

an

intrinsic

complex

operation

or

assignment

has

an

exponent

too

large

to

be

represented.

When

using

REAL(4),

an

overflow

occurs

when

the

result

value’s

unbiased

exponent

is

>

127

or

<

–126.

When

using

REAL(8),

an

overflow

occurs

when

the

result

value’s

unbiased

exponent

is

>

1023

or

<

–1022.

IEEE_DIVIDE_BY_ZERO

Occurs

when

a

real

or

complex

division

has

a

nonzero

numerator

and

a

zero

denominator.

IBM

Extension

Floating-Point

Control

and

Inquiry

Procedures

549

IEEE_INVALID

Occurs

when

a

real

or

complex

operation

or

assignment

is

invalid.

IEEE_UNDERFLOW

Occurs

when

the

result

for

an

intrinsic

real

operation

or

assignment

has

an

absolute

value

too

small

to

be

represented

by

anything

other

than

zero,

and

loss

of

accuracy

is

detected.

The

exception

also

occurs

when

the

real

or

imaginary

part

of

the

result

for

an

intrinsic

complex

operation

or

assignment

has

an

absolute

value

that

is

too

small

to

be

represented

by

anything

other

than

zero,

and

loss

of

accuracy

is

detected.

For

REAL(4),

an

underflow

occurs

when

the

result

has

an

absolute

value

<

2-149.

For

REAL(8),

an

underflow

occurs

when

the

result

has

an

absolute

value

<

2-1074.

IEEE_INEXACT

Occurs

when

the

result

of

a

real

or

complex

assignment

or

operation

is

not

exact.

The

following

constants

are

arrays

of

IEEE_FLAG_TYPE:

IEEE_USUAL

An

array

named

constant

containing

IEEE_OVERFLOW,

IEEE_DIVIDE_BY_ZERO,

and

IEEE_INVALID

elements

in

order.

IEEE_ALL

An

array

named

constant

containing

IEEE_USUAL,

IEEE_UNDERFLOW,

and

IEEE_INEXACT

elements

in

order.

IEEE_STATUS_TYPE

A

derived

data

type

defined

in

the

IEEE_ARITHMETIC

module

that

represents

the

current

floating-point

status.

The

floating-point

status

encompasses

the

values

of

all

exception

flags,

halting,

and

rounding

modes.

IEEE_CLASS_TYPE

A

derived

data

type

defined

in

the

IEEE_ARITHMETIC

module

that

categorizes

a

class

of

floating-point

values.

The

values

for

IEEE_CLASS_TYPE

must

be

one

of

the

following

named

constants

as

defined

in

the

IEEE_ARITHMETIC

module:

IEEE_SIGNALING_NAN

IEEE_NEGATIVE_ZERO

IEEE_QUIET_NAN

IEEE_POSITIVE_ZERO

IEEE_NEGATIVE_INF

IEEE_POSITIVE_DENORMAL

IEEE_NEGATIVE_NORMAL

IEEE_POSITIVE_NORMAL

IEEE_NEGATIVE_DENORMAL

IEEE_POSITIVE_INF

IEEE_ROUND_TYPE

A

derived

data

type

defined

in

the

IEEE_ARITHMETIC

module

that

identifies

a

particular

rounding

mode.

The

values

for

IEEE_ROUND_TYPE

must

be

one

of

the

following

named

constants

as

defined

in

the

IEEE_ARITHMETIC

module:

IEEE_NEAREST

Rounds

the

exact

result

to

the

nearest

representable

value.

IBM

Extension

550

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

IEEE_TO_ZERO

Rounds

the

exact

result

to

the

next

representable

value,

towards

zero.

IEEE_UP

Rounds

the

exact

result

to

the

next

representable

value,

towards

positive

infinity.

IEEE_DOWN

Rounds

the

exact

result

to

the

next

representable

value,

towards

negative

infinity.

IEEE_OTHER

Indicates

that

the

rounding

mode

does

not

conform

to

the

IEEE

standard.

IEEE_FEATURES_TYPE

A

derived

data

type

defined

in

the

IEEE_FEATURES

module

that

identifies

the

IEEE

features

to

use.

The

values

for

IEEE_FEATURES_TYPE

must

be

one

of

the

following

named

constants

as

defined

in

the

IEEE_FEATURES

module:

IEEE_DATATYPE

IEEE_DATATYPE

IEEE_DENORMAL

IEEE_INVALID_FLAG

IEEE_DIVIDE

IEEE_NAN

IEEE_HALTING

IEEE_ROUNDING

IEEE_INEXACT_FLAG

IEEE_SQRT

IEEE_INF

IEEE_UNDERFLOW_FLAG

IEEE

Operators

The

IEEE_ARITHMETIC

module

defines

two

sets

of

elemental

operators

for

comparing

variables

of

IEEE_CLASS_TYPE

or

IEEE_ROUND_TYPE.

==

Allows

you

to

compare

two

IEEE_CLASS_TYPE

or

two

IEEE_ROUND_TYPE

values.

The

operator

returns

true

if

the

values

are

identical

or

false

if

they

differ.

/=

Allows

you

to

compare

two

IEEE_CLASS_TYPE

or

two

IEEE_ROUND_TYPE

values.

The

operator

returns

true

if

the

values

differ

or

false

if

they

are

identical.

IEEE

PROCEDURES

To

use

the

following

IEEE

procedures,

you

must

add

a

USE

IEEE_ARITHMETIC,

USE

IEEE_EXCEPTIONS,

or

USE

IEEE_FEATURES

statement

to

your

source

file

as

required.

For

more

information

on

the

USE

statement,

see

“USE”

on

page

384.

Rules

for

Using

IEEE

Procedures

XL

Fortran

supports

all

the

named

constants

in

the

IEEE_FEATURES

module.

The

IEEE_ARITHMETIC

module

behaves

as

if

it

contained

a

USE

statement

for

IEEE_EXCEPTIONS.

All

values

that

are

public

in

IEEE_EXCEPTIONS

remain

public

in

IEEE_ARITHMETIC.

When

the

IEEE_EXCEPTIONS

or

the

IEEE_ARITHMETIC

modules

are

accessible,

IEEE_OVERFLOW

and

IEEE_DIVIDE_BY_ZERO

are

supported

in

the

scoping

unit

for

all

kinds

of

real

and

complex

data.

To

determine

the

other

exceptions

supported

use

the

IEEE_SUPPORT_FLAG

function.

Use

IBM

Extension

Floating-Point

Control

and

Inquiry

Procedures

551

IEEE_SUPPORT_HALTING

to

determine

if

halting

is

supported.

Support

of

other

exceptions

is

influenced

by

the

accessibility

of

the

named

constants

IEEE_INEXACT_FLAG,

IEEE_INVALID_FLAG,

and

IEEE_UNDERFLOW_FLAG

of

the

IEEE_FEATURES

module

as

follows:

v

If

a

scoping

unit

has

access

to

IEEE_UNDERFLOW_FLAG

of

IEEE_FEATURES,

the

scoping

unit

supports

underflow

and

returns

true

from

IEEE_SUPPORT_FLAG(IEEE_UNDERFLOW,

X),

for

REAL(4)

and

REAL(8).

v

If

IEEE_INEXACT_FLAG

or

IEEE_INVALID_FLAG

is

accessible,

the

scoping

unit

supports

the

exception

and

returns

true

from

the

corresponding

inquiry

for

REAL(4)

and

REAL(8).

v

If

IEEE_HALTING

is

accessible,

the

scoping

unit

supports

halting

control

and

returns

true

from

IEEE_SUPPORT_HALTING(FLAG)

for

the

flag.

If

an

exception

flag

signals

on

entry

to

a

scoping

unit

that

does

not

access

IEEE_EXCEPTIONS

or

IEEE_ARITHMETIC,

the

compiler

ensures

that

the

exception

flag

is

signaling

on

exit.

If

a

flag

is

quiet

on

entry

to

such

a

scoping

unit,

it

can

be

signaling

on

exit.

Further

IEEE

support

is

available

through

the

IEEE_ARITHMETIC

module.

Support

is

influenced

by

the

accessibility

of

named

constants

in

the

IEEE_FEATURES

module:

v

If

a

scoping

unit

has

access

to

IEEE_DATATYPE

of

IEEE_FEATURES,

the

scoping

unit

supports

IEEE

arithmetic

and

returns

true

from

IEEE_SUPPORT_DATATYPE(X)

for

REAL(4)

and

REAL(8).

v

If

IEEE_DENORMAL,

IEEE_DIVIDE,

IEEE_INF,

IEEE_NAN,

IEEE_ROUNDING,

or

IEEE_SQRT

is

accessible,

the

scoping

unit

supports

the

feature

and

returns

true

from

the

corresponding

inquiry

function

for

REAL(4)

and

REAL(8).

v

For

IEEE_ROUNDING,

the

scoping

unit

returns

true

for

all

the

rounding

modes

IEEE_NEAREST,

IEEE_TO_ZERO,

IEEE_UP,

and

IEEE_DOWN

for

REAL(4)

and

REAL(8).

If

the

IEEE_EXCEPTIONS

or

IEEE_ARITHMETIC

modules

are

accessed,

and

IEEE_FEATURES

is

not,

the

supported

subset

of

features

is

the

same

as

if

IEEE_FEATURES

was

accessed.

IEEE_CLASS(X)

An

elemental

IEEE

class

function.

Returns

the

IEEE

class

of

a

floating-point

value.

Module:

IEEE_ARITHMETIC

Syntax:

Where

X

is

of

type

real.

Result

Type

and

Attributes:

The

result

is

of

type

IEEE_CLASS_TYPE.

Rules:

To

ensure

compliance

with

the

Fortran

2000

draft

standard,

the

IEEE_SUPPORT_DATATYPE(X)

function

must

return

with

a

value

of

true.

If

you

specify

a

data

type

of

REAL(16),

then

IEEE_SUPPORT_DATATYPE

will

return

false,

though

the

appropriate

class

type

will

still

be

returned.

Examples:

IBM

Extension

552

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

USE

IEEE_ARITHMETIC

TYPE(IEEE_CLASS_TYPE)

::

C

REAL

::

X

=

-1.0

IF

(IEEE_SUPPORT_DATATYPE(X))

THEN

C

=

IEEE_CLASS(X)

!

C

has

class

IEEE_NEGATIVE_NORMAL

ENDIF

IEEE_COPY_SIGN(X,

Y)

An

elemental

IEEE

copy

sign

function.

Returns

the

value

of

X

with

the

sign

of

Y.

Module:

IEEE_ARITHMETIC

Syntax:

Where

X

and

Y

are

of

type

real,

though

they

may

be

of

different

kinds.

Result

Type

and

Attributes:

The

result

is

of

the

same

kind

and

type

as

X.

Rules:

To

ensure

compliance

with

the

Fortran

2000

draft

standard,

the

IEEE_SUPPORT_DATATYPE(X)

and

IEEE_SUPPORT_DATATYPE(Y)

must

return

with

a

value

of

true.

For

supported

IEEE

special

values,

such

as

NaN

and

infinity,

IEEE_COPY_SIGN

returns

the

value

of

X

with

the

sign

of

Y.

IEEE_COPY_SIGN

ignores

the

–qxlf90=nosignedzero

compiler

option.

Note:

XL

Fortran

REAL(16)

numbers

have

no

signed

zero.

Examples:

Example

1:

USE

IEEE_ARITHMETIC

REAL

::

X

DOUBLE

PRECISION

::

Y

X

=

3.0

Y

=

-2.0

IF

(IEEE_SUPPORT_DATATYPE(X)

.AND.

IEEE_SUPPORT_DATATYPE(Y))

THEN

X

=

IEEE_COPY_SIGN(X,Y)

!

X

has

value

-3.0

ENDIF

Example

2:

USE

IEEE_ARITHMETIC

REAL

::

X,

Y

Y

=

1.0

IF

(IEEE_SUPPORT_DATATYPE(X))

THEN

X

=

IEEE_VALUE(X,

IEEE_NEGATIVE_INF)

!

X

has

value

-inf

X

=

IEEE_COPY_SIGN(X,Y)

!

X

has

value

+inf

ENDIF

IEEE_GET_FLAG(FLAG,

FLAG_VALUE)

An

elemental

IEEE

subroutine.

Retrieves

the

status

of

the

exception

flag

specified.

Sets

FLAG_VALUE

to

true

if

the

flag

is

signaling,

or

false

otherwise.

Module:

IEEE_ARITHMETIC

Syntax:

Where

FLAG

is

an

INTENT(IN)

argument

of

type

IEEE_FLAG_TYPE

specifying

the

IEEE

flag

to

obtain.

FLAG_VALUE

is

an

INTENT(OUT)

default

logical

argument

that

contains

the

value

of

FLAG.

Examples:

IBM

Extension

Floating-Point

Control

and

Inquiry

Procedures

553

USE

IEEE_EXCEPTIONS

LOGICAL

::

FLAG_VALUE

CALL

IEEE_GET_FLAG(IEEE_OVERFLOW,FLAG_VALUE)

IF

(FLAG_VALUE)

THEN

PRINT

*,

"Overflow

flag

is

signaling."

ELSE

PRINT

*,

"Overflow

flag

is

quiet."

ENDIF

IEEE_GET_HALTING_MODE(FLAG,

HALTING)

An

elemental

IEEE

subroutine.

Retrieves

the

halting

mode

for

an

exception

and

sets

HALTING

to

true

if

the

exception

specified

by

the

flag

will

cause

halting.

Module:

IEEE_ARITHMETIC

Syntax:

Where

FLAG

is

an

INTENT(IN)

argument

of

type

IEEE_FLAG_TYPE

specifying

the

IEEE

flag.

HALTING

is

an

INTENT(OUT)

default

logical.

Examples:

USE

IEEE_EXCEPTIONS

LOGICAL

HALTING

CALL

IEEE_GET_HALTING_MODE(IEEE_OVERFLOW,HALTING)

IF

(HALTING)

THEN

PRINT

*,

"The

program

will

halt

on

an

overflow

exception."

ENDIF

IEEE_GET_ROUNDING_MODE

(ROUND_VALUE)

An

IEEE

subroutine.

Sets

ROUND_VALUE

to

the

current

IEEE

rounding

mode.

Module:

IEEE_ARITHMETIC

Syntax:

Where

ROUND_VALUE

is

an

INTENT(OUT)

scalar

of

type

IEEE_ROUND_TYPE.

Examples:

USE

IEEE_ARITHMETIC

TYPE(IEEE_ROUND_TYPE)

ROUND_VALUE

CALL

IEEE_GET_ROUNDING_MODE(ROUND_VALUE)

!

Store

the

rounding

mode

IF

(ROUND_VALUE

==

IEEE_OTHER)

THEN

PRINT

*,

"You

are

not

using

an

IEEE

rounding

mode."

ENDIF

IEEE_GET_STATUS(STATUS_VALUE)

An

IEEE

subroutine.

Retrieves

the

current

IEEE

floating-point

status.

Module:

IEEE_ARITHMETIC

Syntax:

Where

STATUS_VALUE

is

an

INTENT(OUT)

scalar

of

type

IEEE_STATUS_TYPE.

Rules:

You

can

only

use

STATUS_VALUE

in

an

IEEE_SET_STATUS

invocation.

Examples:

USE

IEEE_ARITHMETIC

TYPE(IEEE_STATUS_TYPE)

STATUS_VALUE

...

CALL

IEEE_GET_STATUS(STATUS_VALUE)

!

Get

status

of

all

exception

flags

IBM

Extension

554

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

CALL

IEEE_SET_FLAG(IEEE_ALL,.FALSE.)

!

Set

all

exception

flags

to

quiet

...

!

calculation

involving

exception

handling

CALL

IEEE_SET_STATUS(STATUS_VALUE)

!

Restore

the

flags

IEEE_IS_FINITE(X)

An

elemental

IEEE

function.

Tests

whether

a

value

is

finite.

Returns

true

if

IEEE_CLASS(X)

has

one

of

the

following

values:

v

IEEE_NEGATIVE_NORMAL

v

IEEE_NEGATIVE_DENORMAL

v

IEEE_NEGATIVE_ZERO

v

IEEE_POSITIVE_ZERO

v

IEEE_POSITIVE_DENORMAL

v

IEEE_POSITIVE_NORMAL

It

returns

false

otherwise.

Module:

IEEE_ARITHMETIC

Syntax:

Where

X

is

of

type

real.

Result

Type

and

Attributes:

Where

the

result

is

of

type

default

logical.

Rules:

To

ensure

compliance

with

the

Fortran

2000

draft

standard,

the

IEEE_SUPPORT_DATATYPE(X)

must

return

with

a

value

of

true.

Examples:

USE

IEEE_ARITHMETIC

REAL

::

X

=

1.0

IF

(IEEE_SUPPORT_DATATYPE(X))

THEN

PRINT

*,

IEEE_IS_FINITE(X)

!

Prints

true

ENDIF

IEEE_IS_NAN(X)

An

elemental

IEEE

function.

Tests

whether

a

value

is

IEEE

Not-a-Number.

Returns

true

if

IEEE_CLASS(X)

has

the

value

IEEE_SIGNALING_NAN

or

IEEE_QUIET_NAN.

It

returns

false

otherwise.

Module:

IEEE_ARITHMETIC

Syntax:

Where

X

is

of

type

real.

Result

Type

and

Attributes:

Where

the

result

is

of

type

default

logical.

Rules:

To

ensure

compliance

with

the

Fortran

2000

draft

standard,

the

IEEE_SUPPORT_DATATYPE(X)

and

IEEE_SUPPORT_NAN(X)

must

return

with

a

value

of

true.

Examples:

Example

1:

USE

IEEE_ARITHMETIC

REAL

::

X

=

-1.0

IF

(IEEE_SUPPORT_DATATYPE(X))

THEN

IF

(IEEE_SUPPORT_SQRT(X))

THEN

!

IEEE-compliant

SQRT

function

IF

(IEEE_SUPPORT_NAN(X))

THEN

PRINT

*,

IEEE_IS_NAN(SQRT(X))

!

Prints

true

ENDIF

ENDIF

ENDIF

IBM

Extension

Floating-Point

Control

and

Inquiry

Procedures

555

Example

2:

USE

IEEE_ARITHMETIC

REAL

::

X

=

-1.0

IF

(IEEE_SUPPORT_STANDARD(X))

THEN

PRINT

*,

IEEE_IS_NAN(SQRT(X))

!

Prints

true

ENDIF

IEEE_IS_NEGATIVE(X)

An

elemental

IEEE

function.

Tests

whether

a

value

is

negative.

Returns

true

if

IEEE_CLASS(X)

has

one

of

the

following

values:

v

IEEE_NEGATIVE_NORMAL

v

IEEE_NEGATIVE_DENORMAL

v

IEEE_NEGATIVE_ZERO

v

IEEE_NEGATIVE_INF

It

returns

false

otherwise.

Module:

IEEE_ARITHMETIC

Syntax:

Where

X

is

of

type

real.

Result

Type

and

Attributes:

Where

the

result

is

of

type

default

logical.

Rules:

To

ensure

compliance

with

the

Fortran

2000

draft

standard,

the

IEEE_SUPPORT_DATATYPE(X)

must

return

with

a

value

of

true.

Examples:

USE

IEEE_ARITHMETIC

IF

(IEEE_SUPPORT_DATATYPE(1.0))

THEN

PRINT

*,

IEEE_IS_NEGATIVE(1.0)

!

Prints

false

ENDIF

IEEE_IS_NORMAL(X)

An

elemental

IEEE

function.

Tests

whether

a

value

is

normal.

Returns

true

if

IEEE_CLASS(X)

has

one

of

the

following

values:

v

IEEE_NEGATIVE_NORMAL

v

IEEE_NEGATIVE_ZERO

v

IEEE_POSITIVE_ZERO

v

IEEE_POSITIVE_NORMAL

It

returns

false

otherwise.

Module:

IEEE_ARITHMETIC

Syntax:

Where

X

is

of

type

real.

Result

Type

and

Attributes:

Where

the

result

is

of

type

default

logical.

Rules:

To

ensure

compliance

with

the

Fortran

2000

draft

standard,

the

IEEE_SUPPORT_DATATYPE(X)

must

return

with

a

value

of

true.

Examples:

USE

IEEE_ARITHMETIC

REAL

::

X

=

-1.0

IF

(IEEE_SUPPORT_DATATYPE(X))

THEN

IBM

Extension

556

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

IF

(IEEE_SUPPORT_SQRT(X))

THEN

!

IEEE-compliant

SQRT

function

PRINT

*,

IEEE_IS_NORMAL(SQRT(X))

!

Prints

false

ENDIF

ENDIF

IEEE_LOGB(X)

An

elemental

IEEE

function.

Returns

unbiased

exponent

in

the

IEEE

floating-point

format.

If

the

value

of

X

is

neither

zero,

infinity,

or

NaN,

the

result

has

the

value

of

the

unbiased

exponent

of

X,

equal

to

EXPONENT(X)–1.

Module:

IEEE_ARITHMETIC

Syntax:

Where

X

is

of

type

real.

Result

Type

and

Attributes:

Where

the

result

is

the

same

type

and

kind

as

X.

Rules:

To

ensure

compliance

with

the

Fortran

2000

draft

standard,

the

IEEE_SUPPORT_DATATYPE(X)

must

return

with

a

value

of

true.

If

X

is

zero,

the

result

is

negative

infinity.

If

X

is

infinite,

the

result

is

positive

infinity.

If

X

is

NaN,

the

result

is

nan.

Examples:

USE

IEEE_ARITHMETIC

IF

(IEEE_SUPPORT_DATATYPE(1.1))

THEN

PRINT

*,

IEEE_LOGB(1.1)

!

Prints

0.0

ENDIF

IEEE_NEXT_AFTER(X,

Y)

An

elemental

IEEE

function.

Returns

the

next

machine-representable

neighbor

of

X

in

the

direction

towards

Y.

Module:

IEEE_ARITHMETIC

Syntax:

Where

X

and

Y

are

of

type

real.

Result

Type

and

Attributes:

Where

the

result

is

the

same

type

and

kind

as

X.

Rules:

To

ensure

compliance

with

the

Fortran

2000

draft

standard,

the

IEEE_SUPPORT_DATATYPE(X)

and

IEEE_SUPPORT_DATATYPE(Y)

must

return

with

a

value

of

true.

If

X

and

Y

are

equal

the

function

returns

X

without

signaling

an

exception.

If

X

and

Y

are

not

equal,

the

function

returns

the

next

machine-representable

neighbor

of

X

in

the

direction

towards

Y.

The

neighbors

of

zero,

of

either

sign,

are

both

nonzero.

IEEE_OVERFLOW

and

IEEE_INEXACT

are

signaled

when

X

is

finite

but

IEEE_NEXT_AFTER(X,

Y)

is

infinite.

IEEE_UNDERFLOW

and

IEEE_INEXACT

are

signaled

when

IEEE_NEXT_AFTER(X,

Y)

is

denormalized

or

zero.

IBM

Extension

Floating-Point

Control

and

Inquiry

Procedures

557

If

X

or

Y

is

a

quiet

NaN,

the

result

is

one

of

the

input

NaN

values.

Examples:

Example

1:

USE

IEEE_ARITHMETIC

REAL

::

X

=

1.0,

Y

=

2.0

IF

(IEEE_SUPPORT_DATATYPE(X))

THEN

PRINT

*,

(IEEE_NEXT_AFTER(X,Y)

==

X

+

EPSILON(X))

!

Prints

true

ENDIF

Example

2:

USE

IEEE_ARITHMETIC

REAL(4)

::

X

=

0.0,

Y

=

1.0

IF

(IEEE_SUPPORT_DATATYPE(X))

THEN

PRINT

*,

(IEEE_NEXT_AFTER(X,Y)

==

2.0**(-149))

!

Prints

true

ENDIF

IEEE_REM(X,

Y)

An

elemental

IEEE

remainder

function.

The

result

value,

regardless

of

the

rounding

mode,

is

exactly

X–Y*N,

where

N

is

the

integer

nearest

to

the

exact

value

X/Y;

whenever

|N

-

X/Y|

=

1/2,

N

is

even.

Module:

IEEE_ARITHMETIC

Syntax:

Where

X

and

Y

are

of

type

real.

Result

Type

and

Attributes:

Where

the

result

is

of

type

real

with

the

same

kind

as

the

argument

with

greater

precision.

Rules:

To

ensure

compliance

with

the

Fortran

2000

draft

standard,

the

IEEE_SUPPORT_DATATYPE(X)

and

IEEE_SUPPORT_DATATYPE(Y)

must

return

with

a

value

of

true.

If

the

result

value

is

zero,

the

sign

is

the

same

as

X.

Examples:

USE

IEEE_ARITHMETIC

IF

(IEEE_SUPPORT_DATATYPE(4.0))

THEN

PRINT

*,

IEEE_REM(4.0,3.0)

!

Prints

1.0

PRINT

*,

IEEE_REM(3.0,2.0)

!

Prints

-1.0

PRINT

*,

IEEE_REM(5.0,2.0)

!

Prints

1.0

ENDIF

IEEE_RINT(X)

An

elemental

IEEE

function.

Rounds

to

an

integer

value

according

to

the

current

rounding

mode.

Module:

IEEE_ARITHMETIC

Syntax:

Where

X

is

of

type

real.

Result

Type

and

Attributes:

Where

the

result

is

the

same

type

and

kind

as

X.

Rules:

To

ensure

compliance

with

the

Fortran

2000

draft

standard,

the

IEEE_SUPPORT_DATATYPE(X)

must

return

with

a

value

of

true.

If

the

result

has

the

value

zero,

the

sign

is

that

of

X.

IBM

Extension

558

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Examples:

USE

IEEE_ARITHMETIC

IF

(IEEE_SUPPORT_DATATYPE(1.1))

THEN

CALL

IEEE_SET_ROUNDING_MODE(IEEE_NEAREST)

PRINT

*,

IEEE_RINT(1.1)

!

Prints

1.0

CALL

IEEE_SET_ROUNDING_MODE(IEEE_UP)

PRINT

*,

IEEE_RINT(1.1)

!

Prints

2.0

ENDIF

IEEE_SCALB(X,

I)

An

elemental

IEEE

function.

Returns

X

*

2I.

Module:

IEEE_ARITHMETIC

Syntax:

Where

X

is

of

type

real

and

I

is

of

type

INTEGER.

Result

Type

and

Attributes:

Where

the

result

is

the

same

type

and

kind

as

X.

Rules:

To

ensure

compliance

with

the

Fortran

2000

draft

standard,

the

IEEE_SUPPORT_DATATYPE(X)

must

return

with

a

value

of

true.

If

X

*

2I

is

representable

as

a

normal

number,

then

the

result

is

a

normal

number.

If

X

is

finite

and

X

*

2I

is

too

large

the

IEEE_OVERFLOW

exception

occurs.

The

result

value

is

infinity

with

the

sign

of

X.

If

X

*

2I

is

too

small

and

there

is

a

loss

of

accuracy,

the

IEEE_UNDERFLOW

exception

occurs.

The

result

is

the

nearest

representable

number

with

the

sign

of

X.

If

X

is

infinite,

the

result

is

the

same

as

X

with

no

exception

signals.

Examples:

USE

IEEE_ARITHMETIC

IF

(IEEE_SUPPORT_DATATYPE(1.0))

THEN

PRINT

*,

IEEE_SCALB(1.0,2)

!

Prints

4.0

ENDIF

IEEE_SELECTED_REAL_KIND([P,

R])

A

transformational

IEEE

function.

Returns

a

value

of

the

kind

type

parameter

of

an

IEEE

real

data

type

with

decimal

precision

of

at

least

P

digits,

and

a

decimal

exponent

range

of

at

least

R.

Module:

IEEE_ARITHMETIC

Syntax:

Where

P

and

R

are

both

scalar

optional

arguments

of

type

integer.

Rules:

If

the

kind

type

parameter

is

not

available

and

the

precision

is

not

available,

the

result

is

–1.

If

the

kind

type

parameter

is

not

available

and

the

exponent

range

is

not

available,

the

result

is

–2.

If

the

kind

type

parameter

is

not

available

and

if

neither

the

precision

or

the

exponent

range

is

available,

the

result

is

–3.

If

more

than

one

kind

type

parameter

value

is

applicable,

the

value

returned

is

the

one

with

the

smallest

decimal

precision.

If

there

are

several

values,

the

smallest

of

these

kind

values

is

returned.

Examples:

IBM

Extension

Floating-Point

Control

and

Inquiry

Procedures

559

USE

IEEE_ARITHMETIC

!

P

and

R

fit

in

a

real(4)

PRINT

*,

IEEE_SELECTED_REAL_KIND(6,37)

!

prints

4

!

P

needs

at

least

a

real(8)

PRINT

*,

IEEE_SELECTED_REAL_KIND(14,37)

!

prints

8

!

R

needs

at

least

a

real(8)

PRINT

*,

IEEE_SELECTED_REAL_KIND(6,307)

!

prints

8

!

P

is

too

large

PRINT

*,

IEEE_SELECTED_REAL_KIND(40,37)

!

prints

-1

!

R

is

too

large

PRINT

*,

IEEE_SELECTED_REAL_KIND(6,400)

!

prints

-2

!

P

and

R

are

both

too

large

PRINT

*,

IEEE_SELECTED_REAL_KIND(40,400)

!

prints

-3

END

IEEE_SET_FLAG(FLAG,

FLAG_VALUE)

An

IEEE

subroutine.

Assigns

a

value

to

an

IEEE

exception

flag.

Module:

IEEE_EXCEPTIONS

Syntax:

Where

FLAG

is

an

INTENT(IN)

scalar

or

array

argument

of

type

IEEE_FLAG_TYPE

corresponding

to

the

value

of

the

flag

to

be

set.

FLAG_VALUE

is

an

INTENT(IN)

scalar

or

array

argument

of

type

logical,

corresponding

to

the

desired

status

of

the

exception

flag.

The

value

of

FLAG_VALUE

should

be

conformable

with

the

value

of

FLAG.

Rules:

If

FLAG_VALUE

is

true,

the

exception

flag

specified

by

FLAG

is

set

to

signaling.

Otherwise,

the

flag

is

set

to

quiet.

Each

element

of

FLAG

must

have

a

unique

value.

Examples:

USE

IEEE_EXCEPTIONS

CALL

IEEE_SET_FLAG(IEEE_OVERFLOW,

.TRUE.)

!

IEEE_OVERFLOW

is

now

signaling

IEEE_SET_HALTING_MODE(FLAG,

HALTING)

An

IEEE

subroutine.

Controls

continuation

or

halting

after

an

exception.

Module:

IEEE_EXCEPTIONS

Syntax:

Where

FLAG

is

an

INTENT(IN)

scalar

or

array

argument

of

type

IEEE_FLAG_TYPE

corresponding

to

the

exception

flag

for

which

holding

applies.

HALTING

is

an

INTENT(IN)

scalar

or

array

argument

of

type

logical,

corresponding

to

the

desired

halting

status.

By

default

exceptions

will

not

cause

halting

in

XL

Fortran.

The

value

of

HALTING

should

be

conformable

with

the

value

of

FLAG.

Rules:

To

ensure

compliance

with

the

Fortran

2000

draft

standard,

the

IEEE_SUPPORT_DATATYPE(X)

must

return

with

a

value

of

true.

If

HALTING

is

true,

the

exception

specified

by

FLAG

will

cause

halting.

Otherwise,

execution

will

continue

after

the

exception.

IBM

Extension

560

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Each

element

of

FLAG

must

have

a

unique

value.

Examples:

@PROCESS

FLOAT(NOFOLD)

USE

IEEE_EXCEPTIONS

REAL

::

X

CALL

IEEE_SET_HALTING_MODE(IEEE_DIVIDE_BY_ZERO,

.TRUE.)

X

=

1.0

/

0.0

!

Program

will

halt

with

a

divide-by-zero

exception

IEEE_SET_ROUNDING_MODE

(ROUND_VALUE)

An

IEEE

subroutine.

Sets

the

current

rounding

mode.

Module:

IEEE_ARITHMETIC

Syntax:

Where

ROUND_VALUE

is

an

INTENT(IN)

argument

of

type

IEEE_ROUND_TYPE

specifying

the

rounding

mode.

Rules:

To

ensure

compliance

with

the

Fortran

2000

draft

standard,

the

IEEE_SUPPORT_DATATYPE(X)

and

IEEE_SUPPORT_ROUNDING

(ROUND_VALUE,

X)

must

return

with

a

value

of

true.

The

compilation

unit

calling

this

program

must

be

compiled

with

the

-qfloat=rrm

compiler

option.

All

compilation

units

calling

programs

compiled

with

the

-qfloat=rrm

compiler

option

must

also

be

compiled

with

this

option.

Examples:

USE

IEEE_ARITHMETIC

IF

(IEEE_SUPPORT_DATATYPE(1.1))

THEN

CALL

IEEE_SET_ROUNDING_MODE(IEEE_NEAREST)

PRINT

*,

IEEE_RINT(1.1)

!

Prints

1.0

CALL

IEEE_SET_ROUNDING_MODE(IEEE_UP)

PRINT

*,

IEEE_RINT(1.1)

!

Prints

2.0

ENDIF

IEEE_SET_STATUS(STATUS_VALUE)

An

IEEE

subroutine.

Restores

the

value

of

the

floating-point

status.

Module:

IEEE_ARITHMETIC

Syntax:

Where

STATUS_VALUE

is

an

INTENT(IN)

argument

of

type

IEEE_STATUS_TYPE

specifying

the

floating-point

status.

Rules:

STATUS_VALUE

must

have

been

set

previously

by

IEEE_GET_STATUS.

IEEE_SUPPORT_DATATYPE

or

IEEE_SUPPORT_DATATYPE(X)

An

inquiry

IEEE

function.

Determines

whether

the

current

implementation

supports

IEEE

arithmetic.

Support

means

using

an

IEEE

data

format

and

performing

the

binary

operations

of

+,

-,

and

*

as

in

the

IEEE

standard

whenever

the

operands

and

result

all

have

normal

values.

Note:

NaN

and

Infinity

are

not

fully

supported

for

REAL(16).

Arithmetic

operations

do

not

necessarily

propagate

these

values.

IBM

Extension

Floating-Point

Control

and

Inquiry

Procedures

561

Module:

IEEE_ARITHMETIC

Syntax:

Where

X

is

a

scalar

or

array

valued

argument

of

type

real.

Result

Type

and

Attributes:

The

result

is

a

scalar

of

type

default

logical.

Rules:

If

X

is

absent,

the

function

returns

a

value

of

false.

If

X

is

present

and

REAL(16),

the

function

returns

a

value

of

false.

Otherwise

the

function

returns

true.

Examples:

USE

IEEE_ARITHMETIC

TYPE(IEEE_STATUS_TYPE)

STATUS_VALUE

...

CALL

IEEE_GET_STATUS(STATUS_VALUE)

!

Get

status

of

all

exception

flags

CALL

IEEE_SET_FLAG(IEEE_ALL,.FALSE.)

!

Set

all

exception

flags

to

quiet

...

!

calculation

involving

exception

handling

CALL

IEEE_SET_STATUS(STATUS_VALUE)

!

Restore

the

flags

IEEE_SUPPORT_DENORMAL

or

IEEE_SUPPORT_DENORMAL(X)

An

inquiry

IEEE

function.

Determines

whether

the

current

implementation

supports

denormalized

numbers.

Module:

IEEE_ARITHMETIC

Syntax:

Where

X

is

a

scalar

or

array

valued

argument

of

type

real.

Result

Type

and

Attributes:

The

result

is

a

scalar

of

type

default

logical.

Rules:

To

ensure

compliance

with

the

Fortran

2000

draft

standard,

the

IEEE_SUPPORT_DATATYPE(X)

must

return

with

a

value

of

true.

The

result

has

a

value

of

true

if

the

implementation

supports

arithmetic

operations

and

assignments

with

denormalized

numbers

for

all

arguments

of

type

real

where

X

is

absent,

or

for

real

variables

of

the

same

kind

type

parameter

as

X.

Otherwise,

the

result

has

a

value

of

false.

IEEE_SUPPORT_DIVIDE

or

IEEE_SUPPORT_DIVIDE(X)

An

inquiry

IEEE

function.

Determines

whether

the

current

implementation

supports

division

to

the

accuracy

of

the

IEEE

standard.

Module:

IEEE_ARITHMETIC

Syntax:

Where

X

is

a

scalar

or

array

valued

argument

of

type

real.

Result

Type

and

Attributes:

The

result

is

a

scalar

of

type

default

logical.

Rules:

To

ensure

compliance

with

the

Fortran

2000

draft

standard,

the

IEEE_SUPPORT_DATATYPE(X)

must

return

with

a

value

of

true.

The

result

has

a

value

of

true

if

the

implementation

supports

division

with

the

accuracy

specified

by

the

IEEE

standard

for

all

arguments

of

type

real

where

X

is

absent,

or

for

real

variables

of

the

same

kind

type

parameter

as

X.

Otherwise,

the

result

has

a

value

of

false.

IBM

Extension

562

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

IEEE_SUPPORT_FLAG(FLAG)

or

IEEE_SUPPORT_FLAG(FLAG,

X)

An

inquiry

IEEE

function.

Determines

whether

the

current

implementation

supports

an

exception.

Module:

IEEE_EXCEPTIONS

Syntax:

Where

FLAG

is

a

scalar

argument

of

IEEE_FLAG_TYPE.

X

is

a

scalar

or

array

valued

argument

of

type

real.

Result

Type

and

Attributes:

The

result

is

a

scalar

of

type

default

logical.

Rules:

The

result

has

a

value

of

true

if

the

implementation

supports

detection

of

the

exception

specified

for

all

arguments

of

type

real

where

X

is

absent,

or

for

real

variables

of

the

same

kind

type

parameter

as

X.

Otherwise,

the

result

has

a

value

of

false.

If

X

is

absent,

the

result

has

a

value

of

false.

If

X

is

present

and

of

type

REAL(16),

the

result

has

a

value

of

false.

Otherwise

the

result

has

a

value

of

true.

IEEE_SUPPORT_HALTING(FLAG)

An

inquiry

IEEE

function.

Determines

whether

the

current

implementation

supports

the

ability

to

abort

or

continue

execution

after

an

exception

occurs.

Support

by

the

current

implementation

includes

the

ability

to

change

the

halting

mode

using

IEEE_SET_HALTING(FLAG).

Module:

IEEE_EXCEPTIONS

Syntax:

Where

FLAG

is

an

INTENT(IN)

argument

of

IEEE_FLAG_TYPE.

Result

Type

and

Attributes:

The

result

is

a

scalar

of

type

default

logical.

Rules:

The

result

returns

with

a

value

of

true

for

all

flags.

IEEE_SUPPORT_INF

or

IEEE_SUPPORT_INF(X)

An

inquiry

IEEE

function.

Support

indicates

that

IEEE

infinity

behavior

for

unary

and

binary

operations,

including

those

defined

by

intrinsic

functions

and

by

functions

in

intrinsic

modules,

complies

with

the

IEEE

standard.

Module:

IEEE_ARITHMETIC

Syntax:

Where

X

is

a

scalar

or

array

valued

argument

of

type

real.

Result

Type

and

Attributes:

The

result

is

a

scalar

of

type

default

logical.

Rules:

To

ensure

compliance

with

the

Fortran

2000

draft

standard,

the

IEEE_SUPPORT_DATATYPE(X)

must

return

with

a

value

of

true.

The

result

has

a

value

of

true

if

the

implementation

supports

IEEE

positive

and

negative

infinities

for

all

arguments

of

type

real

where

X

is

absent,

or

for

real

variables

of

the

same

kind

type

parameter

as

X.

Otherwise,

the

result

has

a

value

of

false.

IBM

Extension

Floating-Point

Control

and

Inquiry

Procedures

563

If

X

is

of

type

REAL(16),

the

result

has

a

value

of

false.

Otherwise

the

result

has

a

value

of

true.

IEEE_SUPPORT_IO

or

IEEE_SUPPORT_IO(X)

An

inquiry

IEEE

function.

Determines

whether

the

current

implementation

supports

IEEE

base

conversion

rounding

during

formatted

input/output.

Support

refers

the

ability

to

do

IEEE

base

conversion

during

formatted

input/output

as

described

in

the

IEEE

standard

for

the

modes

IEEE_UP,

IEEE_DOWN,

IEEE_ZERO,

and

IEEE_NEAREST

for

all

arguments

of

type

real

where

X

is

absent,

or

for

real

variables

of

the

same

kind

type

parameter

as

X.

Module:

IEEE_ARITHMETIC

Syntax:

Where

X

is

a

scalar

or

array

valued

argument

of

type

real.

Result

Type

and

Attributes:

The

result

is

a

scalar

of

type

default

logical.

Rules:

To

ensure

compliance

with

the

Fortran

2000

draft

standard,

the

IEEE_SUPPORT_DATATYPE(X)

must

return

with

a

value

of

true.

If

X

is

present

and

of

type

REAL(16),

the

result

has

a

value

of

false.

Otherwise,

the

result

returns

a

value

of

true.

IEEE_SUPPORT_NAN

or

IEEE_SUPPORT_NAN(X)

An

inquiry

IEEE

function.

Determines

whether

the

current

implementation

supports

the

IEEE

Not-a-Number

facility.

Support

indicates

that

IEEE

NaN

behavior

for

unary

and

binary

operations,

including

those

defined

by

intrinsic

functions

and

by

functions

in

intrinsic

modules,

conforms

to

the

IEEE

standard.

Module:

IEEE_ARITHMETIC

Syntax:

Where

X

is

a

scalar

or

array

valued

argument

of

type

real.

Result

Type

and

Attributes:

The

result

is

a

scalar

of

type

default

logical.

Rules:

To

ensure

compliance

with

the

Fortran

2000

draft

standard,

the

IEEE_SUPPORT_DATATYPE(X)

must

return

with

a

value

of

true.

If

X

is

absent,

the

result

has

a

value

of

false.

If

X

is

present

and

of

type

REAL(16),

the

result

has

a

value

of

false.

Otherwise

the

result

returns

a

value

of

true.

IEEE_SUPPORT_ROUNDING

(ROUND_VALUE)

or

IEEE_SUPPORT_ROUNDING

(ROUND_VALUE,

X)

An

inquiry

IEEE

function.

Determines

whether

the

current

implementation

supports

a

particular

rounding

mode

for

arguments

of

type

real.

Support

indicates

the

ability

to

change

the

rounding

mode

using

IEEE_SET_ROUNDING_MODE.

Module:

IEEE_ARITHMETIC

Syntax:

Where

ROUND_VALUE

is

a

scalar

argument

of

IEEE_ROUND_TYPE.

X

is

a

scalar

or

array

valued

argument

of

type

real.

IBM

Extension

564

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Result

Type

and

Attributes:

The

result

is

a

scalar

of

type

default

logical.

Rules:

To

ensure

compliance

with

the

Fortran

2000

draft

standard,

the

IEEE_SUPPORT_DATATYPE(X)

must

return

with

a

value

of

true.

If

X

is

absent,

the

result

has

a

value

of

true

if

the

implementation

supports

the

rounding

mode

defined

by

ROUND_VALUE

for

all

arguments

of

type

real.

Otherwise,

it

has

a

value

of

false.

If

X

is

present,

the

result

returns

a

value

of

true

if

the

implementation

supports

the

rounding

mode

defined

by

ROUND_VALUE

for

real

variables

of

the

same

kind

type

parameter

as

X.

Otherwise,

the

result

has

a

value

of

false.

If

X

is

present

and

of

type

REAL(16),

the

result

returns

a

value

of

false

when

ROUND_VALUE

has

a

value

of

IEEE_NEAREST.

Otherwise

the

result

returns

a

value

of

true.

If

ROUND_VALUE

has

a

value

of

IEEE_OTHER

the

result

has

a

value

of

false.

IEEE_SUPPORT_SQRT

or

IEEE_SUPPORT_SQRT(X)

An

inquiry

IEEE

function.

Determines

whether

the

current

implementation

supports

the

SQRT

as

defined

by

the

IEEE

standard.

Module:

IEEE_ARITHMETIC

Syntax:

Where

X

is

a

scalar

or

array

valued

argument

of

type

real.

Result

Type

and

Attributes:

The

result

is

a

scalar

of

type

default

logical.

Rules:

To

ensure

compliance

with

the

Fortran

2000

draft

standard,

the

IEEE_SUPPORT_DATATYPE(X)

must

return

with

a

value

of

true.

If

X

is

absent,

the

result

returns

a

value

of

true

if

SQRT

adheres

to

IEEE

conventions

for

all

variables

of

type

REAL.

Otherwise,

the

result

has

a

value

of

false.

If

X

is

present,

the

result

returns

a

value

of

true

if

SQRT

adheres

to

IEEE

conventions

for

all

variables

of

type

REAL

with

the

same

kind

type

parameter

as

X.

Otherwise,

the

result

has

a

value

of

false.

If

X

is

present

and

of

type

REAL(16),

the

result

has

a

value

of

false.

Otherwise

the

result

returns

a

value

of

true.

IEEE_SUPPORT_STANDARD

or

IEEE_SUPPORT_STANDARD(X)

An

inquiry

IEEE

function.

Determines

whether

all

facilities

defined

in

the

Fortran

2000

draft

standard

are

supported.

Module:

IEEE_ARITHMETIC

Syntax:

Where

X

is

a

scalar

or

array

valued

argument

of

type

real.

Result

Type

and

Attributes:

The

result

is

a

scalar

of

type

default

logical.

Rules:

If

X

is

absent,

the

result

returns

a

value

of

false

since

XL

Fortran

supports

REAL(16).

IBM

Extension

Floating-Point

Control

and

Inquiry

Procedures

565

If

X

is

present,

the

result

returns

a

value

of

true

if

the

following

functions

also

return

true:

v

IEEE_SUPPORT_DATATYPE(X)

v

IEEE_SUPPORT_DENORMAL(X)

v

IEEE_SUPPORT_DIVIDE(X)

v

IEEE_SUPPORT_FLAG(FLAG,

X)

for

every

valid

flag.

v

IEEE_SUPPORT_HALTING(FLAG)

for

every

valid

flag.

v

IEEE_SUPPORT_INF(X)

v

IEEE_SUPPORT_NAN(X)

v

IEEE_SUPPORT_ROUNDING(ROUND_VALUE,

X)

for

every

valid

ROUND_VALUE

v

IEEE_SUPPORT_SQRT(X)

Otherwise,

the

result

returns

a

value

of

false.

IEEE_UNORDERED(X,

Y)

An

elemental

IEEE

unordered

function.

Module:

IEEE_ARITHMETIC

Syntax:

Where

X

and

Y

are

of

type

real.

Result

Type

and

Attributes:

The

result

is

of

type

default

logical.

Rules:

To

ensure

compliance

with

the

Fortran

2000

draft

standard,

the

IEEE_SUPPORT_DATATYPE(X)

and

IEEE_SUPPORT_DATATYPE(Y)

must

return

with

a

value

of

true.

Unordered

function

that

returns

with

a

value

of

true

if

X

or

Y

is

a

NaN.

Otherwise

the

function

returns

with

a

value

of

false.

Examples:

USE

IEEE_ARITHMETIC

REAL

X,

Y

X

=

0.0

Y

=

IEEE_VALUE(Y,

IEEE_QUIET_NAN)

PRINT

*,

IEEE_UNORDERED(X,Y)

!

Prints

true

END

IEEE_VALUE(X,

CLASS)

An

elemental

IEEE

function.

Generates

an

IEEE

value

as

specified

by

CLASS.

Note:

Implementation

of

this

function

is

platform

and

compiler

dependent

due

to

variances

in

NaN

processing

on

differing

platforms.

A

NaN

value

saved

in

a

binary

file

that

is

read

on

a

different

platform

than

the

one

that

generated

the

value

will

have

unspecified

results.

Module:

IEEE_ARITHMETIC

Syntax:

Where

X

is

of

type

real.

CLASS

is

of

type

IEEE_CLASS_TYPE.

Result

Type

and

Attributes:

The

result

is

of

the

same

type

and

kind

as

X.

IBM

Extension

566

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Rules:

To

ensure

compliance

with

the

Fortran

2000

draft

standard,

the

IEEE_SUPPORT_DATATYPE(X)

must

return

with

a

value

of

true.

IEEE_SUPPORT_NAN(X)

must

be

true

if

the

value

of

CLASS

is

IEEE_SIGNALING_NAN

or

IEEE_QUIET_NAN.

IEEE_SUPPORT_INF(X)

must

be

true

if

the

value

of

CLASS

is

IEEE_NEGATIVE_INF

or

IEEE_POSITIVE_INF.

IEEE_SUPPORT_DENORMAL(X)

must

be

true

if

the

value

of

CLASS

is

IEEE_NEGATIVE_DENORMAL

or

IEEE_POSITIVE_DENORMAL.

Multiple

calls

of

IEEE_VALUE(X,

CLASS)

return

the

same

result

for

a

particular

value

of

X,

if

kind

type

parameter

and

CLASS

remain

the

same.

If

a

compilation

unit

calls

this

program

with

a

CLASS

value

of

IEEE_SIGNALING_NAN,

the

compilation

unit

must

be

compiled

with

the

–qfloat=nans

compiler

option.

Examples:

USE

IEEE_ARITHMETIC

REAL

::

X

IF

(IEEE_SUPPORT_DATATYPE(X))

THEN

X

=

IEEE_VALUE(X,

IEEE_NEGATIVE_INF)

PRINT

*,

X

!

Prints

-inf

END

IF

Rules

for

Floating-Point

Status

An

exception

flag

set

to

signaling

remains

signaling

until

set

to

quiet

by

either

the

IEEE_SET_FLAG

or

IEEE_SET_STATUS

subroutines.

The

compiler

ensures

that

a

call

from

scoping

units

using

the

IEEE_EXCEPTIONS

or

IEEE_ARITHMETIC

intrinsic

modules

does

not

change

the

floating–point

status

other

than

by

setting

exception

flags

to

signaling.

If

a

flag

is

set

to

signaling

on

entry

into

a

scoping

unit

that

uses

the

IEEE_EXCEPTIONS

or

IEEE_ARITHMETIC

modules,

the

flag

is

set

to

quiet

and

then

restored

to

signaling

when

leaving

that

scoping

unit.

In

a

scoping

unit

that

uses

the

IEEE_EXCEPTIONS

or

IEEE_ARITHMETIC

modules,

the

rounding

and

halting

modes

do

not

change

on

entry.

On

return,

the

rounding

and

halting

modes

are

the

same

as

on

entry.

Evaluating

a

specification

expression

can

cause

an

exception

to

signal.

Exception

handlers

must

not

use

the

IEEE_EXCEPTIONS

or

IEEE_ARITHMETIC

modules.

The

following

rules

apply

to

format

processing

and

intrinsic

procedures:

v

The

status

of

a

signaling

flag,

either

signaling

or

quiet,

does

not

change

because

of

an

intermediate

calculation

that

does

not

affect

the

result.

v

If

an

intrinsic

procedure

executes

normally,

the

values

of

the

flags

IEEE_OVERFLOW,

IEEE_DIVIDE_BY_ZERO,

and

IEEE_INVALID

remain

the

same

on

entry

to

the

procedure.

IBM

Extension

Floating-Point

Control

and

Inquiry

Procedures

567

v

If

a

real

or

complex

result

is

too

large

for

the

intrinsic

to

handle,

IEEE_OVERFLOW

may

signal.

v

If

a

real

or

complex

result

is

a

NaN

because

of

an

invalid

operation,

IEEE_INVALID

may

signal.

In

a

sequence

of

statements

that

has

no

invocations

of

IEEE_GET_FLAG,

IEEE_SET_FLAG,

IEEE_GET_STATUS,

IEEE_SET_HALTING,

or

IEEE_SET_STATUS,

the

following

applies.

If

the

execution

of

an

operation

would

cause

an

exception

to

signal

but

after

execution

of

the

sequence

no

value

of

a

variable

depends

on

the

operation,

whether

the

exception

is

signaling

depends

on

the

optimization

level.

Optimization

transformations

may

eliminate

some

code,

and

thus

IEEE

exception

flags

signaled

by

the

eliminated

code

will

not

signal.

An

exception

will

not

signal

if

this

could

arise

only

during

execution

of

an

operation

beyond

those

required

or

permitted

by

the

standard.

For

procedures

defined

by

means

other

than

Fortran,

it

is

the

responsibility

of

the

user

to

preserve

floating–point

status.

XL

Fortran

does

not

always

detect

floating-point

exception

conditions

for

extended

precision

values.

If

you

turn

on

floating-point

exception

trapping

in

programs

that

use

extended

precision,

XL

Fortran

may

also

generate

signals

in

cases

where

an

exception

does

not

really

occur.

See

Detecting

and

Trapping

Floating-Point

Exceptions

in

the

User’s

Guide

for

more

information.

Fortran

2000

IEEE

derived

types,

constants,

and

operators

are

incompatible

with

the

floating–point

and

inquiry

procedures

in

xlf_fp_util,

fpsets,

and

fpgets

procedures.

A

value

obtained

from

an

IEEE

procedure

cannot

be

used

in

non-IEEE

procedures.

Within

a

single

scoping

unit,

do

not

mix

calls

to

the

procedures

in

xlf_fp_util,

fpsets,

and

fpgets

with

calls

to

the

IEEE

procedures.

These

procedures

may

change

the

floating–point

status

when

called

from

scoping

units

that

use

the

IEEE_EXCEPTIONS

or

IEEE_ARITHMETIC

modules.

Examples

Example

1:

In

the

following

example,

the

main

program

calls

procedure

P

which

uses

the

IEEE_ARITHMETIC

module.

The

procedure

changes

the

floating–point

status

before

returning.

The

example

displays

the

changes

to

the

floating–point

status

before

calling

procedure

P,

on

entry

into

the

procedure,

on

exit

from

P,

and

after

returning

from

the

procedure.

PROGRAM

MAIN

USE

IEEE_ARITHMETIC

INTERFACE

SUBROUTINE

P()

USE

IEEE_ARITHMETIC

END

SUBROUTINE

P

END

INTERFACE

LOGICAL,

DIMENSION(5)

::

FLAG_VALUES

TYPE(IEEE_ROUND_TYPE)

::

ROUND_VALUE

CALL

IEEE_SET_FLAG(IEEE_OVERFLOW,

.TRUE.)

CALL

IEEE_GET_FLAG(IEEE_ALL,

FLAG_VALUES)

PRINT

*,

"MAIN:

FLAGS

",FLAG_VALUES

CALL

P()

IBM

Extension

568

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

CALL

IEEE_GET_FLAG(IEEE_ALL,

FLAG_VALUES)

PRINT

*,

"MAIN:

FLAGS

",FLAG_VALUES

CALL

IEEE_GET_ROUNDING_MODE(ROUND_VALUE)

IF

(ROUND_VALUE

==

IEEE_NEAREST)

THEN

PRINT

*,

"MAIN:

ROUNDING

MODE:

IEEE_NEAREST"

ENDIF

END

PROGRAM

MAIN

SUBROUTINE

P()

USE

IEEE_ARITHMETIC

LOGICAL,

DIMENSION(5)

::

FLAG_VALUES

TYPE(IEEE_ROUND_TYPE)

::

ROUND_VALUE

CALL

IEEE_GET_FLAG(IEEE_ALL,

FLAG_VALUES)

PRINT

*,

"

P:

FLAGS

ON

ENTRY:

",FLAG_VALUES

CALL

IEEE_SET_ROUNDING_MODE(IEEE_TO_ZERO)

CALL

IEEE_SET_FLAG(IEEE_UNDERFLOW,

.TRUE.)

CALL

IEEE_GET_ROUNDING_MODE(ROUND_VALUE)

IF

(ROUND_VALUE

==

IEEE_TO_ZERO)

THEN

PRINT

*,

"

P:

ROUNDING

MODE

ON

EXIT:

IEEE_TO_ZERO"

ENDIF

CALL

IEEE_GET_FLAG(IEEE_ALL,

FLAG_VALUES)

PRINT

*,

"

P:

FLAGS

ON

EXIT:

",FLAG_VALUES

END

SUBROUTINE

P

When

using

the

–qstrictieeemod

compiler

option

to

ensure

compliance

with

rules

for

IEEE

arithmetic,

exception

flags

set

before

calling

P

are

cleared

on

entry

to

P.

Changes

to

the

floating–point

status

occurring

in

P

are

undone

when

P

returns,

with

the

exception

that

flags

set

in

P

remain

set

after

P

returns:

MAIN:

FLAGS

T

F

F

F

F

P:

FLAGS

ON

ENTRY:

F

F

F

F

F

P:

ROUNDING

MODE

ON

EXIT:

IEEE_TO_ZERO

P:

FLAGS

ON

EXIT:

F

F

F

T

F

MAIN:

FLAGS

T

F

F

T

F

MAIN:

ROUNDING

MODE:

IEEE_NEAREST

When

the

–qnostrictieeemod

compiler

option

is

in

effect,

exception

flags

which

were

set

before

calling

P

remain

set

on

entry

to

P.

Changes

to

the

floating

point

status

occurring

in

P

are

propagated

to

the

caller.

MAIN:

FLAGS

T

F

F

F

F

P:

FLAGS

ON

ENTRY:

T

F

F

F

F

P:

ROUNDING

MODE

ON

EXIT:

IEEE_TO_ZERO

P:

FLAGS

ON

EXIT:

T

F

F

T

F

MAIN:

FLAGS

T

F

F

T

F

Example

2:

In

the

following

example,

the

main

program

calls

procedure

Q

which

uses

neither

IEEE_ARITHMETIC

nor

IEEE_EXCEPTIONS.

Procedure

Q

changes

the

floating–point

status

before

returning.

The

example

displays

the

changes

to

the

floating–point

status

before

calling

Q,

on

entry

into

the

procedure,

on

exit

from

Q,

and

after

returning

from

the

procedure.

PROGRAM

MAIN

USE

IEEE_ARITHMETIC

LOGICAL,

DIMENSION(5)

::

FLAG_VALUES

TYPE(IEEE_ROUND_TYPE)

::

ROUND_VALUE

CALL

IEEE_SET_FLAG(IEEE_OVERFLOW,

.TRUE.)

CALL

IEEE_GET_FLAG(IEEE_ALL,

FLAG_VALUES)

PRINT

*,

"MAIN:

FLAGS

",FLAG_VALUES

IBM

Extension

Floating-Point

Control

and

Inquiry

Procedures

569

CALL

Q()

CALL

IEEE_GET_FLAG(IEEE_ALL,

FLAG_VALUES)

PRINT

*,

"MAIN:

FLAGS

",FLAG_VALUES

CALL

IEEE_GET_ROUNDING_MODE(ROUND_VALUE)

IF

(ROUND_VALUE

==

IEEE_NEAREST)

THEN

PRINT

*,

"MAIN:

ROUNDING

MODE:

IEEE_NEAREST"

ENDIF

END

PROGRAM

MAIN

SUBROUTINE

Q()

USE

XLF_FP_UTIL

INTERFACE

FUNCTION

GET_FLAGS()

LOGICAL,

DIMENSION(5)

::

GET_FLAGS

END

FUNCTION

END

INTERFACE

LOGICAL,

DIMENSION(5)

::

FLAG_VALUES

INTEGER(FP_MODE_KIND)

::

OLDMODE

FLAG_VALUES

=

GET_FLAGS()

PRINT

*,

"

Q:

FLAGS

ON

ENTRY:

",

FLAG_VALUES

CALL

CLR_FPSCR_FLAGS(FP_OVERFLOW)

OLDMODE

=

SET_ROUND_MODE(FP_RND_RZ)

CALL

SET_FPSCR_FLAGS(TRP_OVERFLOW)

CALL

SET_FPSCR_FLAGS(FP_UNDERFLOW)

IF

(GET_ROUND_MODE()

==

FP_RND_RZ)

THEN

PRINT

*,

"

Q:

ROUNDING

MODE

ON

EXIT:

TO_ZERO"

ENDIF

FLAG_VALUES

=

GET_FLAGS()

PRINT

*,

"

Q:

FLAGS

ON

EXIT:

",

FLAG_VALUES

END

SUBROUTINE

Q

!

PRINT

THE

STATUS

OF

ALL

EXCEPTION

FLAGS

FUNCTION

GET_FLAGS()

USE

XLF_FP_UTIL

LOGICAL,

DIMENSION(5)

::

GET_FLAGS

INTEGER(FPSCR_KIND),

DIMENSION(5)

::

FLAGS

INTEGER

I

FLAGS

=

(/

FP_OVERFLOW,

FP_DIV_BY_ZERO,

FP_INVALID,

&

&

FP_UNDERFLOW,

FP_INEXACT

/)

DO

I=1,5

GET_FLAGS(I)

=

(GET_FPSCR_FLAGS(FLAGS(I))

/=

0)

END

DO

END

FUNCTION

When

using

the

–qstrictieeemod

compiler

option

to

ensure

compliance

with

rules

for

IEEE

arithmetic,

exception

flags

set

before

Q

remain

set

on

entry

into

Q.

Changes

to

the

floating–point

status

occurring

in

Q

are

undone

when

Q

returns,

with

the

exception

that

flags

set

in

Q

remain

set

after

Q

returns:

MAIN:

FLAGS

T

F

F

F

F

Q:

FLAGS

ON

ENTRY:

T

F

F

F

F

Q:

ROUNDING

MODE

ON

EXIT:

TO_ZERO

Q:

FLAGS

ON

EXIT:

F

F

F

T

F

MAIN:

FLAGS

T

F

F

T

F

MAIN:

ROUNDING

MODE:

IEEE_NEAREST

IBM

Extension

570

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

When

the

–qnostrictieeemod

option

is

in

effect,

exception

flags

set

before

calling

Q

remain

set

on

entry

into

Q.

Changes

to

the

floating

point

status

occurring

in

Q

are

propagated

to

the

caller.

MAIN:

FLAGS

T

F

F

F

F

Q:

FLAGS

ON

ENTRY:

T

F

F

F

F

Q:

ROUNDING

MODE

ON

EXIT:

TO_ZERO

Q:

FLAGS

ON

EXIT:

F

F

F

T

F

MAIN:

FLAGS

F

F

F

T

F

End

of

IBM

Extension

IBM

Extension

Floating-Point

Control

and

Inquiry

Procedures

571

IBM

Extension

572

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Hardware

Directives

and

Intrinsic

Procedures

IBM

Extension

This

section

provides

an

alphabetical

reference

to

Hardware-specific

compiler

directives

and

intrinsic

functions.

For

some

directives

and

intrinsics,

you

must

specify

an

architecture

as

part

of

the

-qarch

compiler

option.

The

suboption

syntax

varies

depending

on

the

specific

requirements

of

directives

and

intrinsics

documented

in

this

section.

Hardware–Specific

Directives

This

section

provides

an

alphabetical

reference

to

hardware-specific

compiler

directives.

Unless

otherwise

noted,

a

directive

will

function

on

any

supported

hardware.

This

section

contains

the

following

directives:

“CACHE_ZERO”

“LIGHT_SYNC”

on

page

574

“ISYNC”

“PREFETCH”

on

page

574

CACHE_ZERO

The

CACHE_ZERO

directive

invokes

the

machine

instruction,

data

cache

block

set

to

zero

(dcbz).

This

instruction

sets

the

data

cache

block

corresponding

to

the

variables

you

specify

to

zero.

Use

this

directive

with

discretion.

Syntax

cv_var

is

a

variable

associated

with

the

cache

block

that

is

set

to

zero.

The

variable

must

be

a

data

object

with

a

determinable

storage

address.

The

variable

cannot

be

a

procedure

name,

subroutine

name,

module

name,

function

name,

constant,

label,

zero-sized

string,

or

an

array

with

vector

subscripts.

Examples

In

the

following

example,

assume

that

array

ARRA

has

already

been

loaded

into

a

cache

block

that

you

want

to

zero.

The

data

in

the

cache

block

is

then

set

to

zero.

real(4)

::

arrA(2**5)

!

....

!IBM*

CACHE_ZERO(arrA(1))

!

set

data

in

cache

block

to

zero

ISYNC

The

ISYNC

directive

enables

you

to

discard

any

prefetched

instructions

after

all

preceding

instructions

complete.

Subsequent

instructions

are

fetched

or

refetched

from

storage

and

execute

in

the

context

of

previous

instructions.

The

directive

only

affects

the

processor

that

executes

ISYNC.

Syntax

��

CACHE_ZERO

(

cv_var_list

)

��

©

Copyright

IBM

Corp.

1990,

2003

573

LIGHT_SYNC

The

LIGHT_SYNC

directive

ensures

that

all

stores

prior

to

LIGHT_SYNC

complete

before

any

new

instructions

can

be

executed

on

the

processor

that

executed

the

LIGHT_SYNC

directive.

This

allows

you

to

synchronize

between

multiple

processors

with

minimal

performance

impact,

as

LIGHT_SYNC

does

not

wait

for

confirmation

from

each

processor.

Syntax

PREFETCH

You

can

use

prefetching

to

instruct

the

compiler

to

load

specific

data

from

main

memory

into

the

cache

before

the

data

is

referenced.

Some

prefetching

can

be

done

automatically,

but

since

compiler-assisted

software

prefetching

can

use

information

directly

from

your

source

code,

specifying

the

directive

can

significantly

reduce

the

number

of

cache

misses.

XL

Fortran

provides

five

directives

for

compiler-assisted

software

prefetching,

as

follows:

v

The

PREFETCH_BY_LOAD

directive

prefetches

data

into

the

cache

by

way

of

a

load

instruction.

PREFETCH_BY_LOAD

can

be

used

on

any

machine,

but

if

you

are

running

on

a

PowerPC

970

machine,

PREFETCH_BY_LOAD

enables

hardware-assisted

prefetching.

v

The

PREFETCH_BY_STREAM

prefetch

technique

uses

the

PowerPC

970

prefetch

engine

to

recognize

sequential

access

to

adjacent

cache

lines

and

then

requests

anticipated

lines

from

deeper

levels

of

the

memory

hierarchy.

This

technique

establishes

a

path

or

stream

as

repeated

references

to

main

memory

are

made,

increasing

the

depth

of

the

prefetch

until

enough

lines

are

loaded

into

the

cache.

To

fetch

data

from

decremental

memory

addresses,

use

the

PREFETCH_BY_STREAM_BACKWARD

directive.

To

fetch

data

from

incremental

memory

addresses,

use

the

PREFETCH_BY_STREAM_FORWARD

directive.

The

use

of

this

streamed

prefetch

to

load

data

from

main

memory

into

the

cache

can

reduce

or

eliminate

load

latency.

v

The

PREFETCH_FOR_LOAD

directive

prefetches

data

into

the

cache

for

reading

by

way

of

a

cache

prefetch

instruction.

v

The

PREFETCH_FOR_STORE

directive

prefetches

data

into

the

cache

for

writing

by

way

of

a

cache

prefetch

instruction.

Syntax

The

PREFETCH

directive

can

take

the

following

forms:

��

ISYNC

��

��

LIGHT_SYNC

��

��

PREFETCH_BY_LOAD

(

prefetch_variable_list

)

��

LIGHT_SYNC

574

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

prefetch_variable

is

a

variable

to

be

prefetched.

The

variable

must

be

a

data

object

with

a

determinable

storage

address.

The

variable

can

be

of

any

data

type,

including

intrinsic

and

derived

data

types.

The

variable

cannot

be

a

procedure

name,

subroutine

name,

module

name,

function

name,

constant,

label,

zero-sized

string,

or

an

array

with

a

vector

subscript.

Rules

When

you

prefetch

a

variable,

the

memory

block

that

includes

the

variable

address

is

loaded

into

the

cache.

A

memory

block

is

equal

to

the

size

of

a

cache

line.

Since

the

variable

you

are

loading

into

the

cache

may

appear

anywhere

within

the

memory

block,

you

may

not

be

able

to

prefetch

all

the

elements

of

an

array.

These

directives

may

appear

anywhere

in

your

source

code

where

executable

constructs

may

appear.

These

directives

can

add

run-time

overhead

to

your

program.

Therefore

you

should

use

the

directives

only

where

necessary.

To

maximize

the

effectiveness

of

the

prefetch

directives,

it

is

recommended

that

you

specify

the

LIGHT_SYNC

directive

after

a

single

prefetch

or

at

the

end

of

a

series

of

prefetches.

Examples

Example

1:

This

example

shows

valid

uses

of

the

PREFETCH_BY_LOAD,

PREFETCH_FOR_LOAD,

and

PREFETCH_FOR_STORE

directives.

For

this

example,

assume

that

the

size

of

the

cache

line

is

64

bytes

and

that

none

of

the

declared

data

items

exist

in

the

cache

at

the

beginning

of

the

program.

The

rationale

for

using

the

directives

is

as

follows:

v

All

elements

of

array

ARRA

will

be

assigned;

therefore,

you

can

use

the

PREFETCH_FOR_STORE

directive

to

bring

the

first

16

and

second

16

elements

of

the

array

into

the

cache

before

they

are

referenced.

��

PREFETCH_FOR_LOAD

(

prefetch_variable_list

)

��

��

PREFETCH_FOR_STORE

(

prefetch_variable_list

)

��

��

PREFETCH_BY_STREAM_BACKWARD

(

prefetch_variable

)

��

��

PREFETCH_BY_STREAM_FORWARD

(

prefetch_variable

)

��

PREFETCH

Directives

Hardware

Directives

and

Intrinsic

Procedures

575

v

Since

all

elements

of

array

ARRC

will

be

read,

you

can

use

the

PREFETCH_FOR_LOAD

directive

to

bring

the

first

16

and

second

16

elements

of

the

array

into

the

cache

before

they

are

referenced.

(Assume

that

the

elements

have

been

initialized

first.)

v

Each

iteration

of

the

loop

will

use

variables

A,

B,

C,

TEMP,

I,

K

and

array

element

ARRB(I*32);

you

can

use

the

PREFETCH_BY_LOAD

directive

to

load

the

variables

and

the

array

into

the

cache.

(Because

of

the

size

of

the

cache

line,

you

will

fetch

16

elements

of

ARRB,

starting

at

element

ARRB(I*32)).

PROGRAM

GOODPREFETCH

REAL*4

A,

B,

C,

TEMP

REAL*4

ARRA(2**5),

ARRB(2**10),

ARRC(2**5)

INTEGER(4)

I,

K

!

Bring

ARRA

into

cache

for

writing.

!IBM*

PREFETCH_FOR_STORE

(ARRA(1),

ARRA(2**4+1))

!

Bring

ARRC

into

cache

for

reading.

!IBM*

PREFETCH_FOR_LOAD

(ARRC(1),

ARRC(2**4+1))

!

Bring

all

variables

into

the

cache.

!IBM*

PREFETCH_BY_LOAD

(A,

B,

C,

TEMP,

I

,

K)

!

A

subroutine

is

called

to

allow

clock

cycles

to

pass

so

that

the

!

data

is

loaded

into

the

cache

before

the

data

is

referenced.

CALL

FOO()

K

=

32

DO

I

=

1,

2

**

5

!

Bring

ARRB(I*K)

into

the

cache

!IBM*

PREFETCH_BY_LOAD

(ARRB(I*K))

A

=

-I

B

=

I

+

1

C

=

I

+

2

TEMP

=

SQRT(B*B

-

4*A*C)

ARRA(I)

=

ARRC(I)

+

(-B

+

TEMP)

/

(2*A)

ARRB(I*K)

=

(-B

-

TEMP)

/

(2*A)

END

DO

END

PROGRAM

GOODPREFETCH

Example

2:

In

this

example,

assume

that

the

total

cache

line’s

size

is

256

bytes,

and

that

none

of

the

declared

data

items

are

initially

stored

in

the

cache

or

register.

All

elements

of

array

ARRA

and

ARRC

will

then

be

read

into

the

cache.

PROGRAM

PREFETCH_STREAM

REAL*4

A,

B,

C,

TEMP

REAL*4

ARRA(2**5),

ARRC(2**5),

ARRB(2**10)

INTEGER*4

I,

K

!

All

elements

of

ARRA

and

ARRC

are

read

into

the

cache.

!IBM*

PREFETCH_BY_STREAM_FORWARD(ARRA(1))

!

You

can

substitute

PREFETCH_BY_STREAM_BACKWARD

(ARRC(2**5))

to

read

all

!

elements

of

ARRA

and

ARRC

into

the

cache.

K

=

32

DO

I

=

1,

2**5

A

=

-i

B

=

i

+

1

C

=

i

+

2

TEMP

=

SQRT(B*B

-4*A*C)

ARRA(I)

=

ARRC(I)

+

(-B

+

TEMP)

/

(2*A)

ARRB(I*K)

=

(-B

-TEMP)

/

(2*A)

END

DO

END

PROGRAM

PREFETCH_STREAM

PREFETCH

Directives

576

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Related

Information

For

information

on

applying

prefetch

techniques

to

loops

with

a

large

iteration

count,

see

the

STREAM_UNROLL

directive.

Hardware–Specific

Intrinsic

Procedures

This

section

provides

an

alphabetical

reference

to

the

hardware-specific

intrinsic

functions.

FCTIW(X)

Floating-point

Convert

to

Integer

Converts

a

floating–point

operand

into

a

32–bit,

signed

fixed–point

integer

using

the

current

rounding

mode.

This

intrinsic

is

valid

on

any

Mac

architecture.

Argument

Type

and

Attributes

X

must

be

of

type

REAL(8).

Result

Type

and

Attributes

Same

as

X.

Result

Value

The

result

is

a

fixed-point

integer,

inside

a

floating

point

variable.

FCTIWZ(X)

Floating-point

Convert

to

Integer

Round

to

Zero

Converts

a

floating-point

operand

into

a

32–bit

signed

fixed–point

integer

and

rounds

to

zero.

This

intrinsic

is

valid

on

any

Mac

architecture.

Argument

Type

and

Attributes

X

must

be

of

type

REAL(8).

Result

Type

and

Attributes

Same

as

X.

Result

Value

The

result

is

a

fixed-point

integer,

inside

a

floating

point

variable,

rounded

to

zero.

FMADD(A,

X,

Y)

Floating-point

Multiply

and

Add

Returns

the

result

of

a

floating-point

multiply–add.

Argument

Type

and

Attributes

A

can

be

of

type

REAL(4)

or

REAL(8).

X

must

be

of

the

same

type

and

kind

type

parameter

as

A.

Y

must

be

of

the

same

type

and

kind

type

parameter

as

A.

PREFETCH

Directives

Hardware

Directives

and

Intrinsic

Procedures

577

Result

Type

and

Attributes

Same

as

A,

X,

and

Y.

Result

Value

The

result

has

a

value

equal

to

A*X

+

Y.

Examples

REAL(4)

::

A,

B,

C,

RES1

REAL(8)

::

D,

E,

F,

RES2

RES1

=

FMADD(A,

B,

C)

RES2

=

FMADD(D,

E,

F)

END

FMSUB(A,

X,

Y)

Floating-point

Multiply

and

Subtract

Returns

the

result

of

a

floating-point

multiply–subtract.

Argument

Type

and

Attributes

A

must

be

of

type

REAL(8).

If

compiled

with

–qarch

set

A

may

alternatively

be

of

type

REAL(4).

X

must

be

of

the

same

type

and

kind

type

parameter

as

A.

Y

must

be

of

the

same

type

and

kind

type

parameter

as

A.

Result

Type

and

Attributes

Same

as

A,

X,

and

Y.

Result

Value

The

result

has

a

value

equal

to

A*X

–

Y.

FNABS(X)

Returns

the

negative

floating-point

value

–|X|

.

Argument

Type

and

Attributes

X

must

be

of

type

REAL.

Result

Type

and

Attributes

Same

as

X.

Result

Value

The

result

is

a

negative

floating-point

value

of

X,

–|X|.

Examples

In

the

following

example,

the

absolute

content

of

a

floating-point

variable

is

negated.

REAL(4)

::

A,

RES1

REAL(8)

::

D,

RES2

RES1

=

FNABS(A)

RES2

=

FNABS(D)

FNMADD(A,

X,

Y)

Floating-point

Negative

Multiply

and

Add

Returns

the

result

of

a

floating-point

negative

multiply–add.

IBM

Extension

578

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Argument

Type

and

Attributes

A

can

be

of

type

REAL(4)

or

REAL(8).

X

must

be

of

the

same

type

and

kind

type

parameter

as

A.

Y

must

be

of

the

same

type

and

kind

type

parameter

as

A.

Result

Type

and

Attributes

Same

as

X.

Result

Value

The

result

has

a

value

equal

to

–(A*X

+

Y).

FNMSUB(A,

X,

Y)

Floating-point

Negative

Multiply

and

Subtract

Returns

the

result

of

a

floating-point

negative

multiply–subtract.

Argument

Type

and

Attributes

A

must

be

of

type

REAL(8).

If

compiled

with

–qarch

set

A

may

alternatively

be

of

type

REAL(4).

X

must

be

of

the

same

type

and

kind

type

parameter

as

A.

Y

must

be

of

the

same

type

and

kind

type

parameter

as

A.

Result

Type

and

Attributes

Same

as

A,

X,

and

Y.

Result

Value

The

result

has

a

value

equal

to

–(A*X

–

Y).

Examples

In

the

following

example,

the

result

of

FNMSUB

is

of

type

REAL(4).

It

is

converted

to

REAL(8)

and

then

assigned

to

RES.

REAL(4)

::

A,

B,

C

REAL(8)

::

RES

RES

=

FNMSUB(A,

B,

C)

END

FRES(X)

Floating-point

Reciprocal

Returns

the

result

of

a

floating-point

reciprocal

operation.

Argument

Type

and

Attributes

X

must

be

of

type

REAL(4).

Result

Type

and

Attributes

Same

as

X.

Result

Value

The

result

is

a

single

precision

estimate

of

1/X.

IBM

Extension

Hardware

Directives

and

Intrinsic

Procedures

579

FRSQRTE(X)

Returns

the

result

of

a

reciprocal

square

root

operation.

Valid

on

any

PowerPC

with

extended

graphics

opcodes.

Argument

Type

and

Attributes

X

must

be

of

type

REAL(8).

Result

Type

and

Attributes

Same

as

X.

Result

Value

The

result

is

a

double

precision

estimate

of

the

reciprocal

of

the

square

root

of

X.

FSEL(X,Y,Z)

Floating-point

Selection

Returns

the

result

of

a

floating-point

selection

operation.

This

result

is

determined

by

comparing

the

value

of

X

with

zero.

Argument

Type

and

Attributes

X

must

be

of

type

REAL(4)

or

REAL(8).

Result

Type

and

Attributes

Same

as

X,

Y

and

Z.

Result

Value

v

If

the

value

of

X

is

greater

than

or

equal

to

zero,

then

the

value

of

Y

is

returned.

v

If

the

value

of

X

is

smaller

than

zero

or

is

a

NaN,

then

the

value

of

Z

is

returned.

A

zero

value

is

considered

unsigned.

That

is,

both

+0

and

-0

are

equal

to

zero.

MTFSF(MASK,

R)

Move

to

floating-point

status

and

control

register

(FPSCR)

fields

The

contents

of

R

are

placed

into

the

FPSCR

under

control

of

the

field

mask

specified

in

MASK.

Argument

Type

and

Attributes

MASK

must

be

a

literal

value

of

type

INTEGER(4).

The

lower

eight

bits

are

used.

R

must

be

of

type

REAL(8).

MTFSFI(BF,

I)

Move

to

FPSCR

Fields

Immediate

The

value

of

I

is

placed

into

FPSCR

field

specified

in

BF.

Argument

Type

and

Attributes

BF

must

be

a

literal

value

from

0

to

7,

of

type

INTEGER(4).

I

must

be

a

literal

value

from

0

to

15,

of

type

INTEGER(4).

IBM

Extension

580

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

MULHY(RA,

RB)

Returns

the

high-order

32–bits

of

the

64–bit

products

of

the

operands

RA

and

RB.

Valid

for

32–bit

integers.

Argument

Type

and

Attributes

RA

must

be

of

type

integer.

RB

must

be

of

type

integer.

Result

Type

and

Attributes

Same

as

RA,

RB.

Result

Value

A

32

or

64–bit

product

of

the

operands

RA

and

RB

ROTATELI(RS,

IS,

SHIFT,

MASK)

Rotate

Left

Immediate

then

MASK

Insert

Rotates

the

value

of

RS

left

by

the

number

of

bits

specified

in

SHIFT.

The

function

then

inserts

RS

into

IS

under

bit

mask,

MASK.

Argument

Type

and

Attributes

RS

must

be

of

type

integer.

IS

must

be

of

type

integer.

SHIFT

must

be

of

type

INTEGER(4).

MASK

must

be

a

literal

value

of

type

integer.

Result

Type

and

Attributes

Same

as

RS.

Result

Value

Rotates

RS

left

the

number

of

bits

specified

by

SHIFT,

and

inserts

the

result

into

IS

under

the

bit

mask,

MASK.

ROTATELM(RS,

SHIFT,

MASK)

Rotate

Left

AND

with

Mask

Rotates

the

value

of

RS

left

by

the

number

of

bits

specified

in

SHIFT.

The

rotated

data

is

ANDed

with

the

MASK

and

then

returned

as

a

result.

Argument

Type

and

Attributes

RS

must

be

of

type

integer.

Must

be

an

an

integer

of

less

than

8–bytes.

SHIFT

must

be

of

type

INTEGER(4).

MASK

must

be

a

literal

value

of

type

integer.

Result

Type

and

Attributes

Same

as

RS.

IBM

Extension

Hardware

Directives

and

Intrinsic

Procedures

581

Result

Value

The

rotated

data

ANDed

with

MASK.

SETFSB0(BT)

Move

0

to

FPSCR

bit.

Bit

BT

of

FPSCR

is

set

to

0.

This

subroutine

returns

no

value.

Argument

Type

and

Attributes

BT

must

be

of

type

INTEGER(4).

SETFSB1(BT)

Move

1

to

FPSCR

bit.

Bit

BT

of

FPSCR

is

set

to

1.

This

subroutine

returns

no

value.

Argument

Type

and

Attributes

BT

must

be

of

type

INTEGER(4).

SFTI(M,

Y)

Store

Floating–point

to

Integer

The

contents

of

the

low

order

32–bits

of

Y

are

stored

without

conversion

into

the

word

of

M.

Valid

on

any

PowerPC.

Argument

Type

and

Attributes

M

must

be

of

type

INTEGER(4).

Y

must

be

of

type

REAL(8).

Examples

...

integer*4

::

m

real*8

::

x

x

=

z"00000000abcd0001"

call

sfti(m,

x)

!

m

=

z"abcd0001"

..

TRAP(A,

B,

TO)

Operand

A

is

compared

with

operand

B.

This

comparison

results

in

five

conditions

which

are

ANDed

with

TO.

If

the

result

is

not

0,

the

system

trap

handler

is

invoked.

Argument

Type

and

Attributes

A

must

be

of

type

INTEGER(4).

B

must

be

of

type

INTEGER(4).

TO

must

be

a

literal

value

from

1

to

31,

of

type

INTEGER(4).

End

of

IBM

Extension

IBM

Extension

582

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Service

and

Utility

Procedures

IBM

Extension

XL

Fortran

provides

utility

services

that

are

available

to

the

Fortran

programmer.

This

section

describes

the

rules

for

the

general

service

and

utility

procedures,

then

provides

an

alphabetical

reference

to

these

procedures.

General

Service

and

Utility

Procedures

The

efficient

floating-point

control

and

inquiry

procedures

belong

to

the

xlf_fp_util

module.

The

general

service

and

utility

procedures

belong

to

the

xlfutility

module.

To

ensure

that

the

functions

are

given

the

correct

type

and

that

naming

conflicts

are

avoided,

use

these

procedures

in

one

of

the

following

two

ways:

1.

XL

Fortran

supplies

the

XLFUTILITY

module,

which

contains

the

interfaces

and

data

type

definitions

for

these

procedures

(and

the

derived-type

definitions

required

for

the

dtime_,

etime_,

idate_,

and

itime_

procedures).

XL

Fortran

flags

arguments

that

are

not

compatible

with

the

interface

specification

in

type,

kind,

and

rank.

These

modules

enable

type

checking

of

these

procedures

at

compile

time

rather

than

at

link

time.

The

argument

names

in

the

module

interface

are

taken

from

the

examples

defined

below.

The

following

files

are

supplied

for

the

xlfutility

and

xlfutility_extname

modules:

File

names

File

type

Locations

v

xlfutility.f

v

xlfutility_extname.f

source

file

v

/opt/ibmcmp/xlf/8.1/samples/modules

v

xlfutility.mod

v

xlfutility_extname.mod

module

symbol

file

v

/opt/ibmcmp/xlf/8.1/include

You

can

use

the

precompiled

module

by

adding

a

USE

statement

to

your

source

file

(see

“USE”

on

page

384

for

details).

As

well,

you

can

modify

the

module

source

file

and

recompile

it

to

suit

your

needs.

Use

the

xlfutility_extname

files

for

procedures

compiled

with

the

-qextname

option.

The

source

file

xlfutility_extname.f

has

no

underscores

following

procedure

names,

while

xlfutility.f

includes

underscores

for

some

procedures

names

(as

listed

in

this

section).

If

there

are

name

conflicts

(for

example

if

the

accessing

subprogram

has

an

entity

with

the

same

name

as

a

module

entity),

use

the

ONLY

clause

or

the

renaming

features

of

the

USE

statement.

For

example,

USE

XLFUTILITY,

NULL1

=>

DTIME_,

NULL2

=>

ETIME_

2.

Because

these

procedures

are

not

intrinsic

procedures:

v

You

must

declare

their

type

to

avoid

potential

problems

with

implicit

typing.

v

When

compiling

with

the

-U

option,

you

must

code

the

names

of

these

procedures

in

all

lowercase

to

match

the

names

in

the

XL

Fortran

libraries.

We

will

show

the

names

in

lowercase

here

as

a

reminder.

To

avoid

conflicts

with

names

in

the

libc

library,

some

procedure

names

end

with

an

underscore.

When

coding

calls

to

these

procedures,

you

can:

©

Copyright

IBM

Corp.

1990,

2003

583

v

Instead

of

typing

the

underscore,

use

the

-qextname

compiler

option

to

add

it

to

the

end

of

each

name:

xlf

-qextname

calls_flush.f

This

method

is

recommended

for

programs

already

written

without

the

underscore

following

the

routine

name.

The

XL

Fortran

library

contains

additional

entry

points,

such

as

fpgets_,

so

that

calls

to

procedures

that

do

not

use

trailing

underscores

still

resolve

with

-qextname.

v

Depending

on

the

way

your

program

is

structured

and

the

particular

libraries

and

object

files

it

uses,

you

may

have

difficulty

using

-qextname.

In

this

case,

enter

the

underscores

after

the

appropriate

names

in

the

source

file:

PRINT

*,

IRTC()

!

No

underscore

in

this

name

CALL

FLUSH_(10)

!

But

there

is

one

in

this

name

If

your

program

calls

the

following

procedures,

there

are

restrictions

on

the

common

block

and

external

procedure

names

that

you

can

use:

XLF-Provided

Function

Name

Common

Block

or

External

Procedure

Name

You

Cannot

Use

mclock

times

rand

irand

List

of

Service

and

Utility

Procedures

This

section

lists

the

service

and

utility

procedures

available

in

the

XLFUTILITY

module.

Any

application

that

uses

the

interfaces

for

the

procedures

ctime_,

gmtime_,

ltime_,

or

time_

uses

the

symbolic

constant

TIME_SIZE

to

specify

the

kind

type

parameter

of

certain

intrinsic

data

types.

The

XLFUTILITY

module

defines

TIME_SIZE.

TIME_SIZE

is

set

to

4.

Note:

CHARACTER(n)

means

that

you

can

specify

any

length

for

the

variable.

alarm_

The

alarm_

function

sends

an

alarm

signal

at

time

TIME

to

invoke

the

function

SUB.

Argument

Type

and

Attributes

INTEGER(4)

Result

Type

and

Attributes

INTEGER(4)

Result

Value

The

returned

value

is

the

remaining

time

from

the

last

alarm.

IBM

Extension

584

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Examples

INTEGER(4)

REMAINING,

TIME,

alarm_

INTERFACE

SUBROUTINE

SUB

END

SUBROUTINE

SUB

END

INTERFACE

REMAINING

=

alarm_

(TIME,

SUB)

bic_

The

bic_

subroutine

sets

bit

X1

of

X2

to

0.

Argument

Type

and

Attributes

INTEGER(4)

X1

has

a

value

range

0

≤

X1

≤

31.

Examples

INTEGER(4)

X1,

X2

CALL

bic_

(X1,

X2)

bis_

The

bis_

subroutine

sets

bit

X1

of

X2

to

1.

Argument

Type

and

Attributes

INTEGER(4)

X1

has

a

value

range

0

≤

X1

≤

31.

Examples

INTEGER(4)

X1,

X2

CALL

bis_

(X1,

X2)

bit_

The

bit_

function

returns

the

value

.TRUE.

if

bit

X1

of

X2

equals

1.

Otherwise,

bit_

returns

the

value

0.

Argument

Type

and

Attributes

INTEGER(4)

X1

has

a

value

range

0

≤

X1

≤

31.

Result

Type

and

Attributes

LOGICAL(4)

Examples

INTEGER(4)

X2,

X1

LOGICAL

BITK,

bit_

BITK

=

bit_

(X1,

X2)

IBM

Extension

Service

and

Utility

Procedures

585

clock_

The

clock_

function

returns

the

time

in

hh:mm:ss

format.

This

function

is

different

from

the

operating

system

clock

function.

Result

Type

and

Attributes

Character

with

length

8

Result

Value

The

time

in

hh:mm:ss

format

Examples

CHARACTER(8)

C,

clock_

C

=

clock_()

ctime_

The

ctime_

subroutine

converts

the

system

time

TIME

to

a

26-character

ASCII

string

and

outputs

the

result

into

the

first

argument.

Argument

Type

and

Attributes

The

first

argument

is

a

character

with

a

length

of

26.

The

second

argument

is

INTEGER(4).

Examples

INTEGER(KIND=TIME_SIZE)

TIME

CHARACTER(26)

STR

CALL

ctime_(STR,

TIME)

date

The

date

function

returns

the

current

date

in

mm/dd/yy

format.

Result

Type

and

Attributes

Character

with

length

8

Result

Value

The

current

date

in

mm/dd/yy

format

Examples

CHARACTER(8)

D,

date

D

=

date()

dtime_

The

dtime_

function

sets

the

time

accounting

information

for

the

user

time

and

system

time

in

DTIME_STRUCT.

The

resolution

for

all

timing

is

1/100

of

a

second.

The

output

appears

in

units

of

seconds.

The

accuracy

of

an

XL

Fortran

timing

function

is

operating

system

dependent.

Result

Type

and

Attributes

Real

with

length

4

IBM

Extension

586

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Result

Value

The

returned

value

is

the

sum

of

the

user

time

and

the

system

time

since

the

last

call

to

dtime_.

Examples

REAL(4)

DELTA,

dtime_

TYPE

TB_TYPE

SEQUENCE

REAL(4)

USRTIME

REAL(4)

SYSTIME

END

TYPE

TYPE

(TB_TYPE)

DTIME_STRUCT

DELTA

=

dtime_(DTIME_STRUCT)

etime_

The

etime_

function

sets

the

user-elapsed

time

and

system-elapsed

time

in

ETIME_STRUCT

since

the

start

of

the

execution

of

a

process.

The

resolution

for

all

timing

is

1/100

of

a

second.

The

output

appears

in

units

of

seconds.

The

accuracy

of

an

XL

Fortran

timing

function

is

operating

system

dependent.

Result

Type

and

Attributes

Real

with

length

4

Result

Value

The

returned

value

is

the

sum

of

the

user-elapsed

time

and

the

system-elapsed

time.

Examples

REAL(4)

ELAPSED,

etime_

TYPE

TB_TYPE

SEQUENCE

REAL(4)

USRTIME

REAL(4)

SYSTIME

END

TYPE

TYPE

(TB_TYPE)

ETIME_STRUCT

ELAPSED

=

etime_(ETIME_STRUCT)

exit_

The

exit_

subroutine

stops

execution

of

the

process

with

the

exit

status

of

EXIT_STATUS.

Argument

Type

and

Attributes

INTEGER(4)

Examples

INTEGER(4)

EXIT_STATUS

CALL

exit_(EXIT_STATUS)

fdate_

The

fdate_

subroutine

returns

the

date

and

time

in

a

26-character

ASCII

string.

In

the

example,

the

date

and

time

are

returned

in

STR.

IBM

Extension

Service

and

Utility

Procedures

587

Argument

Type

and

Attributes

The

argument

is

a

character

with

a

length

of

26.

Examples

CHARACTER(26)

STR

CALL

fdate_(STR)

fiosetup_

The

fiosetup_

function

sets

up

the

requested

I/O

behavior

for

the

logical

unit

specified

by

UNIT.

The

request

is

specified

by

argument

COMMAND.

The

argument

ARGUMENT

is

an

argument

to

the

COMMAND.

The

Fortran

include

file

’fiosetup_.h’

is

supplied

with

the

compiler

to

define

symbolic

constants

for

the

fiosetup_

arguments

and

error

return

codes.

UNIT

is

a

logical

unit

that

is

currently

connected

to

a

file

COMMAND

IO_CMD_FLUSH_AFTER_WRITE

(1).

Specifies

whether

the

buffers

of

the

specified

UNIT

be

flushed

after

every

WRITE

statement.

IO_CMD_FLUSH_BEFORE_READ

(2).

Specifies

whether

the

buffers

of

the

specified

UNIT

be

flushed

before

every

READ

statement.

This

can

be

used

to

refresh

the

data

currently

in

the

buffers.

ARGUMENT

IO_ARG_FLUSH_YES

(1).

Causes

the

buffers

of

the

specified

UNIT

to

be

flushed

after

every

WRITE

statement.

This

argument

should

be

specified

with

the

commands

IO_CMD_FLUSH_AFTER_WRITE

and

IO_CMD_FLUSH_BEFORE_READ.

IO_ARG_FLUSH_NO

(0)

Instructs

the

I/O

library

to

flush

buffers

at

its

own

discretion.

Note

the

units

connected

to

certain

device

types

must

be

flushed

after

each

WRITE

operation

regardless

of

the

IO_CMD_FLUSH_AFTER_WRITE

setting.

Such

devices

include

terminals

and

pipes.

This

argument

should

be

specified

with

the

commands

IO_CMD_FLUSH_AFTER_WRITE

and

IO_CMD_FLUSH_BEFORE_READ.

This

is

the

default

setting

for

both

commands.

Result

Type

and

Attributes

Result

Value

Examples

FUNCTION

fiosetup_(UNIT,

COMMAND,

ARGUMENT)

INTEGER(4)

fiosetup_,

IRESULT

INTEGER(4)

UNIT,

COMMAND,

ARGUMENT

INCLUDE

’fiosetup_.h’

OPEN

(

UNIT=42,

FILE="foo",

...)

IRESULT

=

fiosetup_(42,

&

IO_CMD_FLUSH_AFTER_WRITE,

&

IO_ARG_FLUSH_YES)

The

service

routine

FIOSETUP_

returns

0

if

it

succeeds.

Otherwise,

it

returns

one

of

the

following

error

codes:

IBM

Extension

588

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

IO_ERR_NO_RTE

(1000)

the

run-time

environment

is

not

running.

IO_ERR_BAD_UNIT(1001)

the

specified

UNIT

is

unconnected.

IO_ERR_BAD_CMD

(1002)

invalid

command.

IO_ERR_BAD_ARG

(1003)

invalid

argument.

flush_

The

flush_

subroutine

flushes

the

contents

of

the

input/output

buffer

for

the

logical

unit

LUNIT.

The

value

of

LUNIT

must

be

within

the

range

0

≤

LUNIT

≤

2**31-1.

Argument

Type

and

Attributes

INTEGER(4)

Examples

INTEGER(4)

LUNIT

CALL

flush_(LUNIT)

ftell_

The

ftell_

function

returns

the

offset

of

the

current

byte

relative

to

the

beginning

of

the

file

associated

with

the

specified

logical

unit

UNIT.

If

the

unit

is

not

connected,

the

ftell_

function

returns

-1.

The

offset

returned

by

the

ftell_

function

is

the

result

of

previously

completed

I/O

operations.

The

offset

returned

by

the

ftell_

function

is

the

absolute

offset

of

the

current

byte

relative

to

the

beginning

of

the

file.

This

means

that

all

bytes

from

the

beginning

of

the

file

to

the

current

byte

are

counted,

including

the

data

of

the

records

and

record

terminators

if

they

are

present.

Argument

Type

and

Attributes

INTEGER(4)

Result

Type

and

Attributes

ftell_

returns

INTEGER(4).

getarg

The

getarg

subroutine

returns

a

command

line

argument

of

the

current

process.

I1

is

an

integer

argument

that

specifies

which

command

line

argument

to

return.

C1

is

an

argument

of

character

type

and

will

contain,

upon

return

from

getarg,

the

command

line

argument.

If

I1

is

equal

to

0,

the

program

name

is

returned.

Argument

Type

and

Attributes

The

first

argument

is

INTEGER(4).

The

second

argument

is

a

character

string.

Examples

INTEGER(4)

I1

CHARACTER(n)

C1

CALL

getarg(I1,C1)

IBM

Extension

Service

and

Utility

Procedures

589

getcwd_

The

getcwd_

function

retrieves

the

pathname

NAME

of

the

current

working

directory

where

the

maximum

length

is

1024

characters.

Argument

Type

and

Attributes

Argument

is

character

of

maximum

length

1024.

Result

Type

and

Attributes

INTEGER(4)

Result

Value

The

returned

value

is

0

if

successful,

and

an

error

number

otherwise.

Examples

INTEGER(4)

IS_CWD,

getcwd_

CHARACTER(1024)

NAME

IS_CWD

=

getcwd_

(NAME)

getfd

Given

a

Fortran

logical

unit,

the

getfd

function

returns

the

underlying

file

descriptor

for

that

unit,

or

-1

if

the

unit

is

not

connected.

Note:

Because

XL

Fortran

does

its

own

I/O

buffering,

using

this

function

may

require

special

care,

as

described

in

Mixed-Language

Input

and

Output

in

the

User’s

Guide.

Argument

Type

and

Attributes

INTEGER(4)

Result

Type

and

Attributes

INTEGER(4)

Result

Value

The

underlying

file

descriptor

of

the

given

logical

unit.

Examples

INTEGER(4)

LUNIT,

FD,

getfd

FD

=

getfd(LUNIT)

getgid_

The

getgid_

function

returns

the

group

id

of

a

process,

where

GROUP_ID

is

the

requested

real

group

id

of

the

calling

process.

Result

Type

and

Attributes

Integer

with

length

4

Result

Value

The

group

id

of

a

process

IBM

Extension

590

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Examples

INTEGER(4)

GROUP_ID,

getgid_

GROUP_ID

=

getgid_()

getlog_

The

getlog_

subroutine

stores

the

user’s

login

name

in

NAME.

NAME

has

a

maximum

length

of

8

characters.

If

the

user’s

login

name

is

not

found,

NAME

is

filled

with

blanks.

Argument

Type

and

Attributes

Argument

is

a

character

of

maximum

length

8.

Examples

CHARACTER(8)

NAME

CALL

getlog_

(NAME)

getpid_

The

getpid_

function

returns

the

process

id

of

the

current

process

in

PROCESS_ID.

Result

Type

and

Attributes

Integer

with

length

4

Result

Value

The

process

id

of

the

current

process

Examples

INTEGER(4)

PROCESS_ID,

getpid_

PROCESS_ID

=

getpid_()

getuid_

The

getuid_

function

returns

the

real

user

id

of

the

current

process

in

USER_ID.

Result

Type

and

Attributes

Integer

with

length

4

Result

Value

The

real

user

id

of

the

current

process

Examples

INTEGER(4)

USER_ID,

getuid_

USER_ID

=

getuid_()

global_timef

The

global_timef

function

returns

the

elapsed

time

since

the

first

call

to

global_timef

was

first

executed

among

all

running

threads.

For

thread-specific

timing

results,

see

the

timef

function.

IBM

Extension

Service

and

Utility

Procedures

591

Result

Type

and

Attributes

Real

with

length

8

Result

Value

This

function

returns

in

milliseconds,

the

global

timing

results

from

all

running

threads.

The

first

call

to

global_timef

returns

0.0.

The

accuracy

of

an

XL

Fortran

timing

function

is

operating

system

dependent.

Examples

INTEGER

N

REAL(8)

global_timef,

T1,

T2,

T3

T1

=

global_timef()

!

returns

0.0

DO

I

=

1,

N

!

loop

1

H

=

I

+

1000

END

DO

DO

I

=

1,

N

!

loop

2

M

=

I

+

2000

END

DO

T2

=

global_timef()

!

returns

the

elapsed

time

of

!

loop

1

and

loop

2

DO

I

=

1,

N

!

loop

3

M

=

I

+

3000

END

DO

T3

=

global_timef()

!

returns

the

elapsed

time

of

!

loop

1,

2

and

3

END

gmtime_

The

gmtime_

subroutine

converts

the

system

time

STIME

into

the

array

TARRAY.

The

data

is

stored

in

TARRAY

in

the

following

order:

seconds

(0

to

59)

minutes

(0

to

59)

hours

(0

to

23)

day

of

the

month

(1

to

31)

month

of

the

year

(0

to

11)

year

(year

=

current

year

-

1900)

day

of

week

(Sunday

=

0)

day

of

year

(0

to

365)

daylight

saving

time

(0

or

1)

Argument

Type

and

Attributes

The

first

argument

is

INTEGER(4).

The

second

argument

is

an

INTEGER(4)

array,

of

rank

1

and

size

9.

Examples

INTEGER(KIND=TIME_SIZE)

STIME

INTEGER(4)

TARRAY(9)

CALL

gmtime_(STIME,

TARRAY)

hostnm_

The

hostnm_

function

retrieves

the

machine’s

host

name

NAME.

NAME

has

a

maximum

length

of

32

characters.

IBM

Extension

592

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Argument

Type

and

Attributes

Argument

is

character

of

maximum

length

32.

Result

Type

and

Attributes

INTEGER(4).

Result

Value

The

returned

value

is

0

if

the

host

name

is

found,

and

an

error

number

otherwise.

Examples

INTEGER(4)

ISHOST,

hostnm_

CHARACTER(32)

NAME

ISHOST

=

hostnm_

(NAME)

iargc

The

iargc

function

returns

an

integer

that

represents

the

number

of

arguments

following

the

program

name

that

have

been

entered

on

the

command

line

at

run

time.

Result

Type

and

Attributes

Integer

with

length

4

Result

Value

The

number

of

arguments

Examples

INTEGER(4)

I1,

iargc

I1

=

iargc()

idate_

The

idate_

subroutine

returns

the

current

date

in

a

numerical

format

containing

the

day,

month

and

year

in

IDATE_STRUCT.

Examples

TYPE

IDATE_TYPE

SEQUENCE

INTEGER(4)

IDAY

INTEGER(4)

IMONTH

INTEGER(4)

IYEAR

END

TYPE

TYPE

(IDATE_TYPE)

IDATE_STRUCT

CALL

idate_(IDATE_STRUCT)

ierrno_

The

ierrno_

function

returns

the

error

number,

SYSERROR,

of

the

last

detected

system

error.

Result

Type

and

Attributes

Integer

with

length

4

IBM

Extension

Service

and

Utility

Procedures

593

Result

Value

The

error

number

of

the

last

detected

system

error

Examples

INTEGER(4)

SYSERROR,

ierrno_

SYSERROR

=

ierrno_()

irand

The

irand

function

generates

a

positive

integer

number

greater

than

0

and

less

than

or

equal

to

32768.

The

intrinsic

subroutine

“SRAND(SEED)”

on

page

528

is

used

to

provide

the

seed

value

for

the

random

number

generator.

Result

Type

and

Attributes

Integer

with

length

4

Result

Value

A

random

positive

integer

greater

than

0

and

less

than

or

equal

to

32768

Examples

INTEGER(4)

I1,

irand

CALL

SRAND(I1)

I1

=

irand()

irtc

The

irtc

function

returns

an

INTEGER(8)

value

of

the

number

of

nanoseconds

since

the

initial

value

of

the

machine’s

real-time

clock.

Result

Type

and

Attributes

Integer

with

length

8

Result

Value

The

number

of

nanoseconds

since

the

initial

value

of

the

machine’s

real-time

clock.

The

accuracy

of

an

XL

Fortran

timing

function

is

operating

system

dependent.

Examples

INTEGER(8)

A,

B,

irtc

A

=

irtc()

DO

M

=

1,20000

N

=

N

+

M

END

DO

B

=

irtc()

!

How

many

nanoseconds

elapsed?

PRINT

*,

B

-

A

END

itime_

The

itime_

subroutine

returns

the

current

time

in

a

numerical

form

containing

seconds,

minutes,

and

hours

in

ITIME_STRUCT.

IBM

Extension

594

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Examples

TYPE

IAR

SEQUENCE

INTEGER(4)

IHR

INTEGER(4)

IMIN

INTEGER(4)

ISEC

END

TYPE

TYPE

(IAR)

ITIME_STRUCT

CALL

itime_(ITIME_STRUCT)

jdate

The

jdate

function

returns

the

current

Julian

date

in

yyddd

format.

Result

Type

and

Attributes

Character

with

length

8

Result

Value

The

current

Julian

date

in

yyddd

format

Examples

CHARACTER(8)

D,

jdate

D

=

jdate()

lenchr_

The

lenchr_

function

stores

the

length

of

the

character

string

STR

in

LENGTH.

Argument

Type

and

Attributes

Argument

is

of

type

character.

Result

Type

and

Attributes

INTEGER(4)

Result

Value

The

length

of

the

character

string

Examples

INTEGER(4)

LENGTH,

lenchr_

CHARACTER*(*)

STR

LENGTH

=

lenchr_(STR)

lnblnk_

The

lnblnk_

function

returns

the

index,

INDEX,

of

the

last

non-blank

character

in

the

string

STR.

If

the

string

contains

no

non-blank

characters,

INDEX

is

set

to

0.

Argument

Type

and

Attributes

Argument

is

of

type

character.

Result

Type

and

Attributes

INTEGER(4)

IBM

Extension

Service

and

Utility

Procedures

595

Result

Value

The

index

of

the

last

non-blank

character

in

the

string,

or

0

if

there

are

no

non-blank

characters

Examples

INTEGER(4)

INDEX,

lnblnk_

CHARACTER(n)

STR

INDEX

=

lnblnk_(STR)

ltime_

The

ltime_

subroutine

dissects

the

system

time

STIME,

which

is

in

seconds,

into

the

array

TARRAY

containing

the

GMT

where

the

dissected

time

is

corrected

for

the

local

time

zone.

The

data

is

stored

in

TARRAY

in

the

following

order:

seconds

(0

to

59)

minutes

(0

to

59)

hours

(0

to

23)

day

of

the

month

(1

to

31)

month

of

the

year

(0

to

11)

year

(year

=

current

year

-

1900)

day

of

week

(Sunday

=

0)

day

of

year

(0

to

365)

daylight

saving

time

(0

or

1)

Argument

Type

and

Attributes

Argument

1

is

of

type

INTEGER(4).

Argument

2

is

of

type

INTEGER(4)

array,

rank

1,

size

9

Examples

INTEGER(KIND=TIME_SIZE)

STIME

INTEGER(4)

TARRAY(9)

CALL

ltime_(STIME,

TARRAY)

mclock

The

mclock

function

returns

time

accounting

information

about

the

current

process

and

its

child

processes.

The

accuracy

of

an

XL

Fortran

timing

function

is

operating

system

dependent.

Result

Type

and

Attributes

Integer

with

length

4

Result

Value

The

returned

value

is

the

sum

of

the

current

process’s

user

time

and

the

user

and

system

time

of

all

child

processes.

The

unit

of

measure

is

one

one-hundredth

(1/100)

of

a

second.

Examples

INTEGER(4)

I1,

mclock

I1

=

mclock()

IBM

Extension

596

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

qsort_

The

qsort_

subroutine

performs

a

parallel

quicksort

on

a

one-dimensional

array

ARRAY

whose

length

LEN

is

the

number

of

elements

in

the

array

with

each

element

having

a

size

of

ISIZE,

and

a

user-defined

sorting

order

function

COMPAR

to

sort

the

elements

of

the

array.

Examples

INTEGER(4)

FUNCTION

COMPAR_UP(C1,

C2)

INTEGER(4)

C1,

C2

IF

(C1.LT.C2)

COMPAR_UP

=

-1

IF

(C1.EQ.C2)

COMPAR_UP

=

0

IF

(C1.GT.C2)

COMPAR_UP

=

1

RETURN

END

SUBROUTINE

FOO()

INTEGER(4)

COMPAR_UP

EXTERNAL

COMPAR_UP

INTEGER(4)

ARRAY(8),

LEN,

ISIZE

DATA

ARRAY/0,

3,

1,

2,

9,

5,

7,

4/

LEN

=

6

ISIZE

=

4

CALL

qsort_(ARRAY(3:8),

LEN,

ISIZE,

COMPAR_UP)

!

sorting

ARRAY(3:8)

PRINT

*,

ARRAY

!

result

value

is

[0,

3,

1,

2,

4,

5,

7,

9]

RETURN

END

qsort_down

The

qsort_down

subroutine

performs

a

parallel

quicksort

on

a

one-dimensional

array

ARRAY

whose

length

LEN

is

the

number

of

elements

in

the

array

with

each

element

having

a

size

of

ISIZE.

The

result

is

stored

in

array

ARRAY

in

descending

order.

As

opposed

to

qsort_,

the

qsort_down

subroutine

does

not

require

the

COMPAR

function.

Examples

SUBROUTINE

FOO()

INTEGER(4)

ARRAY(8),

LEN,

ISIZE

DATA

ARRAY/0,

3,

1,

2,

9,

5,

7,

4/

LEN

=

8

ISIZE

=

4

CALL

qsort_down(ARRAY,

LEN,

ISIZE)

PRINT

*,

ARRAY

!

Result

value

is

[9,

7,

5,

4,

3,

2,

1,

0]

RETURN

END

qsort_up

The

qsort_up

subroutine

performs

a

parallel

quicksort

on

a

one-dimensional,

contiguous

array

ARRAY

whose

length

LEN

is

the

number

of

elements

in

the

array

with

each

element

having

a

size

of

ISIZE.

The

result

is

stored

in

array

ARRAY

in

ascending

order.

As

opposed

to

qsort_,

the

qsort_up

subroutine

does

not

require

the

COMPAR

function.

IBM

Extension

Service

and

Utility

Procedures

597

Examples

SUBROUTINE

FOO()

INTEGER(4)

ARRAY(8),

LEN,

ISIZE

DATA

ARRAY/0,

3,

1,

2,

9,

5,

7,

4/

LEN

=

8

ISIZE

=

4

CALL

qsort_up(ARRAY,

LEN,

ISIZE)

PRINT

*,

ARRAY

!

Result

value

is

[0,

1,

2,

3,

4,

5,

7,

9]

RETURN

END

rtc

The

rtc

function

returns

a

REAL(8)

value

of

the

number

of

seconds

since

the

initial

value

of

the

machine’s

real-time

clock.

Result

Type

and

Attributes

Real

with

length

8

Result

Value

The

number

of

seconds

since

the

initial

value

of

the

machine’s

real-time

clock

Examples

REAL(8)

A,

B,

rtc

A

=

rtc()

DO

M

=

1,20000

N

=

N

+

M

END

DO

B

=

rtc()

!

How

many

seconds

elapsed?

PRINT

*,

B

-

A

END

setrteopts

The

setrteopts

subroutine

changes

the

setting

of

one

or

more

of

the

run-time

options

during

the

execution

of

a

program.

See

Setting

Run-time

Options

in

the

User’s

Guide

for

details

about

the

run-time

options.

Argument

Type

and

Attributes

Argument

is

of

type

character.

Examples

CHARACTER(n)

C1

CALL

setrteopts

(C1)

!

For

example,

!

CALL

setrteopts

&

!

(’langlvl=90std:cnverr=no’)

sleep_

The

sleep_

subroutine

suspends

the

execution

of

the

current

process

for

SEC

seconds.

IBM

Extension

598

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Argument

Type

and

Attributes

INTEGER(4)

Examples

INTEGER(4)

SEC

CALL

sleep_(SEC)

time_

The

time_

function

returns

the

current

time

(GMT)

CURRTIME,

in

seconds.

Result

Type

and

Attributes

Integer

with

length

4

Result

Value

The

current

time

(GMT),

in

seconds

Examples

INTEGER(KIND=TIME_SIZE)

CURRTIME,

time_

CURRTIME

=

time_()

timef

The

timef

function

returns

the

elapsed

time

in

milliseconds

since

the

first

call

to

timef.

The

accuracy

of

an

XL

Fortran

timing

function

is

operating

system

dependent.

Result

Type

and

Attributes

Real

with

length

8

Result

Value

The

elapsed

time

in

milliseconds

since

the

first

call

to

timef.

The

first

call

to

timef

returns

0.0d0.

Examples

REAL(8)

ELAPSED,

timef

ELAPSED

=

timef()

DO

M

=

1,20000

A

=

A

**

2

ENDDO

ELAPSED

=

TIMEF()

timef_delta

The

timef_delta

function

returns

the

elapsed

time

in

milliseconds

since

the

last

instance

timef_delta

was

called

with

its

argument

set

to

0.0

within

the

same

thread.

In

order

to

get

the

correct

elapsed

time,

you

must

determine

which

region

of

a

thread

you

want

timed.

This

region

must

start

with

a

call

to

timef_delta(T0),

where

T0

is

initialized

(T0=0.0).

The

next

call

to

timef_delta

must

use

the

first

call’s

return

value

as

the

input

argument

if

the

elapsed

time

is

expected.

The

accuracy

of

an

XL

Fortran

timing

function

is

operating

system

dependent.

IBM

Extension

Service

and

Utility

Procedures

599

Result

Type

and

Attributes

Real

with

length

8

Examples

REAL(8)

timef_delta,

T0,

T1,

T2

T0

=

0.0

DO

I

=

1,

N

!

Loop

1

H

=

I

+

1000

END

DO

T1

=

timef_delta(T0)

DO

I

=

1,

N

!

T1

gives

the

M

=

I

+

2000

!

starting

time

END

DO

!

of

loop

2

T2

=

timef_delta(T1)

DO

I

=

1,

N

!

T2

gives

the

M

=

I

+

3000

!

elapsed

time

END

DO

!

of

loop

2

umask_

The

umask_

function

sets

the

file

mode

creation

mask

to

CMASK.

Argument

Type

and

Attributes

INTEGER(4)

Result

Type

and

Attributes

INTEGER(4)

Result

Value

The

returned

value

is

the

previous

value

of

the

file

mode

creation

mask.

Examples

INTEGER(4)

CMASK,

LASTMASK,

umask_

LASTMASK

=

umask_

(CMASK)

usleep_

The

usleep_

function

suspends

the

execution

of

the

current

process

for

an

interval

of

MSEC

microseconds.

The

accuracy

of

an

XL

Fortran

timing

function

is

operating

system

dependent.

Argument

Type

and

Attributes

INTEGER(4)

Result

Type

and

Attributes

INTEGER(4)

Result

Value

The

returned

value

is

0

if

the

function

is

successful,

or

an

error

number

otherwise.

Examples

INTEGER(4)

IS_SLEEP,

MSEC,

usleep_

IS_SLEEP

=

usleep_

(MSEC)

IBM

Extension

600

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

xl__trbk

The

xl__trbk

subroutine

provides

a

traceback

starting

from

the

invocation

point.

xl__trbk

can

be

called

from

your

code,

although

not

from

signal

handlers.

The

subroutine

requires

no

parameters.

Examples

INTEGER

res,

n

IF

(n

.EQ.

1)

THEN

res=1

CALL

XL__TRBK()

ELSE

res=n

*

FACTORIAL(n-1)

ENDIF

End

of

IBM

Extension

IBM

Extension

Service

and

Utility

Procedures

601

602

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Appendix

A.

Compatibility

Across

Standards

This

information

is

provided

for

the

benefit

of

FORTRAN

77

users

who

are

unfamiliar

with

Fortran

95,

Fortran

90

and

XL

Fortran.

Except

as

noted

here,

the

Fortran

90

and

Fortran

95

standards

are

upward-compatible

extensions

to

the

preceding

Fortran

International

Standard,

ISO

1539-1:1980,

informally

referred

to

as

FORTRAN

77.

Any

standard-conforming

FORTRAN

77

program

remains

standard-conforming

under

the

Fortran

90

standard,

except

as

noted

under

item

4

below

regarding

intrinsic

procedures.

Any

standard-conforming

FORTRAN

77

program

remains

standard-conforming

under

the

Fortran

95

standard

as

long

as

none

of

the

deleted

features

are

used

in

the

program,

except

as

noted

under

item

4

below

regarding

intrinsic

procedures.

The

Fortran

90

and

Fortran

95

standard

restricts

the

behavior

of

some

features

that

are

processor-dependent

in

FORTRAN

77.

Therefore,

a

standard-conforming

FORTRAN

77

program

that

uses

one

of

these

processor-dependent

features

may

have

a

different

interpretation

under

the

Fortran

90

or

Fortran

95

standard,

yet

remain

a

standard-conforming

program.

The

following

FORTRAN

77

features

have

different

interpretations

in

Fortran

90

and

Fortran

95:

1.

FORTRAN

77

permitted

a

processor

to

supply

more

precision

derived

from

a

real

constant

than

can

be

contained

in

a

real

datum

when

the

constant

is

used

to

initialize

a

DOUBLE

PRECISION

data

object

in

a

DATA

statement.

Fortran

90

and

Fortran

95

do

not

permit

a

processor

this

option.

Previous

releases

of

XL

Fortran

have

been

consistent

with

the

Fortran

90

and

Fortran

95

behavior.

2.

If

a

named

variable

that

is

not

in

a

common

block

is

initialized

in

a

DATA

statement

and

does

not

have

the

SAVE

attribute

specified,

FORTRAN

77

left

its

SAVE

attribute

processor-dependent.

The

Fortran

90

and

Fortan

95

standards

specify

that

this

named

variable

has

the

SAVE

attribute.

Previous

releases

of

XL

Fortran

have

been

consistent

with

the

Fortran

90

and

Fortran

95

behavior.

3.

FORTRAN

77

required

that

the

number

of

characters

required

by

the

input

list

must

be

less

than

or

equal

to

the

number

of

characters

in

the

record

during

formatted

input.

The

Fortran

90

and

Fortran

95

standards

specify

that

the

input

record

is

logically

padded

with

blanks

if

there

are

not

enough

characters

in

the

record,

unless

the

PAD=’NO’

specifier

is

indicated

in

an

appropriate

OPEN

statement.

With

XL

Fortran,

the

input

record

is

not

padded

with

blanks

if

the

noblankpad

suboption

of

the

-qxlf77

compiler

option

is

specified.

4.

The

Fortran

90

and

Fortan

95

standards

have

more

intrinsic

functions

than

FORTRAN

77,

in

addition

to

a

few

intrinsic

subroutines.

Therefore,

a

standard-conforming

FORTRAN

77

program

may

have

a

different

interpretation

under

Fortran

90

and

Fortran

95

if

it

invokes

a

procedure

having

the

same

name

as

one

of

the

new

standard

intrinsic

procedures,

unless

that

procedure

is

specified

in

an

EXTERNAL

statement.

With

XL

Fortran,

the

-qextern

compiler

option

also

treats

specified

names

as

if

they

appear

in

an

EXTERNAL

statement.

5.

In

Fortran

95,

for

some

edit

descriptors

a

value

of

0

for

a

list

item

in

a

formatted

output

statement

will

be

formatted

differently.

In

addition,

the

Fortran

95

standard

unlike

the

FORTRAN

77

standard

specifies

how

rounding

©

Copyright

IBM

Corp.

1990,

2003

603

of

values

will

affect

the

output

field

form.

Therefore,

for

certain

combinations

of

values

and

edit

descriptors

FORTRAN

77

processors

may

produce

a

different

output

form

than

Fortran

95

processors.

6.

Fortran

95

allows

a

processor

to

distinguish

between

a

positive

and

a

negative

real

zero,

whereas

Fortran

90

did

not.

Fortran

95

changes

the

behavior

of

the

SIGN

intrinsic

function

when

the

second

argument

is

negative

real

zero.

Fortran

90

compatibility

Except

as

noted

here,

the

Fortran

95

standard

is

an

upward-compatible

extension

to

the

preceding

Fortran

International

Standard,

ISO/IEC

1539-1:1991,

informally

referred

to

as

Fortran

90.

A

standard

conforming

Fortran

90

program

that

does

not

use

any

of

the

features

deleted

from

the

Fortran

95

standard,

is

a

standard

conforming

Fortran

95

program,

as

well.

The

Fortran

90

features

that

have

been

deleted

from

the

Fortran

95

standard

are

the

following:

v

ASSIGN

and

assigned

GO

TO

statements

v

PAUSE

statement

v

DO

control

variables

and

expressions

of

type

real

v

H

edit

descriptor

v

Branching

to

an

END

IF

statement

from

outside

the

IF

block

Fortran

95

allows

a

processor

to

distinguish

between

a

positive

and

a

negative

real

zero,

whereas

Fortran

90

did

not.

Fortran

95

changes

the

behavior

of

the

SIGN

intrinsic

function

when

the

second

argument

is

negative

real

zero.

More

intrinsic

functions

appear

in

the

Fortran

95

standard

than

in

the

Fortran

90

standard.

Therefore,

a

program

that

conforms

to

the

Fortran

90

standard

may

have

a

different

interpretation

under

the

Fortran

95

standard.

The

different

interpretation

of

the

program

in

Fortran

95

will

only

occur

if

the

program

invokes

a

procedure

that

has

the

same

name

as

one

of

the

new

standard

intrinsic

procedures,

unless

that

procedure

is

specified

in

an

EXTERNAL

statement

or

with

an

interface

body.

Obsolescent

Features

As

the

Fortran

language

evolves,

it

is

only

natural

that

the

functionality

of

some

older

features

are

better

handled

by

newer

features

geared

toward

today’s

programming

needs.

At

the

same

time,

the

considerable

investment

in

legacy

Fortran

code

suggests

that

it

would

be

insensitive

to

customer

needs

to

decommit

any

Fortran

90

or

FORTRAN

77

features

at

this

time.

For

this

reason,

XL

Fortran

is

fully

upward

compatible

with

the

Fortran

90

and

FORTRAN

77

standards.

Fortran

95

has

removed

features

that

were

part

of

both

the

Fortran

90

and

FORTRAN

77

language

standards.

However,

functionality

has

not

been

removed

from

Fortran

95

as

efficient

alternatives

to

the

features

deleted

do

exist.

Fortran

95

defines

two

categories

of

outmoded

features:

deleted

features

and

obsolescent

features.

Deleted

features

are

Fortran

90

or

FORTRAN

77

features

that

are

considered

to

be

largely

unused

and

so

are

not

supported

in

Fortan

95.

Obsolescent

features

are

FORTRAN

77

features

that

are

still

frequently

used

today

but

whose

use

can

be

better

delivered

by

newer

features

and

methods.

Although

obsolescent

features

are,

by

definition,

supported

in

the

Fortran

95

standard,

some

of

them

may

be

marked

as

deleted

in

the

next

Fortran

standard.

Although

a

604

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

processor

may

still

support

deleted

features

as

extensions

to

the

language,

you

may

want

to

take

steps

now

to

modify

your

existing

code

to

use

better

methods.

Fortran

90

indicates

the

following

FORTRAN

77

features

are

obsolescent:

v

Arithmetic

IF

Recommended

method:

Use

the

logical

IF

statement,

IF

construct,

or

CASE

construct.

v

DO

control

variables

and

expressions

of

type

real

Recommended

method:

Use

variables

and

expression

of

type

integer.

v

PAUSE

statement

Recommended

method:

Use

the

READ

statement.

v

Alternate

return

specifiers

Recommended

method:

Evaluate

a

return

code

in

a

CASE

construct

or

a

computed

GO

TO

statement

on

return

from

the

procedure.

!

FORTRAN

77

CALL

SUB(A,B,C,*10,*20,*30)

!

Fortran

90

CALL

SUB(A,B,C,RET_CODE)

SELECT

CASE

(RET_CODE)

CASE

(1)

...

CASE

(2)

...

CASE

(3)

...

END

SELECT

v

ASSIGN

and

assigned

GO

TO

statements

Recommended

method:

Use

internal

procedures.

v

Branching

to

an

END

IF

statement

from

outside

the

IF

block

Recommended

method:

Branch

to

the

statement

that

follows

the

END

IF

statement.

v

Shared

loop

termination

and

termination

on

a

statement

other

than

END

DO

or

CONTINUE

Recommended

method:

Use

an

END

DO

or

CONTINUE

statement

to

terminate

each

loop.

v

H

edit

descriptor

Recommended

method:

Use

the

character

constant

edit

descriptor.

Fortran

95

indicates

the

following

FORTRAN

77

features

as

obsolescent:

v

Arithmetic

IF

Recommended

method:

Use

the

logical

IF

statement,

IF

construct,

or

CASE

construct.

v

Alternate

return

specifiers

Recommended

method:

Evaluate

a

return

code

in

a

CASE

construct

or

a

computed

GO

TO

statement

on

return

from

the

procedure.

!

FORTRAN

77

CALL

SUB(A,B,C,*10,*20,*30)

Appendix

A.

Compatibility

Across

Standards

605

!

Fortran

90

CALL

SUB(A,B,C,RET_CODE)

SELECT

CASE

(RET_CODE)

CASE

(1)

...

CASE

(2)

...

CASE

(3)

...

END

SELECT

v

Shared

loop

termination

and

termination

on

a

statement

other

than

END

DO

or

CONTINUE

Recommended

method:

Use

an

END

DO

or

CONTINUE

statement

to

terminate

each

loop.

v

Statement

functions

v

DATA

statements

in

executables

v

Assumed

length

character

functions

v

Fixed

source

form

v

CHARACTER*

form

of

declaration

Deleted

Features

Fortran

95

indicates

that

the

following

Fortran

90

and

FORTRAN

77

features

have

been

deleted:

v

ASSIGN

and

assigned

GO

TO

statements

v

PAUSE

statement

v

DO

control

variables

and

expressions

of

type

real

v

H

edit

descriptor

v

Branching

to

an

END

IF

statement

from

outside

the

IF

block

606

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Appendix

B.

ASCII

and

EBCDIC

Character

Sets

XL

Fortran

uses

the

ASCII

character

set

as

its

collating

sequence.

This

table

lists

the

standard

ASCII

characters

in

numerical

order

with

the

corresponding

decimal

and

hexadecimal

values.

For

convenience

in

working

with

programs

that

use

EBCDIC

character

values,

the

corresponding

information

for

EBCDIC

characters

is

also

included.

The

table

indicates

the

control

characters

with

“Ctrl-”

notation.

For

example,

the

horizontal

tab

(HT)

appears

as

“Ctrl-I”,

which

you

enter

by

simultaneously

pressing

the

Ctrl

key

and

I

key.

Table

17.

Equivalent

Characters

in

the

ASCII

and

EBCDIC

Character

Sets

Decimal

Value

Hex

Value

Control

Character

ASCII

Symbol

Meaning

EBCDIC

Symbol

Meaning

0

00

Ctrl-@

NUL

null

NUL

null

1

01

Ctrl-A

SOH

start

of

heading

SOH

start

of

heading

2

02

Ctrl-B

STX

start

of

text

STX

start

of

text

3

03

Ctrl-C

ETX

end

of

text

ETX

end

of

text

4

04

Ctrl-D

EOT

end

of

transmission

SEL

select

5

05

Ctrl-E

ENQ

enquiry

HT

horizontal

tab

6

06

Ctrl-F

ACK

acknowledge

RNL

required

new-line

7

07

Ctrl-G

BEL

bell

DEL

delete

8

08

Ctrl-H

BS

backspace

GE

graphic

escape

9

09

Ctrl-I

HT

horizontal

tab

SPS

superscript

10

0A

Ctrl-J

LF

line

feed

RPT

repeat

11

0B

Ctrl-K

VT

vertical

tab

VT

vertical

tab

12

0C

Ctrl-L

FF

form

feed

FF

form

feed

13

0D

Ctrl-M

CR

carriage

return

CR

carriage

return

14

0E

Ctrl-N

SO

shift

out

SO

shift

out

15

0F

Ctrl-O

SI

shift

in

SI

shift

in

16

10

Ctrl-P

DLE

data

link

escape

DLE

data

link

escape

17

11

Ctrl-Q

DC1

device

control

1

DC1

device

control

1

18

12

Ctrl-R

DC2

device

control

2

DC2

device

control

2

19

13

Ctrl-S

DC3

device

control

3

DC3

device

control

3

20

14

Ctrl-T

DC4

device

control

4

RES/ENP

restore/enable

presentation

21

15

Ctrl-U

NAK

negative

acknowledge

NL

new-line

22

16

Ctrl-V

SYN

synchronous

idle

BS

backspace

23

17

Ctrl-W

ETB

end

of

transmission

block

POC

program-operator

communications

24

18

Ctrl-X

CAN

cancel

CAN

cancel

25

19

Ctrl-Y

EM

end

of

medium

EM

end

of

medium

26

1A

Ctrl-Z

SUB

substitute

UBS

unit

backspace

©

Copyright

IBM

Corp.

1990,

2003

607

Table

17.

Equivalent

Characters

in

the

ASCII

and

EBCDIC

Character

Sets

(continued)

Decimal

Value

Hex

Value

Control

Character

ASCII

Symbol

Meaning

EBCDIC

Symbol

Meaning

27

1B

Ctrl-[

ESC

escape

CU1

customer

use

1

28

1C

Ctrl-\

FS

file

separator

IFS

interchange

file

separator

29

1D

Ctrl-]

GS

group

separator

IGS

interchange

group

separator

30

1E

Ctrl-∧

RS

record

separator

IRS

interchange

record

separator

31

1F

Ctrl-_

US

unit

separator

IUS/ITB

interchange

unit

separator

/

intermediate

transmission

block

32

20

SP

space

DS

digit

select

33

21

!

exclamation

mark

SOS

start

of

significance

34

22

″

straight

double

quotation

mark

FS

field

separator

35

23

#

number

sign

WUS

word

underscore

36

24

$

dollar

sign

BYP/INP

bypass/inhibit

presentation

37

25

%

percent

sign

LF

line

feed

38

26

&

ampersand

ETB

end

of

transmission

block

39

27

’

apostrophe

ESC

escape

40

28

(

left

parenthesis

SA

set

attribute

41

29

)

right

parenthesis

42

2A

*

asterisk

SM/SW

set

model

switch

43

2B

+

addition

sign

CSP

control

sequence

prefix

44

2C

,

comma

MFA

modify

field

attribute

45

2D

-

subtraction

sign

ENQ

enquiry

46

2E

.

period

ACK

acknowledge

47

2F

/

right

slash

BEL

bell

48

30

0

49

31

1

50

32

2

SYN

synchronous

idle

51

33

3

IR

index

return

52

34

4

PP

presentation

position

53

35

5

TRN

54

36

6

NBS

numeric

backspace

55

37

7

EOT

end

of

transmission

56

38

8

SBS

subscript

57

39

9

IT

indent

tab

58

3A

:

colon

RFF

required

form

feed

59

3B

;

semicolon

CU3

customer

use

3

608

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Table

17.

Equivalent

Characters

in

the

ASCII

and

EBCDIC

Character

Sets

(continued)

Decimal

Value

Hex

Value

Control

Character

ASCII

Symbol

Meaning

EBCDIC

Symbol

Meaning

60

3C

<

less

than

DC4

device

control

4

61

3D

=

equal

NAK

negative

acknowledge

62

3E

>

greater

than

63

3F

?

question

mark

SUB

substitute

64

40

@

at

symbol

SP

space

65

41

A

66

42

B

67

43

C

68

44

D

69

45

E

70

46

F

71

47

G

72

48

H

73

49

I

74

4A

J

¢

cent

75

4B

K

.

period

76

4C

L

<

less

than

77

4D

M

(

left

parenthesis

78

4E

N

+

addition

sign

79

4F

O

|

logical

or

80

50

P

&

ampersand

81

51

Q

82

52

R

83

53

S

84

54

T

85

55

U

86

56

V

87

57

W

88

58

X

89

59

Y

90

5A

Z

!

exclamation

mark

91

5B

[

left

bracket

$

dollar

sign

92

5C

\

left

slash

*

asterisk

93

5D

]

right

bracket

)

right

parenthesis

94

5E

^

hat,

circumflex

;

semicolon

95

5F

_

underscore

¬

logical

not

96

60

`

grave

-

subtraction

sign

Appendix

B.

ASCII

and

EBCDIC

Character

Sets

609

Table

17.

Equivalent

Characters

in

the

ASCII

and

EBCDIC

Character

Sets

(continued)

Decimal

Value

Hex

Value

Control

Character

ASCII

Symbol

Meaning

EBCDIC

Symbol

Meaning

97

61

a

/

right

slash

98

62

b

99

63

c

100

64

d

101

65

e

102

66

f

103

67

g

104

68

h

105

69

i

106

6A

j

¦

split

vertical

bar

107

6B

k

,

comma

108

6C

l

%

percent

sign

109

6D

m

_

underscore

110

6E

n

>

greater

than

111

6F

o

?

question

mark

112

70

p

113

71

q

114

72

r

115

73

s

116

74

t

117

75

u

118

76

v

119

77

w

120

78

x

121

79

y

`

grave

122

7A

z

:

colon

123

7B

{

left

brace

#

numbersign

124

7C

|

logical

or

@

at

symbol

125

7D

}

right

brace

’

apostrophe

126

7E

~

similar,

tilde

=

equal

127

7F

DEL

delete

″

straight

double

quotation

mark

128

80

129

81

a

130

82

b

131

83

c

132

84

d

133

85

e

134

86

f

610

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Table

17.

Equivalent

Characters

in

the

ASCII

and

EBCDIC

Character

Sets

(continued)

Decimal

Value

Hex

Value

Control

Character

ASCII

Symbol

Meaning

EBCDIC

Symbol

Meaning

135

87

g

136

88

h

137

89

i

138

8A

139

8B

140

8C

141

8D

142

8E

143

8F

144

90

145

91

j

146

92

k

147

93

l

148

94

m

149

95

n

150

96

o

151

97

p

152

98

q

153

99

r

154

9A

155

9B

156

9C

157

9D

158

9E

159

9F

160

A0

161

A1

~

similar,

tilde

162

A2

s

163

A3

t

164

A4

u

165

A5

v

166

A6

w

167

A7

x

168

A8

y

169

A9

z

170

AA

171

AB

172

AC

173

AD

Appendix

B.

ASCII

and

EBCDIC

Character

Sets

611

Table

17.

Equivalent

Characters

in

the

ASCII

and

EBCDIC

Character

Sets

(continued)

Decimal

Value

Hex

Value

Control

Character

ASCII

Symbol

Meaning

EBCDIC

Symbol

Meaning

174

AE

175

AF

176

B0

177

B1

178

B2

179

B3

180

B4

181

B5

182

B6

183

B7

184

B8

185

B9

186

BA

187

BB

188

BC

189

BD

190

BE

191

BF

192

C0

{

left

brace

193

C1

A

194

C2

B

195

C3

C

196

C4

D

197

C5

E

198

C6

F

199

C7

G

200

C8

H

201

C9

I

202

CA

203

CB

204

CC

205

CD

206

CE

207

CF

208

D0

}

right

brace

209

D1

J

210

D2

K

211

D3

L

212

D4

M

612

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Table

17.

Equivalent

Characters

in

the

ASCII

and

EBCDIC

Character

Sets

(continued)

Decimal

Value

Hex

Value

Control

Character

ASCII

Symbol

Meaning

EBCDIC

Symbol

Meaning

213

D5

N

214

D6

O

215

D7

P

216

D8

Q

217

D9

R

218

DA

219

DB

220

DC

221

DD

222

DE

223

DF

224

E0

\

left

slash

225

E1

226

E2

S

227

E3

T

228

E4

U

229

E5

V

230

E6

W

231

E7

X

232

E8

Y

233

E9

Z

234

EA

235

EB

236

EC

237

ED

238

EE

239

EF

240

F0

0

241

F1

1

242

F2

2

243

F3

3

244

F4

4

245

F5

5

246

F6

6

247

F7

7

248

F8

8

249

F9

9

250

FA

|

vertical

line

251

FB

Appendix

B.

ASCII

and

EBCDIC

Character

Sets

613

Table

17.

Equivalent

Characters

in

the

ASCII

and

EBCDIC

Character

Sets

(continued)

Decimal

Value

Hex

Value

Control

Character

ASCII

Symbol

Meaning

EBCDIC

Symbol

Meaning

252

FC

253

FD

254

FE

255

FF

EO

eight

ones

614

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Notices

This

information

was

developed

for

products

and

services

offered

in

the

U.S.A.

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

other

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504–1785

U.S.A.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country

or

send

inquiries,

in

writing,

to:

IBM

World

Trade

Asia

Corporation

Licensing

2–31

Roppongi

3–chome,

Minato-ku

Tokyo

106,

Japan

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

″AS

IS″

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

©

Copyright

IBM

Corp.

1990,

2003

615

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

IBM

Corporation

Lab

Director

IBM

Canada

Limited

8200

Warden

Avenue

Markham,

Ontario,

Canada

L6G

1C7

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

document

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement

or

any

equivalent

agreement

between

us.

All

statements

regarding

IBM’s

future

direction

or

intent

are

subject

to

change

or

withdrawal

without

notice,

and

represent

goals

and

objectives

only.

This

information

is

for

planning

purposes

only.

The

information

herein

is

subject

to

change

before

the

products

described

become

available.

This

information

contains

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

COPYRIGHT

LICENSE:

This

information

contains

sample

application

programs

in

source

language,

which

illustrates

programming

techniques

on

various

operating

platforms.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM,

for

the

purposes

of

developing,

using,

marketing

or

distributing

application

programs

conforming

to

the

application

programming

interface

for

the

operating

platform

for

which

the

sample

programs

are

written.

These

examples

have

not

been

thoroughly

tested

under

all

conditions.

IBM,

therefore,

cannot

guarantee

or

imply

reliability,

serviceability,

or

function

of

these

programs.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM

for

the

purposes

of

developing,

using,

marketing,

or

distributing

application

programs

conforming

to

IBM’s

application

programming

interfaces.

This

software

and

documentation

are

based

in

part

on

the

Fourth

Berkeley

Software

Distribution

under

license

from

the

Regents

of

the

University

of

California.

We

acknowledge

the

following

institution

for

its

role

in

this

product’s

development:

the

Electrical

Engineering

and

Computer

Sciences

Department

at

the

Berkeley

campus.

616

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Trademarks

and

Service

Marks

The

following

terms,

used

in

this

publication,

are

trademarks

or

service

marks

of

the

International

Business

Machines

Corporation

in

the

United

States

or

other

countries

or

both:

IBM

PowerPC

Other

company,

product,

and

service

names

may

be

trademarks

or

service

marks

of

others.

Notices

617

618

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

Glossary

This

glossary

defines

terms

that

are

commonly

used

in

this

document.

It

includes

definitions

developed

by

the

American

National

Standards

Institute

(ANSI)

and

entries

from

the

IBM

Dictionary

of

Computing.

A

actual

argument.

An

expression,

variable,

procedure,

or

alternate

return

specifier

that

is

specified

in

a

procedure

reference.

alphabetic

character.

A

letter

or

other

symbol,

excluding

digits,

used

in

a

language.

Usually

the

uppercase

and

lowercase

letters

A

through

Z

plus

other

special

symbols

(such

as

the

underscore

character,

″_″)

allowed

by

a

particular

language.

alphanumeric.

Pertaining

to

a

character

set

that

contains

letters,

digits,

and

usually

other

characters,

such

as

punctuation

marks

and

mathematical

symbols.

American

National

Standard

Code

for

Information

Interchange

(ASCII).

The

code

developed

by

ANSI

for

information

interchange

among

data

processing

systems,

data

communication

systems,

and

associated

equipment.

The

ASCII

character

set

consists

of

7-bit

control

characters

and

symbolic

characters.

American

National

Standards

Institute

(ANSI).

An

organization

sponsored

by

the

Computer

and

Business

Equipment

Manufacturers

Association

through

which

accredited

organizations

create

and

maintain

voluntary

industry

standards.

ANSI.

American

National

Standards

Institute.

argument.

An

actual

argument

or

a

dummy

argument.

argument

association.

The

relationship

between

an

actual

argument

and

a

dummy

argument

during

the

execution

of

a

procedure

reference.

arithmetic

constant.

A

constant

of

type

integer,

real,

or

complex.

arithmetic

expression.

One

or

more

arithmetic

operators

and

arithmetic

primaries,

the

evaluation

of

which

produces

a

numeric

value.

An

arithmetic

expression

can

be

an

unsigned

arithmetic

constant,

the

name

of

an

arithmetic

constant,

or

a

reference

to

an

arithmetic

variable,

function

reference,

or

a

combination

of

such

primaries

formed

by

using

arithmetic

operators

and

parentheses.

arithmetic

operator.

A

symbol

that

directs

the

performance

of

an

arithmetic

operation.

The

intrinsic

arithmetic

operators

are:

+

addition

-

subtraction

*

multiplication

/

division

**

exponentiation

array.

An

entity

that

contains

an

ordered

group

of

scalar

data.

All

objects

in

an

array

have

the

same

data

type

and

type

parameters.

array

declarator.

The

part

of

a

statement

that

describes

an

array

used

in

a

program

unit.

It

indicates

the

name

of

the

array,

the

number

of

dimensions

it

contains,

and

the

size

of

each

dimension.

array

element.

A

single

data

item

in

an

array,

identified

by

the

array

name

followed

by

one

or

more

integer

expressions

called

subscript

expressions

that

indicate

its

position

in

the

array.

array

name.

The

name

of

an

ordered

set

of

data

items.

array

pointer.

A

pointer

to

an

array.

array

section.

A

subobject

that

is

an

array

and

is

not

a

structure

component.

ASCII.

American

National

Standard

Code

for

Information

Interchange.

assignment

statement.

An

assignment

statement

can

be

intrinsic

or

defined.

An

intrinsic

assignment

stores

the

value

of

the

right

operand

in

the

storage

location

of

the

left

operand.

attribute.

A

property

of

a

data

object

that

may

be

specified

in

a

type

declaration

statement,

attribute

specification

statement,

or

through

a

default

setting.

B

binary

constant.

A

constant

that

is

made

of

one

or

more

binary

digits

(0

and

1).

bind.

To

relate

an

identifier

to

another

object

in

a

program;

for

example,

to

relate

an

identifier

to

a

value,

an

address

or

another

identifier,

or

to

associate

formal

parameters

and

actual

parameters.

blank

common.

An

unnamed

common

block.

block

data

subprogram.

A

subprogram

headed

by

a

BLOCK

DATA

statement

and

used

to

initialize

variables

in

named

common

blocks.

©

Copyright

IBM

Corp.

1990,

2003

619

byte

constant.

A

named

constant

that

is

of

type

byte.

byte

type.

A

data

type

representing

a

one-byte

storage

area

that

can

be

used

wherever

a

LOGICAL(1),

CHARACTER(1),

or

INTEGER(1)

can

be

used.

C

character

constant.

A

string

of

one

or

more

alphabetic

characters

enclosed

in

apostrophes

or

double

quotation

marks.

character

expression.

A

character

object,

a

character-valued

function

reference,

or

a

sequence

of

them

separated

by

the

concatenation

operator,

with

optional

parentheses.

character

operator.

A

symbol

that

represents

an

operation,

such

as

concatenation

(//),

to

be

performed

on

character

data.

character

set.

All

the

valid

characters

for

a

programming

language

or

for

a

computer

system.

character

string.

A

sequence

of

consecutive

characters.

character

substring.

A

contiguous

portion

of

a

character

string.

character

type.

A

data

type

that

consists

of

alphanumeric

characters.

See

also

data

type.

chunk.

A

subset

of

consecutive

loop

iterations.

collating

sequence.

The

sequence

in

which

characters

are

ordered

within

the

computer

for

sorting,

combining,

or

comparing.

The

Mac

OS

X

collating

sequence

used

by

XL

Fortran

is

ASCII.

comment.

A

language

construct

for

the

inclusion

of

text

in

a

program

that

has

no

effect

on

the

execution

of

the

program.

common

block.

A

storage

area

that

may

be

referred

to

by

a

calling

program

and

one

or

more

subprograms.

compiler

directive.

Source

code

that

controls

what

XL

Fortran

does

rather

than

what

the

user

program

does.

complex

constant.

An

ordered

pair

of

real

or

integer

constants

separated

by

a

comma

and

enclosed

in

parentheses.

The

first

constant

of

the

pair

is

the

real

part

of

the

complex

number;

the

second

is

the

imaginary

part.

complex

number.

A

number

consisting

of

an

ordered

pair

of

real

numbers,

expressible

in

the

form

a+bi,

where

a

and

b

are

real

numbers

and

i

squared

equals

-1.

complex

type.

A

data

type

that

represents

the

values

of

complex

numbers.

The

value

is

expressed

as

an

ordered

pair

of

real

data

items

separated

by

a

comma

and

enclosed

in

parentheses.

The

first

item

represents

the

real

part

of

the

complex

number;

the

second

represents

the

imaginary

part.

conformance.

An

executable

program

conforms

to

the

Fortran

95

Standard

if

it

uses

only

those

forms

and

relationships

described

therein

and

if

the

executable

program

has

an

interpretation

according

to

the

Fortran

95

Standard.

A

program

unit

conforms

to

the

Fortran

95

Standard

if

it

can

be

included

in

an

executable

program

in

a

manner

that

allows

the

executable

program

to

be

standard-conforming.

A

processor

conforms

to

the

standard

if

it

executes

standard-conforming

programs

in

a

manner

that

fulfills

the

interpretations

prescribed

in

the

standard.

connected

unit.

In

XL

Fortran,

a

unit

that

is

connected

to

a

file

in

one

of

three

ways:

explicitly

via

the

OPEN

statement

to

a

named

file,

implicitly,

or

by

preconnection.

constant.

A

data

object

with

a

value

that

does

not

change.

Contrast

with

variable.

The

four

classes

of

constants

specify

numbers

(arithmetic),

truth

values

(logical),

character

data

(character),

and

typeless

data

(hexadecimal,

octal,

and

binary).

construct.

A

sequence

of

statements

starting

with

a

SELECT

CASE,

DO,

IF,

or

WHERE

statement

and

ending

with

the

corresponding

terminal

statement.

continuation

line.

Continues

a

statement

beyond

its

initial

line.

control

statement.

A

statement

that

is

used

to

alter

the

continuous

sequential

invocation

of

statements;

a

control

statement

may

be

a

conditional

statement,

such

as

IF,

or

an

imperative

statement,

such

as

STOP.

D

data

object.

A

variable,

constant,

or

subobject

of

a

constant.

data

transfer

statement.

A

READ,

WRITE,

or

PRINT

statement.

data

type.

The

properties

and

internal

representation

that

characterize

data

and

functions.

The

intrinsic

types

are

integer,

real,

complex,

logical,

and

character.

debug

line.

Allowed

only

for

fixed

source

form,

a

line

containing

source

code

that

is

to

be

used

for

debugging.

Debug

lines

are

defined

by

a

D

or

Xin

column

1.

The

handling

of

debug

lines

is

controlled

by

the

-qdlines

and

-qxlines

compiler

options.

default

initialization.

The

initialization

of

an

object

with

a

value

specified

as

part

of

a

derived

type

definition.

620

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

definable.

A

variable

is

definable

if

its

value

can

be

changed

by

the

appearance

of

its

name

or

designator

on

the

left

of

an

assignment

statement.

delimiters.

A

pair

of

parentheses

or

slashes

(or

both)

used

to

enclose

syntactic

lists.

denormal.

An

IEEE

number

with

a

very

small

absolute

value

and

lowered

precision.

Denormal

numbers

are

represented

by

a

zero

exponent

and

a

non-zero

fraction.

derived

type.

A

type

whose

data

have

components,

each

of

which

is

either

of

intrinsic

type

or

of

another

derived

type.

digit.

A

character

that

represents

a

nonnegative

integer.

For

example,

any

of

the

numerals

from

0

through

9.

directive.

A

type

of

comment

that

provides

instructions

and

information

to

the

compiler.

DO

loop.

A

range

of

statements

invoked

repetitively

by

a

DO

statement.

DO

variable.

A

variable,

specified

in

a

DO

statement,

that

is

initialized

or

incremented

prior

to

each

occurrence

of

the

statement

or

statements

within

a

DO

range.

It

is

used

to

control

the

number

of

times

the

statements

within

the

range

are

executed.

DOUBLE

PRECISION

constant.

A

constant

of

type

real

with

twice

the

precision

of

the

default

real

precision.

dummy

argument.

An

entity

whose

name

appears

in

the

parenthesized

list

following

the

procedure

name

in

a

FUNCTION,

SUBROUTINE,

ENTRY,

or

statement

function

statement.

dynamic

extent.

The

dynamic

extent

of

a

directive

includes

the

lexical

extent

of

the

directive

and

all

subprograms

called

from

within

the

lexical

extent.

E

edit

descriptors.

In

Fortran,

abbreviated

keywords

that

control

the

formatting

of

integer,

real,

and

complex

data.

elemental.

An

adjective

applied

to

an

intrinsic

operation,

procedure

or

assignment

that

is

applied

independently

to

elements

of

an

array

or

corresponding

elements

of

a

set

of

conformable

arrays

and

scalars.

embedded

blanks.

Blanks

that

are

surrounded

by

any

other

characters.

entity.

A

general

term

for

the

following:

a

program

unit,

procedure,

operator,

interface

block,

common

block,

external

unit,

statement

function,

type,

named

variable,

expression,

component

of

a

structure,

named

constant,

statement

label,

construct,

or

namelist

group.

executable

program.

A

program

that

can

be

executed

as

a

self-contained

procedure.

It

consists

of

a

main

program

and,

optionally,

modules,

subprograms

and

non-Fortran

external

procedures.

executable

statement.

A

statement

that

causes

an

action

to

be

taken

by

the

program;

for

example,

to

calculate,

test

conditions,

or

alter

normal

sequential

execution.

existing

unit.

A

valid

unit

number

that

is

system-specific.

explicit

initialization.

The

initialization

of

an

object

with

a

value

stated

in

a

data

statement

initial

value

list,

block

data

program

unit,

type

declaration

statement,

or

array

constructor.

explicit

interface.

For

a

procedure

referenced

in

a

scoping

unit,

the

property

of

being

an

internal

procedure,

module

procedure,

intrinsic

procedure,

external

procedure

that

has

an

interface

block,

recursive

procedure

reference

in

its

own

scoping

unit,

or

dummy

procedure

that

has

an

interface

block.

expression.

A

sequence

of

operands,

operators,

and

parentheses.

It

may

be

a

variable,

constant,

function

reference,

or

it

may

represent

a

computation.

extended-precision

constant.

A

processor

approximation

to

the

value

of

a

real

number

that

occupies

16

consecutive

bytes

of

storage.

external

procedure.

A

procedure

that

is

defined

by

an

external

subprogram

or

by

a

means

other

than

Fortran.

F

field.

An

area

in

a

record

used

to

contain

a

particular

category

of

data.

file.

A

sequence

of

records.

If

the

file

is

located

in

internal

storage,

it

is

an

internal

file;

if

it

is

on

an

input/output

device,

it

is

an

external

file.

floating-point

number.

A

real

number

represented

by

a

pair

of

distinct

numerals.

The

real

number

is

the

product

of

the

fractional

part,

one

of

the

numerals,

and

a

value

obtained

by

raising

the

implicit

floating-point

base

to

a

power

indicated

by

the

second

numeral.

format.

(1)

A

defined

arrangement

of

such

things

as

characters,

fields,

and

lines,

usually

used

for

displays,

printouts,

or

files.

(2)

To

arrange

such

things

as

characters,

fields,

and

lines.

formatted

data.

Data

that

is

transferred

between

main

storage

and

an

input/output

device

according

to

a

specified

format.

See

also

list-directed

and

unformatted

record.

Glossary

621

FORmula

TRANslation

(Fortran).

A

high-level

programming

language

used

primarily

for

scientific,

engineering,

and

mathematical

applications.

Fortran.

FORmula

TRANslation.

function.

A

procedure

that

returns

the

value

of

a

single

variable

and

that

usually

has

a

single

exit.

See

also

function

subprogram,

intrinsic

function,

and

statement

function.

G

generic

identifier.

A

lexical

token

that

appears

in

an

INTERFACE

statement

and

is

associated

with

all

the

procedures

in

an

interface

block.

H

hexadecimal.

Pertaining

to

a

system

of

numbers

to

the

base

sixteen;

hexadecimal

digits

range

from

0

(zero)

through

9

(nine)

and

A

(ten)

through

F

(fifteen).

hexadecimal

constant.

A

constant,

usually

starting

with

special

characters,

that

contains

only

hexadecimal

digits.

Hollerith

constant.

A

string

of

any

characters

capable

of

representation

by

XL

Fortran

and

preceded

with

nH,

where

n

is

the

number

of

characters

in

the

string.

host.

A

main

program

or

subprogram

that

contains

an

internal

procedure

is

called

the

host

of

the

internal

procedure.

A

module

that

contains

a

module

procedure

is

called

the

host

of

the

module

procedure.

host

association.

The

process

by

which

an

internal

subprogram,

module

subprogram,

or

derived-type

definition

accesses

the

entities

of

its

host.

I

implicit

interface.

A

procedure

referenced

in

a

scoping

unit

other

than

its

own

is

said

to

have

an

implicit

interface

if

the

procedure

is

an

external

procedure

that

does

not

have

an

interface

block,

a

dummy

procedure

that

does

not

have

an

interface

block,

or

a

statement

function.

implied

DO.

An

indexing

specification

(similar

to

a

DO

statement,

but

without

specifying

the

word

DO)

with

a

list

of

data

elements,

rather

than

a

set

of

statements,

as

its

range.

infinity.

An

IEEE

number

(positive

or

negative)

created

by

overflow

or

division

by

zero.

Infinity

is

represented

by

an

exponent

where

all

the

bits

are

1’s,

and

a

zero

fraction.

input/output

(I/O).

Pertaining

to

either

input

or

output,

or

both.

input/output

list.

A

list

of

variables

in

an

input

or

output

statement

specifying

the

data

to

be

read

or

written.

An

output

list

can

also

contain

a

constant,

an

expression

involving

operators

or

function

references,

or

an

expression

enclosed

in

parentheses.

integer

constant.

An

optionally

signed

digit

string

that

contains

no

decimal

point.

interface

block.

A

sequence

of

statements

from

an

INTERFACE

statement

to

the

corresponding

END

INTERFACE

statement.

interface

body.

A

sequence

of

statements

in

an

interface

block

from

a

FUNCTION

or

SUBROUTINE

statement

to

the

corresponding

END

statement.

interference.

When

two

iterations

within

a

DO

loop

have

dependencies

upon

one

another.

For

more

information,

see

“ASSERT”

on

page

400.

intrinsic.

An

adjective

applied

to

types,

operations,

assignment

statements,

and

procedures

that

are

defined

by

Fortran

90

and

can

be

used

in

any

scoping

unit

without

further

definition

or

specification.

I/O.

Input/output.

K

keyword.

(1)

A

statement

keyword

is

a

word

that

is

part

of

the

syntax

of

a

statement

(or

directive)

and

that

may

be

used

to

identify

the

statement.

(2)

An

argument

keyword

specifies

a

name

for

a

dummy

argument.

kind

type

parameter.

A

parameter

whose

values

label

the

available

kinds

of

an

intrinsic

type.

L

lexical

extent.

The

lexical

extent

of

a

directive

includes

all

code

that

appears

directly

within

the

directive

construct.

lexical

token.

A

sequence

of

characters

with

an

indivisible

interpretation.

list-directed.

A

predefined

input/output

format

that

depends

on

the

type,

type

parameters,

and

values

of

the

entities

in

the

data

list.

literal.

A

symbol

or

a

quantity

in

a

source

program

that

is

itself

data,

rather

than

a

reference

to

data.

literal

constant.

In

Fortran,

a

lexical

token

that

directly

represents

a

scalar

value

of

intrinsic

type.

logical

constant.

A

constant

with

a

value

of

either

true

or

false

(or

T

or

F).

logical

operator.

A

symbol

that

represents

an

operation

on

logical

expressions:

622

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

.NOT.

(logical

negation)

.AND.

(logical

conjunction)

.OR.

(logical

union)

.EQV.

(logical

equivalence)

.NEQV.

(logical

nonequivalence)

.XOR.

(logical

exclusive

disjunction)

loop.

A

statement

block

that

executes

repeatedly.

M

main

program.

The

first

program

unit

to

receive

control

when

a

program

is

run.

Contrast

with

subprogram.

master

thread.

The

head

process

of

a

group

of

threads.

module.

A

program

unit

that

contains

or

accesses

definitions

to

be

accessed

by

other

program

units.

mutex.

The

word

mutex

is

shorthand

for

a

primitive

object

that

provides

MUTual

EXclusion

between

threads.

A

mutual

exclusion

(mutex)

is

used

cooperatively

between

threads

to

ensure

that

only

one

of

the

cooperating

threads

is

allowed

to

access

the

data

or

run

certain

application

code

at

a

time.

N

name.

A

lexical

token

consisting

of

a

letter

followed

by

up

to

249

alphanumeric

characters

(letters,

digits,

and

underscores).

Note

that

in

FORTRAN

77,

this

was

called

a

symbolic

name.

named

common.

A

separate,

named

common

block

consisting

of

variables.

namelist

group

name.

The

first

parameter

in

the

NAMELIST

statement

that

names

a

list

of

names

to

be

used

in

READ,

WRITE,

and

PRINT

statements.

negative

zero.

An

IEEE

representation

where

the

exponent

and

fraction

are

both

zero,

but

the

sign

bit

is

1.

Negative

zero

is

treated

as

equal

to

positive

zero.

nest.

To

incorporate

a

structure

or

structures

of

some

kind

into

a

structure

of

the

same

kind.

For

example,

to

nest

one

loop

(the

nested

loop)

within

another

loop

(the

nesting

loop);

to

nest

one

subroutine

(the

nested

subroutine)

within

another

subroutine

(the

nesting

subroutine).

nonexecutable

statement.

A

statement

that

describes

the

characteristics

of

a

program

unit,

data,

editing

information,

or

statement

functions,

but

does

not

cause

any

action

to

be

taken

by

the

program.

nonexisting

file.

A

file

that

does

not

physically

exist

on

any

accessible

storage

medium.

normal.

A

floating

point

number

that

is

not

denormal,

infinity,

or

NaN.

numeric

constant.

A

constant

that

expresses

an

integer,

real,

complex,

or

byte

number.

O

octal.

Pertaining

to

a

system

of

numbers

to

the

base

eight;

the

octal

digits

range

from

0

(zero)

through

7

(seven).

octal

constant.

A

constant

that

is

made

of

octal

digits.

operator.

In

Fortran,

a

specification

of

a

particular

computation

involving

one

or

two

operands.

P

pad.

To

fill

unused

positions

in

a

field

or

character

string

with

dummy

data,

usually

zeros

or

blanks.

pointer.

A

variable

that

has

the

POINTER

attribute.

A

pointer

must

not

be

referenced

or

defined

unless

it

is

pointer

associated

with

a

target.

If

it

is

an

array,

it

does

not

have

a

shape

unless

it

is

pointer-associated.

preconnected

file.

A

file

that

is

connected

to

a

unit

at

the

beginning

of

execution

of

the

executable

program.

Standard

error,

standard

input,

and

standard

output

are

preconnected

files

(units

0,

5

and

6,

respectively).

predefined

convention.

The

implied

type

and

length

specification

of

a

data

object,

based

on

the

initial

character

of

its

name

when

no

explicit

specification

is

given.

The

initial

characters

I

through

N

imply

type

integer

of

length

4;

the

initial

characters

A

through

H,

O

through

Z,

$,

and

_

imply

type

real

of

length

4.

present.

A

dummy

argument

is

present

in

an

instance

of

a

subprogram

if

it

is

associated

with

an

actual

argument

and

the

actual

argument

is

a

dummy

argument

that

is

present

in

the

invoking

procedure

or

is

not

a

dummy

argument

of

the

invoking

procedure.

primary.

The

simplest

form

of

an

expression:

an

object,

array

constructor,

structure

constructor,

function

reference,

or

expression

enclosed

in

parentheses.

procedure.

A

computation

that

may

be

invoked

during

program

execution.

It

may

be

a

function

or

subroutine.

It

may

be

an

intrinsic

procedure,

external

procedure,

module

procedure,

internal

procedure,

dummy

procedure,

or

statement

function.

A

subprogram

may

define

more

than

one

procedure

if

the

subprogram

contains

ENTRY

statements.

program

unit.

A

main

program

or

subprogram.

pure.

An

attribute

of

a

procedure

that

indicates

there

are

no

side

effects.

Glossary

623

R

random

access.

An

access

method

in

which

records

can

be

read

from,

written

to,

or

removed

from

a

file

in

any

order.

rank.

In

Fortran,

the

number

of

dimensions

of

an

array.

real

constant.

A

string

of

decimal

digits

that

expresses

a

real

number.

A

real

constant

must

contain

a

decimal

point,

a

decimal

exponent,

or

both.

record.

A

sequence

of

values

that

is

treated

as

a

whole

within

a

file.

relational

expression.

An

expression

that

consists

of

an

arithmetic

or

character

expression,

followed

by

a

relational

operator,

followed

by

another

arithmetic

or

character

expression.

relational

operator.

The

words

or

symbols

used

to

express

a

relational

condition

or

a

relational

expression:

.GT.

greater

than

.GE.

greater

than

or

equal

to

.LT.

less

than

.LE.

less

than

or

equal

to

.EQ.

equal

to

.NE.

not

equal

to

result

variable.

The

variable

that

returns

the

value

of

a

function.

return

specifier.

An

argument

sepcified

for

a

statement,

such

as

CALL,

that

indicates

to

which

statement

label

control

should

return,

depending

on

the

action

specified

by

the

subroutine

in

the

RETURN

statement.

S

scalar.

(1)

A

single

datum

that

is

not

an

array.

(2)

Not

having

the

property

of

being

an

array.

scale

factor.

A

number

indicating

the

location

of

the

decimal

point

in

a

real

number

(and,

on

input,

if

there

is

no

exponent,

the

magnitude

of

the

number).

scope.

That

part

of

an

executable

program

within

which

a

lexical

token

has

a

single

interpretation.

scope

attribute.

That

part

of

an

executable

program

within

which

a

lexical

token

has

a

single

interpretation

of

a

particular

named

property

or

entity.

scoping

unit.

(1)

A

derived-type

definition.

(2)

An

interface

body,

excluding

any

derived-type

definitions

and

interface

bodies

contained

within

it.

(3)

A

program

unit

or

subprogram,

excluding

derived-type

definitions,

interface

bodies,

and

subprograms

contained

within

it.

selector.

A

pointer,

pointing

device,

or

selection

cursor.

sequential

access.

An

access

method

in

which

records

are

read

from,

written

to,

or

removed

from

a

file

based

on

the

logical

order

of

the

records

in

the

file.

specification

statement.

One

of

the

set

of

statements

that

provides

information

about

the

data

used

in

the

source

program.

The

statement

could

also

supply

information

to

allocate

data

storage.

statement.

A

language

construct

that

represents

a

step

in

a

sequence

of

actions

or

a

set

of

declarations.

Statements

fall

into

two

broad

classes:

executable

and

nonexecutable.

statement

function.

A

name,

followed

by

a

list

of

dummy

arguments,

that

is

equated

with

an

intrinsic

or

derived-type

expression,

and

that

can

be

used

as

a

substitute

for

the

expression

throughout

the

program.

statement

label.

A

number

from

one

through

five

digits

that

is

used

to

identify

a

statement.

Statement

labels

can

be

used

to

transfer

control,

to

define

the

range

of

a

DO,

or

to

refer

to

a

FORMAT

statement.

storage

association.

The

relationship

between

two

storage

sequences

if

a

storage

unit

of

one

is

the

same

as

a

storage

unit

of

the

other.

structure.

A

scalar

data

object

of

derived

type.

structure

component.

The

part

of

a

data

object

of

derived-type

corresponding

to

a

component

of

its

type.

subobject.

A

portion

of

a

named

data

object

that

may

be

referenced

or

defined

independently

of

other

portions.

It

can

be

an

array

element,

array

section,

structure

component,

or

substring.

subprogram.

A

function

subprogram

or

a

subroutine

subprogram.

Note

that

in

FORTRAN

77,

a

block

data

program

unit

was

called

a

subprogram.

subroutine.

A

procedure

that

is

invoked

by

a

CALL

statement

or

defined

assignment

statement.

subscript.

A

subscript

quantity

or

set

of

subscript

quantities

enclosed

in

parentheses

and

used

with

an

array

name

to

identify

a

particular

array

element.

substring.

A

contiguous

portion

of

a

scalar

character

string.

(Although

an

array

section

can

specify

a

substring

selector,

the

result

is

not

a

substring.)

T

target.

A

named

data

object

specified

to

have

the

TARGET

attribute,

a

data

object

created

by

an

ALLOCATE

statement

for

a

pointer,

or

a

subobject

of

such

an

object.

thread.

A

collection

of

processes

whose

order

determines

which

process

is

eligible

for

execution.

A

624

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

thread

is

the

element

that

is

scheduled,

and

to

which

resources

such

as

time

slices,

locks

and

queues

may

be

assigned.

thread

visible

variable.

A

variable

that

is

visible

to

more

than

one

thread.

time

slice.

An

interval

of

time

on

the

processing

unit

allocated

for

use

in

performing

a

task.

After

the

interval

has

expired,

processing

unit

time

is

allocated

to

another

task,

so

a

task

cannot

monopolize

processing

unit

time

beyond

a

fixed

limit.

token.

In

a

programming

language,

a

character

string,

in

a

particular

format,

that

has

some

defined

significance.

type

declaration

statement.

Specifies

the

type,

length,

and

attributes

of

objects

and

functions.

Objects

can

be

assigned

initial

values.

U

unformatted

record.

A

record

that

is

transmitted

unchanged

between

internal

and

external

storage.

unit.

A

means

of

referring

to

a

file

to

use

in

input/output

statements.

A

unit

can

be

connected

or

not

connected

to

a

file.

If

connected,

it

refers

to

a

file.

The

connection

is

symmetric:

that

is,

if

a

unit

is

connected

to

a

file,

the

file

is

connected

to

the

unit.

use

association.

The

association

of

names

in

different

scoping

units

specified

by

a

USE

statement.

V

variable.

A

data

object

whose

value

can

be

defined

and

redefined

during

the

execution

of

an

executable

program.

It

may

be

a

named

data

object,

array

element,

array

section,

structure

component,

or

substring.

Note

that

in

FORTRAN

77,

a

variable

was

always

scalar

and

named.

Z

zero-length

character.

A

character

object

that

has

a

length

of

0

and

is

always

defined.

zero-sized

array.

An

array

that

has

a

lower

bound

that

is

greater

than

its

corresponding

upper

bound.

The

array

is

always

defined.

Glossary

625

626

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

INDEX

Special

characters
;

statement

separator

14,

16

:

(colon)

editing

206

::

(double

colon)

separator

234

!

inline

comments

12,

13

/

(slash)

editing

205

//

(concatenation)

operator

93

’

(apostrophe)

editing

207

″″

(double

quotation

mark)

editing

207

$

(dollar)

editing

206

*

comment

lines

13

@PROCESS

compiler

directive

412

%VAL

and

%REF

functions

157

#line

compiler

directive

409

+,

-,

*,

/,

**

arithmetic

operators

91

A
A

(character)

editing

191

ABORT

intrinsic

subroutine

426

ABS
initializing

expressions

87

intrinsic

function

426

specific

name

427

ACCESS

specifier
of

INQUIRE

statement

309

of

OPEN

statement

332

access,

inquiring

about

309

accessibility
private

346

public

350

ACHAR

intrinsic

function

427

ACOS
intrinsic

function

427

specific

name

428

ACOSD
intrinsic

function

428

specific

name

429

ACTION

specifier
of

INQUIRE

statement

309

of

OPEN

statement

332

actual

arguments
definition

of

619

specification

153

specifying

procedure

names

as

289

addition

arithmetic

operator

91

ADJUSTL

intrinsic

function

429

ADJUSTR

intrinsic

function

429

ADVANCE

specifier
of

READ

statement

351

of

WRITE

statement

392

AIMAG
initializing

expressions

87

intrinsic

function

430

specific

name

430

AINT
intrinsic

function

430

specific

name

431

alarm_

service

and

utility

subprogram

584

ALGAMA

specific

name

479

ALL

array

intrinsic

function

431

ALLOCATABLE

attribute

226

ALLOCATE

statement

227

ALLOCATED

array

intrinsic

function

229,

432

allocation

status

61

ALOG

specific

name

483

ALOG10

specific

name

484

alphabetic

character,

definition

of

619

alphanumeric,

definition

of

619

alternate

entry

point

283

alternate

return
point

155

specifier

154,

164

AMAX0

specific

name

487

AMAX1

specific

name

487

AMIN0

specific

name

492

AMIN1

specific

name

492

AMOD

specific

name

497

AND

logical

operator

95

AND

specific

name

466

ANINT

intrinsic

function

432

ANINT

specific

name

433

ANSI,

definition

of

619

ANY

array

intrinsic

function

433

apostrophe

(’)

editing

207

arguments
See

also

actual

arguments,

dummy

argument

definition

of

619

keywords

154

specification

153

arithmetic
expressions

90

operators

91

relational

expressions

93

type
complex

26,

27

integer

23

real

24

arithmetic

IF

statement

304

arrays
adjustable

69

allocatable

71

array

pointers

72

assumed-shape

69

assumed-size

72,

88

automatic

68

bounds

65

constructors

81

declarators

67

decription

65

deferred-shape

70

elements

74

explicit-shape

68

extents

66

pointee

69

pointer

72

rank

66

sections

75

arrays

(continued)
shape

66

size

66

specification

of

67

zero-sized

65

ASCII
character

set

9,

607

definition

of

619

ASIN
intrinsic

function

434

specific

name

434

ASIND
intrinsic

function

434

specific

name

435

ASSERT

compiler

directive

400

ASSIGN

statement

229

assigned

GO

TO

statement

301

assignment
defined

144

intrinsic

101

masked

array

106

pointer

113

statements
described

101

statement

label

(ASSIGN)

229

ASSOCIATED

intrinsic

function

229,

435

association
argument

156

common

248

description

131

entry

299

equivalence

285

host

131

integer

pointer

134

pointer

133

use

132

asterisk

as

dummy

argument

155,

164

ATAN
intrinsic

function

436

specific

name

436

ATAN2
intrinsic

function

437

specific

name

438

ATAN2D
intrinsic

function

438

specific

name

439

ATAND
intrinsic

function

436

specific

name

437

attributes
ALLOCATABLE

226

AUTOMATIC

230

description

226

DIMENSION

262

EXTERNAL

288

INTENT

318

INTRINSIC

322

OPTIONAL

337

PARAMETER

338

POINTER

340

PRIVATE

346

©

Copyright

IBM

Corp.

1990,

2003

627

attributes

(continued)
PROTECTED

348

PUBLIC

350

SAVE

365

STATIC

370

TARGET

373

VALUE

386

VOLATILE

388

AUTOMATIC

attribute

230

automatic

object

22

B
B

(binary)

editing

191

BACKSPACE

statement

232

bic_

service

and

utility

subprogram

585

binary
constants

53

editing

(B)

191

operations

85

bis_

service

and

utility

subprogram

585

bit_

service

and

utility

subprogram

585

BIT_SIZE
intrinsic

function

88,

439

intrinsic,

constant

expressions

and

86

blank
common

block

248

editing

207

interpretation

during

formatting,

setting

207

null

(BN)

editing

207

specifier
of

INQUIRE

statement

(BLANK)

309

of

OPEN

statement

(BLANK)

332

zero

(BZ)

editing

207

block
ELSE

118

ELSE

IF

118

IF

118,

304

statement

117

block

data
program

unit

149

statement

(BLOCK

DATA)

233

BN

(blank

null)

editing

207

branching

control

126

BTEST
intrinsic

function

440

specific

name

440

byte

named

constants

101

BYTE

type

declaration

statement

234

BZ

(blank

zero)

editing

207

C
CABS

specific

name

427

CACHE_ZERO

compiler

directive

573

CALL

statement

237

CASE
construct

119,

238

statement

238

CCOS

specific

name

444

CDABS

specific

name

427

CDCOS

specific

name

444

CDEXP

specific

name

460

CDLOG

specific

name

483

CDSIN

specific

name

522

CDSQRT

specific

name

528

CEILING

intrinsic

function

440

CEXP

specific

name

460

CHAR
intrinsic

function

441

specific

name

442

character
editing

(A)

191

(Q),

count

203

expressions

93

format

specification

297

multibyte

31

operator

93

relational

expressions

94

set

9

string

edit

descriptor

189,

296

substrings

31

CHARACTER

type

declaration

statement

240

character-string

editing

207

chtz

command

450

chunk
definition

of

620

clock_

service

and

utility

subprogram

586

CLOG

specific

name

483

CLOSE

statement

245

clr_fpscr_flags

subprogram

545

CMPLX
initializing

expressions

87

intrinsic

function

442

specific

name

443

CNCALL

compiler

directive

402

CNVERR

run-time

option
conversion

errors

and

184

implied-DO

list

and

356,

396

COLLAPSE

compiler

directive

403

collating

sequence

9

colon

(:)

editing

206

comment

lines
description

12

fixed

source

form

format

13

free

source

form

input

format

15

order

within

a

program

unit

19

common
association

248

block

10,

247

COMMON

statement

247

communication

between

program

units
using

arguments

153

using

common

blocks

247

using

modules

146

compatibility

across

standards

603

compiler

directives
See

directives

compiler

options
-I

405

-qalias

157

-qautodbl

426

-qci

405

-qctyplss
and

the

CASE

statement

240

character

constants

and

31,

101

typeless

constants

and

54

-qddim

69,

343

compiler

options

(continued)
-qdirective

413

-qdlines

14

-qescape
and

Hollerith

constants

54

apostrophe

editing

and

207

double

quotation

mark

editing

and

207

H

editing

and

208

-qextname

583

-qfixed

13

-qintlog

99,

141

-qintsize
integer

default

size

and

23,

28

intrinsic

procedure

return

types

and

426

-qlog4

99

-qmbcs

207,

208

-qmixed

10,

405

-qnoescape

30

-qnosave

63,

308

-qnullterm

30

-qposition

179,

332

-qqcount

203

-qrealsize

24,

426

-qrecur

167

CALL

statement

and

237

ENTRY

statement

and

285

FUNCTION

statement

and

300

-qsave

63,

308

-qsigtrap

521

-qundef

307

-qxflag=oldtab

13

-qxlf77
binary

editing

and

192,

197,

204

hexadecimal

editing

and

204

octal

editing

and

202

OPEN

statement

and

335

real

and

complex

editing

and

198,

199

-qxlf90

190,

520

-qzerosize

32

-U

583

–qcclines

18

complex
data

type

27

editing

191

COMPLEX

type

declaration

statement

250

component

designator

39

computed

GO

TO

statement

302

concatenation

operator

93

conditional
INCLUDE

405

vector

merge

intrinsic

functions

449

conditional

compilation

17

conformable

arrays

83,

421

CONJG
initializing

expressions

87

intrinsic

function

443

specific

name

443

conjunction,

logical

95

constants
arithmetic

complex

26,

27

integer

23

real

24

628

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

constants

(continued)
binary

53

byte

named

101

character

29

description

22

expressions

86

hexadecimal

52

Hollerith

54

logical

28

octal

53

type

parameters,

specifiers

and

21

typeless

52

construct
CASE

119

DO

121

DO

WHILE

125

FORALL

110

IF

117

WHERE

104

construct

entities

128

construct

entity

131

construct

name

131

constructors
for

arrays

81

for

complex

objects

26,

27

for

structures

43

CONTAINS

statement

254

continuation
character

13,

17

lines

12

CONTINUE

statement

255

control
description

117

edit

descriptors

188,

295

format

211

statements
arithmetic

IF

304

assigned

GO

TO

301

block

IF

304

computed

GO

TO

302

CONTINUE

255

DO

263

DO

WHILE

265

END

276

logical

IF

305

PAUSE

339

STOP

371

unconditional

GO

TO

303

transfer

of

19

control

mask

106

COS
intrinsic

function

443

specific

name

444

COSD
intrinsic

function

444

specific

name

445

COSH
intrinsic

function

445

specific

name

445

COUNT

array

intrinsic

function

445

CPU_TIME

intrinsic

function

446

cpu_time_type

run-time

option

446

CQABS

specific

name

427

CQCOS

specific

name

444

CQEXP

specific

name

460

CQLOG

specific

name

483

CQSIN

specific

name

522

CQSQRT

specific

name

528

CSHIFT

array

intrinsic

function

448

CSIN

specific

name

522

CSQRT

specific

name

528

ctime_

service

and

utility

subprogram

586

CVMGM,

CVMGN,

CVMGP,

CVMGT,

CVMGZ

intrinsic

functions

449

CYCLE

statement

255

D
D

(double

precision)

editing

193

D

debug

lines

12

DABS

specific

name

427

DACOS

specific

name

428

DACOSD

specific

name

429

DASIN

specific

name

434

DASIND

specific

name

435

data
edit

descriptors

187,

191,

294

objects

21

statement

(DATA)

256

type
derived

33

types
conversion

rules

92

description

21

intrinsic

22

predefined

conventions

57

data

transfer
executing

178

statement
PRINT

344

READ

351

WRITE

392

DATAN

specific

name

436

DATAN2

specific

name

438

DATAN2D

specific

name

439

DATAND

specific

name

437

date

service

and

utility

subprogram

586

DATE_AND_TIME

intrinsic

subroutine

450

DBLE
initializing

expressions

87

intrinsic

function

451

specific

name

452

DBLEQ

specific

name

452

DCMPLX
initializing

expressions

87

intrinsic

function

452

specific

name

453

DCONJG

specific

name

443

DCOS

specific

name

444

DCOSD

specific

name

445

DCOSH

specific

name

445

DDIM

specific

name

454

DEALLOCATE

statement

260

debug

lines

12,

14

declarators
array

67

scoping

level

128

default

typing

57

deferred-shape

arrays

70

defined

assignment

144

defined

operations

97

defined

operators

143

definition

status

57

DELIM

specifier
of

INQUIRE

statement

309

of

OPEN

statement

332

DERF

specific

name

458

DERFC

specific

name

459

derived

types
array

structure

components

79

description

33

determining

the

type

of

38

scalar

structure

components

39

structure

components

35

structure

constructor

43

derived-type

statement

261

designators
for

array

elements

74

for

components

39

DEXP

specific

name

460

DFLOAT

specific

name

452

digit-string

21

digits

9

DIGITS

intrinsic

function

453

DIM
initializing

expressions

87

intrinsic

function

454

specific

name

454

DIMAG

specific

name

430

DIMENSION

attribute

262

dimension

bound

expression

65

dimensions

of

an

array

66

DINT

specific

name

431

DIRECT

specifier,

of

INQUIRE

statement

309

directive

lines

12

directives
@PROCESS

412

#line

409

ASSERT

400

CACHE_ZERO

573

CNCALL

402

COLLAPSE

403

discussion

397

EJECT

404

INCLUDE

404

INDEPENDENT

406

ISYNC

573

LIGHT_SYNC

574

PERMUTATION

411

PREFETCH_BY_LOAD

574

PREFETCH_FOR_LOAD

574

PREFETCH_FOR_STORE

574

SNAPSHOT

412

SOURCEFORM

413

STREAM_UNROLL

414

SUBSCRIPTORDER

415

UNROLL

417

UNROLL_AND_FUS

E

419

disconnection,

closing

files

and

177

disjunction,

logical

95

division

arithmetic

operator

91

DLGAMA

specific

name

479

DLOG

specific

name

483

DLOG10

specific

name

484

DMAX1

specific

name

487

DMIN1

specific

name

492

DMOD

specific

name

497

DNINT

specific

name

433

INDEX

629

DO
loop

121,

264

statement

122,

263

DO

WHILE
construct

125

loop

265

statement

265

dollar

($)

editing

206

DOT_PRODUCT

array

intrinsic

function

454

DOUBLE

COMPLEX

type

declaration

statement

266

double

precision

(D)

editing

193

DOUBLE

PRECISION

type

declaration

statement

269

double

quotation

mark

(″″)

editing

207

DPROD
initializing

expressions

87

intrinsic

function

455

specific

name

455

DREAL

specific

name

512

DSIGN

specific

name

520

DSIN

specific

name

522

DSIND

specific

name

523

DSINH

specific

name

523

DSQRT

specific

name

528

DTAN

specific

name

532

DTAND

specific

name

533

DTANH

specific

name

533

dtime_

service

and

utility

subprogram

586

dummy

argument
asterisk

as

164

definition

of

621

description

155

intent

attribute

and

158

procedure

as

163

variable

as

160

dummy

procedure

163

dynamic

extent,

definition

of

621

E
E

(real

with

exponent)

editing

193

EBCDIC

character

set

607

edit

descriptors
character

string

189,

296

control

(nonrepeatable)

188,

295

data

(repeatable)

187,

294

names

and

10

numeric

189

editing
:

(colon)

206

/

(slash)

205

’

(apostrophe)

207

″

(double

quotation

mark)

207

$

(dollar)

206

A

(character)

191

B

(binary)

191

BN

(blank

null)

207

BZ

(blank

zero)

207

character

count

Q

203

character-string

207

complex

191

D

(double

precision)

193

discussion

189

E

(real

with

exponent)

193

editing

(continued)
EN

195

ES

196

F

(real

without

exponent)

197

G

(general)

198

H

208

I

(integer)

200

L

(logical)

201

O

(octal)

201

P

(scale

factor)

209

Q

(extended

precision)

193

S,

SS,

and

SP

(sign

control)

209

T,

TL,

TR,

and

X

(positional)

210

Z

(hexadecimal)

204

efficient

floating-point

control

and

inquiry

procedures
clr_fpscr_flags

545

discussion

544

get_fpscr

546

get_fpscr_flags

546

get_round_mode

547

set_fpscr

547

set_fpscr_flags

547

set_round_mode

548

EJECT

compiler

directive

404

ELEMENTAL

169

elemental

intrinsic

procedures

421

elemental

procedures

169

ELSE
block

118

statement

118,

273

ELSE

IF
block

118

statement

118,

273

ELSEWHERE

statement

104,

274

EN

editing

195

END

DO

statement

122,

277

END

FORALL

statement

277

END

IF

statement

118,

277

END

INTERFACE

statement

138,

279

END

SELECT

statement

277

END

specifier
of

READ

statement

351

END

statement

276

END

TYPE

statement

280

END

WHERE

statement

104,

277

end-of-file

conditions

181

end-of-record

conditions

181

end-of-record,

preventing

with

$

editing

206

ENDFILE

statement

281

entities,

scope

of

128

entry
association

299

name

283

statement

(ENTRY)

283

EOR

specifier,

of

READ

statement

351

EOSHIFT

array

intrinsic

function

456

EPSILON

intrinsic

function

457

equivalence
logical

95

EQUIVALENCE
association

285

restriction

on

COMMON

and

249

EQUIVALENCE

statement

285

EQV

logical

operator

95

ERF
intrinsic

function

458

specific

name

458

ERFC
intrinsic

function

459

specific

name

459

ERR

specifier
of

BACKSPACE

statement

232

of

CLOSE

statement

245

of

ENDFILE

statement

281

of

INQUIRE

statement

309

of

OPEN

statement

332

of

READ

statement

351

of

REWIND

statement

364

of

WRITE

statement

392

ERR_RECOVERY

run-time

option
BACKSPACE

statement

and

233

conversion

errors

and

184

EDNFILE

statement

and

282

Fortran

90

language

errors

and

186

Fortran

95

language

errors

and

186

OPEN

statement

and

336

READ

statement

and

356

REWIND

statement

and

364

severe

errors

and

182

WRITE

statement

and

396

error

conditions

182

errors
catastrophic

182

conversion

184

Fortran

90

language

186

Fortran

95

language

186

recoverable

183

severe

182

ES

editing

196

escape

sequences

30

etime_

service

and

utility

subprogram

587

exclusive

disjunction,

logical

95

executable

program

134

executing

data

transfer

statements

178

execution

sequence

19

execution_part

145

EXIST

specifier,

of

INQUIRE

statement

309

EXIT

statement

287

exit_

service

and

utility

subprogram

587

EXP
intrinsic

function

459

specific

name

460

explicit
interface

137

typing

57

explicit-shape

arrays

68

EXPONENT

intrinsic

function

460

exponentiation

arithmetic

operator

91

expressions
arithmetic

90

character

93

constant

86

dimension

bound

65

general

90

in

FORMAT

statement

297

initialization

87

logical

95

primary

97

relational

93

630

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

expressions

(continued)
restricted

88

specification

88

subscript

75

extended
intrinsic

operations

97

precision

(Q)

editing

193

external
function

298

subprograms

in

the

XL

Fortran

library

583

EXTERNAL

attribute

288

external

files

174

F
F

(real

without

exponent)

editing

197

factor
arithmetic

90

logical

95

FCTIW

PowerPC

intrinsic

function

577

FCTIWZ

PowerPC

intrinsic

function

577

fdate_

service

and

utility

subprogram

587

fexcp.h

include

file

521

field

editing

189

file

position
BACKSPACE

statement,

after

execution

232

before

and

after

data

transfer

179

ENDFILE

statement,

after

execution

282

REWIND

statement,

after

execution

364

file

positioning

statement
BACKSPACE

statement

232

ENDFILE

statement

281

REWIND

statement

363

FILE

specifier
of

INQUIRE

statement

309

of

OPEN

statement

332

files

174

fiosetup_

service

and

utility

subprogram

588

fixed

source

form

12

FLOAT

specific

name

512

FLOOR

intrinsic

function

461

flush_

service

and

utility

subprogram

589

FMADD

PowerPC

intrinsic

function

577

FMSUB

PowerPC

intrinsic

function

578

FMT

specifier
of

PRINT

statement

344

of

READ

statement

351

of

WRITE

statement

392

FNABS

PowerPC

intrinsic

function

578

FNMADD

PowerPC

intrinsic

function

578

FNMSUB

PowerPC

intrinsic

function

579

FORALL
construct

110

statement

289

FORALL

(Construct)

statement

292

FORM

specifier
of

INQUIRE

statement

309

of

OPEN

statement

332

format
codes

189

conditional

compilation

17

control

211

fixed

source

form

12

format-directed

formatting

187

free

source

form

15

IBM

free

source

form

17

specification
character

297

interaction

with

input/output

list

211

statement

(FORMAT)

293

formatted
specifier

of

INQUIRE

statement

(FORMATTED)

309

formatting
description

187

format-directed

187

list-directed

212

namelist

215

fpgets

and

fpsets

service

and

utility

subprograms

543

fpscr

constants
Exception

Details

Flags

545

Exception

Summary

Flags

545

general

544

IEEE

Exception

Enable

Flags

545

IEEE

Exception

Status

Flags

545

IEEE

Rounding

Modes

544

list

544

fpscr

procedures
clr_fpscr_flags

545

discussion

544

get_fpscr

546

get_fpscr_flags

546

get_round_mode

547

set_fpscr

547

set_fpscr_flags

547

set_round_mode

548

FRACTION

intrinsic

function

462

FRE

PowerPC

intrinsic

function

579

free

source

form

15

free

source

form

format
IBM

17

FRSQRTE

PowerPC

intrinsic

function

580

FSEL

PowerPC

intrinsic

function

580

ftell_

service

and

utility

subprograms

589

function
intrinsic

583

reference

151

specification

89

statement

368

subprogram

151

value

151

FUNCTION

statement

298

G
G

(general)

editing

198

GAMMA
intrinsic

function

462

specific

name

463

general

expression

90

general

service

and

utility

procedures

583

get__fpscr

subprogram

546

get__fpscr_flags

subprogram

546

get_round_mode

subprogram

547

getarg

service

and

utility

subprogram

589

getcwd_

service

and

utility

subprogram

590

GETENV

intrinsic

subroutine

463

getfd

service

and

utility

subprogram

590

getgid_

service

and

utility

subprogram

590

getlog_

service

and

utility

subprogram

591

getpid_

service

and

utility

subprogram

591

getuid_

service

and

utility

subprogram

591

global

entities

128

global_timef

service

and

utility

subprogram

591

gmtime_

service

and

utility

subprogram

592

GO

TO

statement
assigned

301

computed

302

unconditional

303

H
H

editing

208

hexadecimal
(Z)

editing

204

constants

52

HFIX

elemental

function

464

HFIX

specific

name

464

Hollerith

constants

10,

54

host
association

127,

131

scoping

unit

127

hostnm_

service

and

utility

subprogram

592

HUGE

intrinsic

function

464

I
I

(integer)

editing

200

IABS

specific

name

427

IACHAR

intrinsic

function

465

IAND
intrinsic

function

466

specific

name

466

iargc

service

and

utility

subprogram

593

IBCLR
intrinsic

function

466

specific

name

467

IBITS
intrinsic

function

467

specific

name

467

IBM

free

source

form

17

IBSET
intrinsic

function

468

specific

name

468

INDEX

631

ICHAR
intrinsic

function

468

specific

name

469

ID

specifier
of

READ

statement

351

of

WRITE

statement

392

idate_

service

and

utility

subprogram

593

identity

arithmetic

operator

91

IDIM

specific

name

454

IDINT

specific

name

472

IDNINT

specific

name

499

IEEE

Modules

and

Support

548

IEEE

Operators

551

IEEE

Procedures

551

IEEE_CLASS

552

IEEE_CLASS_TYPE

550

IEEE_COPY_SIGN

553

IEEE_FEATURES_TYPE

551

IEEE_FLAG_TYPE

549

IEEE_GET_FLAG

553

IEEE_GET_HALTING

554

IEEE_GET_ROUNDING

554

IEEE_GET_STATUS

554

IEEE_IS_FINITE

555

IEEE_IS_NAN

555

IEEE_IS_NEGATIVE

556

IEEE_IS_NORMAL

556

IEEE_LOGB

557

IEEE_NEXT_AFTER

557

IEEE_REM

558

IEEE_RINT

558

IEEE_ROUND_TYPE

550

IEEE_SCALB

559

IEEE_SELECTED_REAL_KIND

559

IEEE_SET_FLAG

560

IEEE_SET_HALTING

560

IEEE_SET_ROUNDING

561

IEEE_SET_STATUS

561

IEEE_STATUS_TYPE

550

IEEE_SUPPORT_DATATYPE

561

IEEE_SUPPORT_DENORMAL

562

IEEE_SUPPORT_DIVIDE

562

IEEE_SUPPORT_FLAG

563

IEEE_SUPPORT_HALTING

563

IEEE_SUPPORT_INF

563

IEEE_SUPPORT_IO

564

IEEE_SUPPORT_NAN

564

IEEE_SUPPORT_ROUNDING

564

IEEE_SUPPORT_SQRT

565

IEEE_SUPPORT_STANDARD

565

IEEE_UNORDERED

566

IEEE_VALUE

566

IEOR
intrinsic

function

469

specific

name

470

ierrno_

service

and

utility

subprogram

593

IF
construct

117

statement
arithmetic

304

block

304

logical

305

IFIX

specific

name

472

ILEN

intrinsic

function

470

IMAG
initializing

expressions

87

intrinsic

function

470

implicit
connection

177

interface

137

typing

57

IMPLICIT
description

306

statement,

storage

class

assignment

and

63

type

determination

and

57

implied-DO
array

constructor

list

in

82

DATA

statement

and

258

INCLUDE

compiler

directive

404

inclusive

disjunction,

logical

95

incrementation

processing

124

INDEPENDENT

compiler

directive

406

INDEX
initializing

expressions

87

intrinsic

function

470

specific

name

471

infinity
how

indicated

with

numeric

output

editing

194

inherited

length
by

a

named

constant

244,

383

initial
line

12

value,

declaring

256

initialization

expressions

87

inline

comments

12

input/output

conditions

181

INQUIRE

statement

308

inquiry

intrinsic

functions

421

BIT_SIZE

439

DIGITS

453

EPSILON

457

HUGE

464

KIND

475

LEN

477

LOC

482

MAXEXPONENT

487

MINEXPONENT

492

PRECISION

503

PRESENT

504

RADIX

508

RANGE

511

TINY

534

INT
initializing

expressions

87

intrinsic

function

471

specific

name

472

INT2

intrinsic

function

472

integer
data

type

22

editing

(I)

200

pointer

association

134

POINTER

statement

342

INTEGER

type

declaration

statement

314

INTENT

attribute

318

interaction

between

input/output

list

and

format

specification

211

interface
blocks

138

interface

(continued)
implicit

137

statement

(INTERFACE)

320

interference

400,

406

interlanguage

calls
%VAL

and

%REF

functions

157

internal
function

298

procedures

135

internal

files

174

intrinsic
assignment

101

attribute

(INTRINSIC)

322

data

types

22

functions
See

also

intrinsic

procedures

conditional

vector

merge

449

detailed

descriptions

425

generic

152

specific

152

inquiry
See

inquiry

intrinsic

functions

procedures

152

description

426

discussion

421

elemental

421

inquiry

421,

422

name

in

an

INTRINSIC

statement

322

subroutines

423

transformational

422

statement

(INTRINSIC)

142

subroutines

423

invocation

commands

12

IOR
intrinsic

function

473

specific

name

474

IOSTAT

specifier
of

BACKSPACE

statement

232

of

CLOSE

statement

245

of

ENDFILE

statement

281

of

INQUIRE

statement

309

of

OPEN

statement

332

of

READ

statement

351

of

REWIND

statement

364

of

WRITE

statement

392

IOSTAT

values

181

IQINT

specific

name

472

IQNINT

specific

name

499

irand

service

and

utility

subprogram

594

irtc

service

and

utility

subprogram

594

ISHFT
intrinsic

function

474

specific

name

474

ISHFTC
intrinsic

function

475

specific

name

475

ISIGN

specific

name

520

ISYNC

compiler

directive

573

iteration

count
DO

statement

and

123

in

implied-DO

list

of

a

DATA

statement

258

itime_

service

and

utility

subprogram

594

632

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

J
jdate

service

and

utility

subprogram

595

K
keywords

argument

154

statement

11

KIND
intrinsic

function

475

intrinsic,

constant

expressions

and

86

intrinsic,

restricted

expressions

88

kind

type

parameter

21

L
L

(logical)

editing

201

labels,

statement

11

LANGLVL

run-time

option

186,

218

LBOUND

array

intrinsic

function

476

LEADZ

intrinsic

function

477

LEN
intrinsic

function

477

intrinsic,

constant

expressions

and

86

intrinsic,

restricted

expressions

88

specific

name

478

LEN_TRIM

intrinsic

function

478

lenchr_

service

and

utility

subprogram

595

length

type

parameter

21

length,

inherited

by

a

named

constant

244,

383

letters,

character

9

lexical
tokens

9

lexical

extent,

definition

of

622

LGAMMA
intrinsic

function

478

specific

name

479

LGE
intrinsic

function

479

specific

name

480

LGT
intrinsic

function

480

specific

name

480

library

subprograms

583

LIGHT_SYNC

compiler

directive

574

line

breaks,

preventing

with

$

editing

206

lines
comment

12

conditional

compilation

17

continuation

12

debug

12,

14

directive

12,

397

initial

12

source

formats

and

11

linker

options
-brename

583

list-directed

formatting

212

literal

storage

class

62

LLE
intrinsic

function

480

specific

name

481

LLT
intrinsic

function

481

specific

name

482

lnblnk_

service

and

utility

subprogram

595

LOC
intrinsic

function

115,

482

local

entities

128

LOG

intrinsic

function

482

LOG10

intrinsic

function

483

logical
(L)

editing

201

conjunction

95

data

type

28

equivalence

95

exclusive

disjunction

95

expressions

95

IF

statement

305

inclusive

disjunction

95

intrinsic

function

(LOGICAL)

484

negation

95

nonequivalence

95

type

declaration

statement

(LOGICAL)

323

loop
carried

dependency

400,

406

control

processing

123

DO

construct

and

121

LSHIFT
elemental

function

484

specific

name

485

ltime_

service

and

utility

subprogram

596

M
main

program

145,

347

many-one

section

79

masked

array

assignment

106

masked

ELSEWHERE

statement

104,

274

MATMUL

array

intrinsic

function

485

MAX
initializing

expressions

87

intrinsic

function

486

MAX0

specific

name

487

MAX1

specific

name

487

MAXEXPONENT

intrinsic

function

487

MAXLOC

array

intrinsic

function

488

MAXVAL

array

intrinsic

function

490

mclock

service

and

utility

subprogram

596

MERGE

array

intrinsic

function

491

MIN
initializing

expressions

87

intrinsic

function

492

MIN0

specific

name

492

MIN1

specific

name

492

MINEXPONENT

intrinsic

function

492

MINLOC

array

intrinsic

function

493

MINVAL

array

intrinsic

function

495

MOD
initializing

expressions

87

intrinsic

function

496

specific

name

497

module
description

146

module

(continued)
reference

132,

384

statement

(MODULE)

328

MODULE

PROCEDURE

statement

329

MODULO

intrinsic

function

497

MTSF

PowerPC

intrinsic

function

580

MTSFI

PowerPC

intrinsic

function

580

MULHY

PowerPC

intrinsic

function

581

multibyte

characters

31

multiplication

arithmetic

operator

91

MVBITS

intrinsic

subroutine

497

N
name

common

block

247

description

10

determining

storage

class

of

62

determining

type

of

57

entry

283

of

a

generic

or

specific

function

152

scope

of

a

128

NAME

specifier,

of

INQUIRE

statement

309

named

common

block

248

NAMED

specifier,

of

INQUIRE

statement

309

namelist
formatting

215

group

10

NAMELIST
run-time

option

220

statement

330

NEAREST

intrinsic

function

498

negation
arithmetic

operator

91

logical

operator

95

NEQV

logical

operator

95

NEXTREC

specifier
of

INQUIRE

statement

309

NINT
initializing

expressions

87

intrinsic

function

499

specific

name

499

NML

specifier
of

READ

statement

351

of

WRITE

statement

392

nonequivalence,

logical

95

NOT
intrinsic

function

499

logical

operator

95

specific

name

500

NULL
initializing

expressions

87

intrinsic

function

500

NULLIFY

statement

331

NUM

specifier
of

READ

statement

351

of

WRITE

statement

392

NUMBER

specifier,

of

INQUIRE

statement

309

NUMBER_OF_PROCESSORS

intrinsic

function

501

numeric

edit

descriptors

189

INDEX

633

O
O

(octal)

editing

201

objects,

data

21

octal

(O)

editing

201

octal

constants

53

ONLY

clause

of

USE

statement

385

OPEN

statement

332

OPENED

specifier,

of

INQUIRE

statement

309

operations
defined

97

extended

intrinsic

97

operators
arithmetic

91

character

93

defined

143

logical

95

precedence

of

98

relational

93

Optimization,

directives

399

optional

arguments

159

OPTIONAL

attribute

337

OR
logical

operator

95

specific

name

474

order
of

elements

in

an

array

75

of

statements

19

P
P

(scale

factor)

editing

209

PACK

array

intrinsic

function

502

PAD

specifier
of

INQUIRE

statement

309

of

OPEN

statement

332

PARAMETER

attribute

338

PAUSE

statement

339

pending

control

mask

106

PERMUTATION

compiler

directive

411

pointee
arrays

69

POINTER

statement

and

342

pointer
assignment

113

association

133

attribute,

POINTER

(Fortran

90)

340

POSITION

specifier
of

INQUIRE

statement

309

of

OPEN

statement

332

positional

(T,

TL,

TR,

and

X)

editing

210

precedence
of

all

operators

98

of

arithmetic

operators

91

of

logical

operators

95

PRECISION

intrinsic

function

503

precision

of

real

objects

24

preconnection

176

PREFETCH_BY_LOAD

compiler

directive

574

PREFETCH_BY_STREAM_BACKWARD

compiler

directive

574

PREFETCH_BY_STREAM_FORWARD

compiler

directive

574

PREFETCH_FOR_LOAD

compiler

directive

574

PREFETCH_FOR_STORE

compiler

directive

574

PRESENT

intrinsic

function

337,

504

primaries

(expressions)

86

primary

expressions

97

PRINT

statement

344

PRIVATE
attribute

346

statement

34,

346

procedure
dummy

163

external

135,

347

internal

135

procedure

references

151

procedure,

invoked

by

a

subprogram

135

PROCESSORS_SHAPE

intrinsic

function

504

PRODUCT

array

intrinsic

function

505

PROGRAM

statement

347

program

unit

134

PROTECTED

attribute

348

PUBLIC

attribute

350

PURE

167

pure

procedures

167

Q
Q

(extended

precision)

editing

193

QABS

specific

name

427

QACOS

specific

name

428

QACOSD

specific

name

429

QARCOS

specific

name

428

QARSIN

specific

name

434

QASIN

specific

name

434

QASIND

specific

name

435

QATAN

specific

name

436

QATAN2

specific

name

438

QATAN2D

specific

name

439

QATAND

specific

name

437

QCMPLX
initializing

expressions

87

intrinsic

function

507

specific

name

507

QCONJG

specific

name

443

QCOS

specific

name

444

QCOSD

specific

name

445

QCOSH

specific

name

445

QDIM

specific

name

454

QERF

specific

name

458

QERFC

specific

name

459

QEXP

specific

name

460

QEXT
initializing

expressions

87

intrinsic

function

507

specific

name

508

QEXTD

specific

name

508

QFLOAT

specific

name

508

QGAMMA

specific

name

463

QIMAG

specific

name

430

QINT

specific

name

431

QLGAMA

specific

name

479

QLOG

specific

name

483

QLOG10

specific

name

484

QMAX1

specific

name

487

QMIN1

specific

name

492

QMOD

specific

name

497

QNINT

specific

name

433

QPROD

specific

name

455

QREAL

specific

name

512

QSIGN

specific

name

520

QSIN

specific

name

522

QSIND

specific

name

523

QSINH

specific

name

523

qsort_

service

and

utility

subprogram

597

qsort_down

service

and

utility

subprogram

597

qsort_up

service

and

utility

subprogram

597

QSQRT

specific

name

528

QTAN

specific

name

532

QTAND

specific

name

533

QTANH

specific

name

533

R
RADIX

intrinsic

function

508

RAND

intrinsic

function

508

RANDOM_NUMBER

intrinsic

subroutine

509

RANDOM_SEED

intrinsic

subroutine

509

RANGE

intrinsic

function

511

rank
of

array

sections

81

of

arrays

66

READ
specifier,

of

INQUIRE

statement

309

statement

351

READWRITE

specifier,

of

INQUIRE

statement

309

REAL
initializing

expressions

87

intrinsic

function

512

specific

name

512

real

data

type

24

real

editing
E

(with

exponent)

193

F

(without

exponent)

197

G

(general)

198

REAL

type

declaration

statement

356

REC

specifier
of

READ

statement

351

of

WRITE

statement

392

RECL

specifier
of

INQUIRE

statement

309

of

OPEN

statement

332

record
statements

statement

label

(RECORD)

361

RECORD

statement

361

records
description

173

recursion
ENTRY

statement

and

284

FUNCTION

statement

and

299

procedures

and

166

SUBROUTINE

statement

and

372

RECURSIVE

keyword

299,

372

reference,

function

151

relational
expressions

93

operators

93

634

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

REPEAT
intrinsic

function

88,

513

intrinsic

initialization

expressions

87

repeat

specification

293

RESHAPE
array

intrinsic

function

88,

513

array

intrinsic

initialization

expressions

87

restricted

expression

88

RESULT

keyword

283,

299

result

variable

283,

299

return

points

and

specifiers,

alternate

154

return

specifier

19

RETURN

statement

362

REWIND

statement

363

right

margin

13

ROTAELI

PowerPC

intrinsic

function

581

ROTAELM

PowerPC

intrinsic

function

581

rounding

mode

92

RRSPACING

intrinsic

function

514

RSHIFT
elemental

function

515

specific

name

515

rtc

service

and

utility

subprogram

598

run-time

options
changing

with

SETRTEOPTS

procedure

598

CNVERR
conversion

errors

and

184

READ

statement

and

356

WRITE

statement

and

396

ERR_RECOVERY

186

BACKSPACE

statement

and

233

conversion

errors

and

184

ENDFILE

statement

and

282

OPEN

statement

and

336

READ

statement

and

356

REWIND

statement

and

364

severe

errors

and

182

WRITE

statement

and

396

LANGLVL

186,

218

NAMELIST

220

NLWIDTH

221

UNIT_VARS

177,

332

S
S

(sign

control)

editing

209

SAVE

attribute

365

scalar-int-constant-name

21

scale

factor

(P)

editing

209

SCALE

intrinsic

function

515

SCAN
initializing

expressions

87

intrinsic

function

516

scope,

entities

and

128

scoping

unit

127

section_subscript,

syntax

of

for

array

section

76

SELECT

CASE

statement
CASE

construct

119

CASE

statement

and

238

description

366

SELECTED_INT_KIND
intrinsic

function

88,

517

intrinsic

initialization

expressions

87

SELECTED_REAL_KIND
intrinsic

function

88,

517

intrinsic

initialization

expressions

87

selector

10

semicolon

statement

separator

14,

16

sequence

derived

type

35

SEQUENCE

statement

34,

367

sequentail

access

174

SEQUENTIAL

specifier,

of

INQUIRE

statement

309

service

and

utility

subprograms
alarm_

584

bic_

585

bis_

585

bit_

585

clock_

586

ctime_

586

date

586

discussion

583

dtime_

586

efficient

floating-point

control

and

inquiry

procedures

544

etime_

587

exit_

587

fdate_

587

fiosetup_

588

flush_

589

fpgets

and

fpsets

543

ftell_

589

general

583

getarg

589

getcwd_

590

getfd

590

getgid_

590

getlog_

591

getpid_

591

getuid_

591

global_timef

591

gmtime_

592

hostnm_

592

iargc

593

idate_

593

ierrno_

593

irand

594

irtc

594

itime_

594

jdate

595

lenchr_

595

lnblnk_

595

ltime_

596

mclock

596

qsort_

597

qsort_down

597

qsort_up

597

rtc

598

setrteopts

598

sleep_

598

time_

599

timef

599

timef_delta

599

umask_

600

usleep_

600

xl_

_trbk

601

SET_EXPONENT

intrinsic

function

518

set_fpscr

subprogram

547

set_fpscr_flags

subprogram

547

set_round_mode

subprogram

548

SETFSB0

PowerPC

intrinsic

function

582

SETFSB1

PowerPC

intrinsic

function

582

setrteopts

service

and

utility

subprogram

598

SFTI

PowerPC

intrinsic

function

582

shape
array

intrinsic

function

(SHAPE)

519

of

an

array

66

of

array

sections

81

SIGN
initializing

expressions

87

intrinsic

function

520

specific

name

520

sign

control

(S,

SS,

and

SP)

editing

209

SIGNAL

intrinsic

subroutine

521

signal.h

include

file

521

SIN
intrinsic

function

521

specific

name

522

SIND
intrinsic

function

522

specific

name

523

SINH
intrinsic

function

523

specific

name

523

SIZE
array

intrinsic

function

523

specifier,

of

READ

statement

351

SIZEOF
intrinsic

function

524

slash

(/)

editing

205

sleep_

service

and

utility

subprogram

598

SNAPSHOT

compiler

directive

412

SNGL

specific

name

512

SNGLQ

specific

name

512

sorting

(qsort_

procedure)

597

source

file

options

409,

412

source

formats
conditional

compilation

17

fixed

source

form

12

free

source

form

15

IBM

free

source

form

17

SOURCEFORM

compiler

directive

413

SP

(sign

control)

editing

209

SPACING

intrinsic

function

526

special

characters

9

specification

array

67

specification

expression

88

specification

function

89

specification_part

145

SPREAD

array

intrinsic

function

526

SQRT
intrinsic

function

527

specific

name

528

SRAND

intrinsic

subroutine

528

SS

(sign

control)

editing

209

statements
assignment

101

block

117

description

11

discussion

223

entities

128,

130,

131

function

statement

368

INDEX

635

statements

(continued)
label

assignment

(ASSIGN)

statement

229

label

record

(RECORD)

statement

361

labels

11

order

19

terminal

122

STATIC
attribute

370

STATUS

specifier
of

CLOSE

statement

245

of

OPEN

statement

332

STOP

statement

371

storage
classes

for

variables
description

62

fundamental

62

literal

62

secondary

63

sequence

within

common

blocks

248

sharing
using

common

blocks

248

using

EQUIVALENCE

285

using

integer

pointers

134

using

pointers

133

STREAM_UNROLL

compiler

directive

414

structure
array

components

79

components

35

constructor

43

description

35

scalar

components

39

subobjects

of

variables

22

subprograms
external

135

function

298

external

151

internal

151

internal

135

invocation

134

references

151

service

and

utility

583

subroutine

151

subroutine
functions

and

150

intrinsic

583

statement

(SUBROUTINE)

372

subscript_triplet,

syntax

of

77

SUBSCRIPTORDER

compiler

directive

415

subscripts

75

substring
character

31

ranges
relationship

to

array

sections

79

specifying

76

subtraction

arithmetic

operator

91

SUM

array

intrinsic

function

529

system

inquiry

intrinsic

functions

422

SYSTEM

intrinsic

subroutine

530

SYSTEM_CLOCK

intrinsic

subroutine

531

T
T

(positional)

editing

210

tabs,

formatting

13

TAN
intrinsic

function

532

specific

name

532

TAND
intrinsic

function

532

specific

name

533

TANH
intrinsic

function

533

specific

name

533

TARGET

attribute

373

terminal

statement

122

time

zone,

setting

450

time_

service

and

utility

subprogram

599

timef

service

and

utility

subprogram

599

timef_delta

service

and

utility

subprogram

599

TINY

intrinsic

function

534

TL

(positional)

editing

210

TR

(positional)

editing

210

TRANSFER

intrinsic

function
description

534

initialization

expressions

87

restricted

expressions

88

transfer

of

control
description

19

in

a

DO

loop

124

TRANSFER

specifier,

of

INQUIRE

statement

309

transformational

intrinsic

functions

422

TRANSPOSE

array

intrinsic

function

535

TRAP

PowerPC

intrinsic

function

582

TRIM

intrinsic

function
description

536

initialization

expressions

87

restricted

expressions

88

type

declaration

378

BYTE

234

CHARACTER

240

COMPLEX

250

DOUBLE

COMPLEX

266

DOUBLE

PRECISION

269

INTEGER

314

LOGICAL

323

REAL

356

TYPE

374

type

parameters

and

specifiers

21

type,

determining

57

typeless

constants
binary

53

hexadecimal

52

Hollerith

54

octal

53

using

54

TZ

environment

variable

450

U
UBOUND

array

intrinsic

function

536

umask_

service

and

utility

subprogram

600

unambiguous

references

141

unary

operations

85

unconditional

GO

TO

statement

303

UNFORMATTED

specifier
of

INQUIRE

statement

309

Unicode

characters

and

filenames
and

character

constants

207

character

constants

and

31

compiler

option

for

31

environment

variable

for

31

H

editing

and

208

Hollerith

constants

and

54

UNIT

specifier
of

BACKSPACE

statement

232

of

CLOSE

statement

245

of

ENDFILE

statement

281

of

INQUIRE

statement

309

of

OPEN

statement

332

of

READ

statement

351

of

REWIND

statement

364

of

WRITE

statement

392

units,

external

files

reference

176

UNPACK

array

intrinsic

function

537

UNROLL

compiler

directive

417

UNROLL_AND_FUSE

compiler

directive

419

use

association

132,

384

USE

statement

384

usleep_

service

and

utility

subprogram

600

V
VALUE

attribute

386

value

separators

212

variable
description

21

format

expressions

and

297

vector

subscripts

78

VERIFY
initializing

expressions

87

intrinsic

function

538

VIRTUAL

statement

388

VOLATILE

attribute

388

W
WHERE

construct

104

construct

statement

390

nested

in

FORALL

112

statement

104,

390

where_construct_name

104,

274,

277,

390

white

space

9

whole

array

65

WRITE
specifier

of

INQUIRE

statement

309

statement

392

X
X

(positional)

editing

210

xl_

_trbk

service

and

utility

subprogram

601

xlf_fp_util

module

544

636

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

xlfutility

module

583

XOR
logical

operator

95

specific

name

470

Z
Z

(hexadecimal)

editing

204

ZABS

specific

name

427

ZCOS

specific

name

444

zero-length

string

31

zero-sized

array

65

ZEXP

specific

name

460

ZLOG

specific

name

483

ZSIN

specific

name

522

ZSQRT

specific

name

528

INDEX

637

638

XL

Fortran

Advanced

Edition

for

Mac

OS

X:

Language

Reference

����

Program

Number:

5724-G13

SC09-7863-00

	Contents
	The XL Fortran Language
	XL Fortran for Mac OS X
	Language Standards
	Fortran 95
	Fortran 90
	Fortran 2003 Draft Standard
	Other Standards and Standards Documents
	Standards Documents

	Typographical Conventions
	How to Read Syntax Diagrams
	Sample Syntax Diagram

	Using Examples

	Fundamentals of the XL Fortran Language
	Characters
	Names
	Statements
	Statement Keywords
	Statement Labels

	Lines and Source Formats
	Fixed Source Form
	Debug Lines

	Free Source Form
	White Space

	IBM Free Source Form
	Example of IBM Free Source Form

	Conditional Compilation

	Order of Statements and Execution Sequence

	Data Types and Data Objects
	Data Types
	Type Parameters and Specifiers

	Data Objects
	Constants
	Automatic Objects

	Intrinsic Types
	Integer
	Examples of Integer Constants

	Real
	Examples of Real Constants

	Complex
	Examples of Complex Constants

	Logical
	Examples of Logical Constants

	Character
	Examples of Character Constants
	Character Substrings

	BYTE

	Derived Types
	Input/Output
	Determining Type for Derived Types
	Example of Determining Type with Derived Types
	An Example with Different Component Names
	Structure Components
	Allocatable Components
	Structure Constructor

	Record Structures
	Declaring Record Structures
	Storage Mapping

	Union and Map
	Examples of Union and Map

	Typeless Literal Constants
	Hexadecimal Constants
	Examples of Hexadecimal Constants

	Octal Constants
	Examples of Octal Constants

	Binary Constants
	Examples of Binary Constants

	Hollerith Constants
	Using Typeless Constants
	Examples of Typeless Constants in Expressions

	How Type Is Determined
	Definition Status of Variables
	Events Causing Definition
	Events Causing Undefinition

	Allocation Status
	Storage Classes for Variables
	Fundamental Storage Classes
	Secondary Storage Classes
	Storage Class Assignment

	Array Concepts
	Arrays
	Bounds of a Dimension
	Extent of a Dimension
	Rank, Shape, and Size of an Array

	Array Declarators
	Explicit-Shape Arrays
	Examples of Explicit-Shape Arrays
	Automatic Arrays
	Adjustable Arrays
	Pointee Arrays

	Assumed-Shape Arrays
	Examples of Assumed-Shape Arrays

	Deferred-Shape Arrays
	Allocatable Arrays
	Array Pointers

	Assumed-Size Arrays
	Examples of Assumed-Size Arrays

	Array Elements
	Notes
	Array Element Order

	Array Sections
	Subscript Triplets
	Examples of Subscript Triplets

	Vector Subscripts
	Array Sections and Substring Ranges
	Array Sections and Structure Components
	Rank and Shape of Array Sections

	Array Constructors
	Implied-DO List for an Array Constructor

	Expressions Involving Arrays

	Expressions and Assignment
	Introduction to Expressions and Assignment
	Primary
	Examples of Primaries
	Type, Parameters, and Shape

	Constant Expressions
	Examples of Constant Expressions

	Initialization Expressions
	Examples of Initialization Expressions

	Specification Expressions
	Examples of Specification Expressions

	Operators and Expressions
	General
	Arithmetic
	Examples of Arithmetic Expressions
	Data Type of an Arithmetic Expression

	Character
	Example of a Character Expression

	Relational
	Arithmetic Relational Expressions
	Character Relational Expressions

	Logical
	Value of a Logical Expression

	Primary

	Extended Intrinsic and Defined Operations
	How Expressions Are Evaluated
	Precedence of Operators
	Summary of Interpretation Rules
	Evaluation of Expressions

	Using BYTE Data Objects

	Intrinsic Assignment
	Arithmetic Conversion
	Character Assignment
	BYTE Assignment

	WHERE Construct
	Interpreting Masked Array Assignments
	Examples of the WHERE Construct

	FORALL Construct
	Interpreting the FORALL Construct

	Pointer Assignment
	Examples of Pointer Assignment
	Integer Pointer Assignment
	Example of Integer Pointer Assignment

	Control Structures
	Statement Blocks
	IF Construct
	Example

	CASE Construct
	Examples

	DO Construct
	The Terminal Statement
	Range of a DO Construct
	Active and Inactive DO Constructs
	Executing a DO Statement
	Loop Control Processing
	Execution of the Range
	Terminal Statement Execution
	Incrementation Processing

	DO WHILE Construct
	Example

	Branching

	Program Units and Procedures
	Scope
	The Scope of a Name
	Global Entity
	Local Entity
	Statement and Construct Entities

	Association
	Host Association
	Example of Host Association

	Use Association
	Pointer Association
	Definition Status and Association Status

	Integer Pointer Association

	Program Units, Procedures, and Subprograms
	Internal Procedures
	Interface Concepts
	Explicit Interface
	Implicit Interface

	Interface Blocks
	Example of an Interface

	Generic Interface Blocks
	Unambiguous Generic Procedure References
	Example of a Generic Interface Block

	Extending Intrinsic Procedures with Generic Interface Blocks
	Example of Extending and Redefining Intrinsic Procedures

	Defined Operators
	Example of a Defined Operator

	Defined Assignment
	Example of Defined Assignment

	Main Program
	Modules
	Example of a Module

	Block Data Program Unit
	Example of a Block Data Program Unit

	Function and Subroutine Subprograms
	Procedure References
	Function Reference
	Examples of Subprograms and Procedure References
	Examples of Allocatable Function Results

	Intrinsic Procedures
	Conflicts Between Intrinsic Procedure Names and Other Names

	Arguments
	Actual Argument Specification
	Argument Keywords
	Dummy Arguments

	Argument Association
	%VAL and %REF
	Examples of %VAL and %REF

	Intent of Dummy Arguments
	Optional Dummy Arguments
	Restrictions on Optional Dummy Arguments Not Present
	Length of Character Arguments
	Variables as Dummy Arguments
	Allocatable Objects as Dummy Arguments
	Example

	Pointers as Dummy Arguments
	Procedures as Dummy Arguments
	Examples of Procedures as Dummy Arguments

	Asterisks as Dummy Arguments
	Example of an Alternate Return Specifier

	Resolution of Procedure References
	Rules for Resolving Procedure References to Names
	Resolving Procedure References to Generic Names

	Recursion
	Pure Procedures
	Examples

	Elemental Procedures
	Examples

	Understanding XL Fortran Input/Output
	Records
	Formatted Records
	Unformatted Records
	Endfile Records

	Files
	Definition of an External File
	File Access Methods
	Sequential Access
	Direct Access
	Stream Access

	Units
	Connection of a Unit
	Preconnection
	Implicit Connection
	Disconnection

	Data Transfer Statements
	Advancing and Nonadvancing Input/Output
	File Position Before and After Data Transfer

	Conditions and IOSTAT Values
	End-Of-Record Conditions
	End-Of-File Conditions
	Error Conditions
	Catastrophic Errors
	Severe Errors
	Recoverable Errors
	Conversion Errors
	Fortran 90 and Fortran 95 Language Errors

	Input/Output Formatting
	Format-Directed Formatting
	Data Edit Descriptors
	Control Edit Descriptors
	Character String Edit Descriptors

	Editing
	Complex Editing

	Data Edit Descriptors
	A (Character) Editing
	B (Binary) Editing
	Examples of B Editing on Input
	Examples of B Editing on Output

	E, D, and Q (Extended Precision) Editing
	Examples of E, D, and Extended Precision Q Editing on Input
	Examples of E, D, and Extended Precision Q Editing on Output

	EN Editing
	Examples of EN Editing

	ES Editing
	Examples of ES Editing

	F (Real without Exponent) Editing
	Examples of F Editing on Input
	Examples of F Editing on Output

	G (General) Editing
	Generalized Real and Complex Editing
	Examples of G Editing on Output

	I (Integer) Editing
	Examples of I Editing on Input
	Examples of I Editing on Output

	L (Logical) Editing
	Examples of L Editing on Input
	Examples of L Editing on Output

	O (Octal) Editing
	Examples of O Editing on Input
	Examples of O Editing on Output

	Q (Character Count) Editing
	Examples of Character Count Q Editing on Input

	Z (Hexadecimal) Editing
	Examples of Z Editing on Input
	Examples of Z Editing on Output

	Control Edit Descriptors
	/ (Slash) Editing
	Examples of Slash Editing on Input

	: (Colon) Editing
	Example of Colon Editing

	$ (Dollar) Editing
	Example of Dollar Editing

	Apostrophe/Double Quotation Mark Editing (Character-String Edit Descriptor)
	Examples of Apostrophe/Double Quotation Mark Editing

	BN (Blank Null) and BZ (Blank Zero) Editing
	H Editing
	Examples of H Editing

	P (Scale Factor) Editing
	Examples of P Editing on Input
	Examples of P Editing on Output

	S, SP, and SS (Sign Control) Editing
	Examples of S, SS, and SP Editing on Output

	T, TL, TR, and X (Positional) Editing
	Examples of T, TL, and X Editing on Input
	Examples of T, TL, TR, and X Editing on Output

	Interaction between Input/Output Lists and Format Specifications
	List-Directed Formatting
	List-Directed Input
	List-Directed Output

	Namelist Formatting
	Namelist Input Data
	Example of Namelist Input Data

	Namelist Output Data
	Example of Namelist Output Data

	Statements and Attributes
	Attributes
	ALLOCATABLE
	ALLOCATE
	ASSIGN
	AUTOMATIC
	BACKSPACE
	BLOCK DATA
	BYTE
	CALL
	CASE
	CHARACTER
	CLOSE
	COMMON
	COMPLEX
	CONTAINS
	CONTINUE
	CYCLE
	DATA
	DEALLOCATE
	Derived Type
	DIMENSION
	DO
	DO WHILE
	DOUBLE COMPLEX
	DOUBLE PRECISION
	ELSE
	ELSE IF
	ELSEWHERE
	END
	END (Construct)
	END INTERFACE
	END TYPE
	ENDFILE
	ENTRY
	EQUIVALENCE
	EXIT
	EXTERNAL
	FORALL
	FORALL (Construct)
	FORMAT
	FUNCTION
	GO TO (Assigned)
	GO TO (Computed)
	GO TO (Unconditional)
	IF (Arithmetic)
	IF (Block)
	IF (Logical)
	IMPLICIT
	INQUIRE
	INTEGER
	INTENT
	INTERFACE
	INTRINSIC
	LOGICAL
	MODULE
	MODULE PROCEDURE
	NAMELIST
	NULLIFY
	OPEN
	OPTIONAL
	PARAMETER
	PAUSE
	POINTER (Fortran 90)
	POINTER (integer)
	PRINT
	PRIVATE
	PROGRAM
	PROTECTED
	PUBLIC
	READ
	REAL
	RECORD
	RETURN
	REWIND
	SAVE
	SELECT CASE
	SEQUENCE
	Statement Function
	STATIC
	STOP
	SUBROUTINE
	TARGET
	TYPE
	Type Declaration
	USE
	VALUE
	VIRTUAL
	VOLATILE
	WHERE
	WRITE

	General Directives
	Comment and Noncomment Form Directives
	Comment Form Directives
	Format
	Rules

	Noncomment Form Directives
	Format
	Rules

	Directives and Optimization
	Assertive Directives
	Directives for Loop Unrolling

	Detailed Directive Descriptions
	ASSERT
	CNCALL
	COLLAPSE
	EJECT
	INCLUDE
	INDEPENDENT
	#LINE
	PERMUTATION
	@PROCESS
	SNAPSHOT
	SOURCEFORM
	STREAM_UNROLL
	SUBSCRIPTORDER
	UNROLL
	UNROLL_AND_FUSE

	Intrinsic Procedures
	Classes of Intrinsic Procedures
	Inquiry Intrinsic Functions
	Elemental Intrinsic Procedures
	System Inquiry Intrinsic Functions
	Transformational Intrinsic Functions
	Intrinsic Subroutines

	Data Representation Models
	Integer Bit Model
	Integer Data Model
	Real Data Model

	Detailed Descriptions of Intrinsic Procedures
	ABORT()
	ABS(A)
	ACHAR(I)
	ACOS(X)
	ACOSD(X)
	ADJUSTL(STRING)
	ADJUSTR(STRING)
	AIMAG(Z), IMAG(Z)
	AINT(A, KIND)
	ALL(MASK, DIM)
	ALLOCATED(ARRAY) or ALLOCATED(SCALAR)
	ANINT(A, KIND)
	ANY(MASK, DIM)
	ASIN(X)
	ASIND(X)
	ASSOCIATED(POINTER, TARGET)
	ATAN(X)
	ATAND(X)
	ATAN2(Y, X)
	ATAN2D(Y, X)
	BIT_SIZE(I)
	BTEST(I, POS)
	CEILING(A, KIND)
	CHAR(I, KIND)
	CMPLX(X, Y, KIND)
	CONJG(Z)
	COS(X)
	COSD(X)
	COSH(X)
	COUNT(MASK, DIM)
	CPU_TIME(TIME)
	CSHIFT(ARRAY, SHIFT, DIM)
	CVMGx(TSOURCE, FSOURCE, MASK)
	DATE_AND_TIME(DATE, TIME, ZONE, VALUES)
	DBLE(A)
	DCMPLX(X, Y)
	DIGITS(X)
	DIM(X, Y)
	DOT_PRODUCT(VECTOR_A, VECTOR_B)
	DPROD(X, Y)
	EOSHIFT(ARRAY, SHIFT, BOUNDARY, DIM)
	EPSILON(X)
	ERF(X)
	ERFC(X)
	EXP(X)
	EXPONENT(X)
	FLOOR(A, KIND)
	FRACTION(X)
	GAMMA(X)
	GETENV(NAME, VALUE)
	HFIX(A)
	HUGE(X)
	IACHAR(C)
	IAND(I, J)
	IBCLR(I, POS)
	IBITS(I, POS, LEN)
	IBSET(I, POS)
	ICHAR(C)
	IEOR(I, J)
	ILEN(I)
	IMAG(Z)
	INDEX(STRING, SUBSTRING, BACK)
	INT(A, KIND)
	INT2(A)
	IOR(I, J)
	ISHFT(I, SHIFT)
	ISHFTC(I, SHIFT, SIZE)
	KIND(X)
	LBOUND(ARRAY, DIM)
	LEADZ(I)
	LEN(STRING)
	LEN_TRIM(STRING)
	LGAMMA(X)
	LGE(STRING_A, STRING_B)
	LGT(STRING_A, STRING_B)
	LLE(STRING_A, STRING_B)
	LLT(STRING_A, STRING_B)
	LOC(X)
	LOG(X)
	LOG10(X)
	LOGICAL(L, KIND)
	LSHIFT(I, SHIFT)
	MATMUL(MATRIX_A, MATRIX_B, MINDIM)
	MAX(A1, A2, A3, ...)
	MAXEXPONENT(X)
	MAXLOC(ARRAY, DIM, MASK) or MAXLOC(ARRAY, MASK)
	MAXVAL(ARRAY, DIM, MASK) or MAXVAL(ARRAY, MASK)
	MERGE(TSOURCE, FSOURCE, MASK)
	MIN(A1, A2, A3, ...)
	MINEXPONENT(X)
	MINLOC(ARRAY, DIM, MASK) or MINLOC(ARRAY, MASK)
	MINVAL(ARRAY, DIM, MASK) or MINVAL(ARRAY, MASK)
	MOD(A, P)
	MODULO(A, P)
	MVBITS(FROM, FROMPOS, LEN, TO, TOPOS)
	NEAREST(X,S)
	NINT(A, KIND)
	NOT(I)
	NULL(MOLD)
	NUMBER_OF_PROCESSORS(DIM)
	PACK(ARRAY, MASK, VECTOR)
	PRECISION(X)
	PRESENT(A)
	PROCESSORS_SHAPE()
	PRODUCT(ARRAY, DIM, MASK) or PRODUCT(ARRAY, MASK)
	QCMPLX(X, Y)
	QEXT(A)
	RADIX(X)
	RAND()
	RANDOM_NUMBER(HARVEST)
	RANDOM_SEED(SIZE, PUT, GET, GENERATOR)
	RANGE(X)
	REAL(A, KIND)
	REPEAT(STRING, NCOPIES)
	RESHAPE(SOURCE, SHAPE, PAD, ORDER)
	RRSPACING(X)
	RSHIFT(I, SHIFT)
	SCALE(X,I)
	SCAN(STRING, SET, BACK)
	SELECTED_INT_KIND(R)
	SELECTED_REAL_KIND(P, R)
	SET_EXPONENT(X,I)
	SHAPE(SOURCE)
	SIGN(A, B)
	SIGNAL(I, PROC)
	SIN(X)
	SIND(X)
	SINH(X)
	SIZE(ARRAY, DIM)
	SIZEOF(A)
	SPACING(X)
	SPREAD(SOURCE, DIM, NCOPIES)
	SQRT(X)
	SRAND(SEED)
	SUM(ARRAY, DIM, MASK) or SUM(ARRAY, MASK)
	SYSTEM(CMD, RESULT)
	SYSTEM_CLOCK(COUNT, COUNT_RATE, COUNT_MAX)
	TAN(X)
	TAND(X)
	TANH(X)
	TINY(X)
	TRANSFER(SOURCE, MOLD, SIZE)
	TRANSPOSE(MATRIX)
	TRIM(STRING)
	UBOUND(ARRAY, DIM)
	UNPACK(VECTOR, MASK, FIELD)
	VERIFY(STRING, SET, BACK)

	XL Fortran Language Utilities
	Floating-Point Control and Inquiry Procedures
	fpgets fpsets
	Efficient Floating-Point Control and Inquiry Procedures
	xlf_fp_util Floating-Point Procedures
	clr_fpscr_flags
	get_fpscr
	get_fpscr_flags
	get_round_mode
	set_fpscr
	set_fpscr_flags
	set_round_mode

	IEEE Modules and Support
	Compiling and Exception Handling
	Related Information

	General Rules for Implementing IEEE Modules
	IEEE Derived Data Types and Constants
	IEEE_FLAG_TYPE
	IEEE_STATUS_TYPE
	IEEE_CLASS_TYPE
	IEEE_ROUND_TYPE
	IEEE_FEATURES_TYPE

	IEEE Operators
	IEEE PROCEDURES
	Rules for Using IEEE Procedures
	IEEE_CLASS(X)
	IEEE_COPY_SIGN(X, Y)
	IEEE_GET_FLAG(FLAG, FLAG_VALUE)
	IEEE_GET_HALTING_MODE(FLAG, HALTING)
	IEEE_GET_ROUNDING_MODE (ROUND_VALUE)
	IEEE_GET_STATUS(STATUS_VALUE)
	IEEE_IS_FINITE(X)
	IEEE_IS_NAN(X)
	IEEE_IS_NEGATIVE(X)
	IEEE_IS_NORMAL(X)
	IEEE_LOGB(X)
	IEEE_NEXT_AFTER(X, Y)
	IEEE_REM(X, Y)
	IEEE_RINT(X)
	IEEE_SCALB(X, I)
	IEEE_SELECTED_REAL_KIND([P, R])
	IEEE_SET_FLAG(FLAG, FLAG_VALUE)
	IEEE_SET_HALTING_MODE(FLAG, HALTING)
	IEEE_SET_ROUNDING_MODE (ROUND_VALUE)
	IEEE_SET_STATUS(STATUS_VALUE)
	IEEE_SUPPORT_DATATYPE or IEEE_SUPPORT_DATATYPE(X)
	IEEE_SUPPORT_DENORMAL or IEEE_SUPPORT_DENORMAL(X)
	IEEE_SUPPORT_DIVIDE or IEEE_SUPPORT_DIVIDE(X)
	IEEE_SUPPORT_FLAG(FLAG) or IEEE_SUPPORT_FLAG(FLAG, X)
	IEEE_SUPPORT_HALTING(FLAG)
	IEEE_SUPPORT_INF or IEEE_SUPPORT_INF(X)
	IEEE_SUPPORT_IO or IEEE_SUPPORT_IO(X)
	IEEE_SUPPORT_NAN or IEEE_SUPPORT_NAN(X)
	IEEE_SUPPORT_ROUNDING (ROUND_VALUE) or IEEE_SUPPORT_ROUNDING (ROUND_VALUE, X)
	IEEE_SUPPORT_SQRT or IEEE_SUPPORT_SQRT(X)
	IEEE_SUPPORT_STANDARD or IEEE_SUPPORT_STANDARD(X)
	IEEE_UNORDERED(X, Y)
	IEEE_VALUE(X, CLASS)

	Rules for Floating-Point Status
	Examples

	Hardware Directives and Intrinsic Procedures
	Hardware–Specific Directives
	CACHE_ZERO
	ISYNC
	LIGHT_SYNC
	PREFETCH

	Hardware–Specific Intrinsic Procedures
	FCTIW(X)
	FCTIWZ(X)
	FMADD(A, X, Y)
	FMSUB(A, X, Y)
	FNABS(X)
	FNMADD(A, X, Y)
	FNMSUB(A, X, Y)
	FRES(X)
	FRSQRTE(X)
	FSEL(X,Y,Z)
	MTFSF(MASK, R)
	MTFSFI(BF, I)
	MULHY(RA, RB)
	ROTATELI(RS, IS, SHIFT, MASK)
	ROTATELM(RS, SHIFT, MASK)
	SETFSB0(BT)
	SETFSB1(BT)
	SFTI(M, Y)
	TRAP(A, B, TO)

	Service and Utility Procedures
	General Service and Utility Procedures
	List of Service and Utility Procedures
	alarm_
	bic_
	bis_
	bit_
	clock_
	ctime_
	date
	dtime_
	etime_
	exit_
	fdate_
	fiosetup_
	flush_
	ftell_
	getarg
	getcwd_
	getfd
	getgid_
	getlog_
	getpid_
	getuid_
	global_timef
	gmtime_
	hostnm_
	iargc
	idate_
	ierrno_
	irand
	irtc
	itime_
	jdate
	lenchr_
	lnblnk_
	ltime_
	mclock
	qsort_
	qsort_down
	qsort_up
	rtc
	setrteopts
	sleep_
	time_
	timef
	timef_delta
	umask_
	usleep_
	xl__trbk

	Appendix A. Compatibility Across Standards
	Fortran 90 compatibility
	Obsolescent Features
	Deleted Features

	Appendix B. ASCII and EBCDIC Character Sets
	Notices
	Trademarks and Service Marks

	Glossary
	INDEX

